Methodological considerations on tract-based spatial statistics (TBSS)

Michael Bach a,b, Frederik B. Laun a,b, Alexander Leemans c, Chantal M.W. Tax c, Geert J. Biessels d, Bram Stieltjes a, Klaus H. Maier-Hein a,e,⁎

a Section Quantitative Imaging-based Disease Characterization, Department of Radiology, German Cancer Research Center (DKFZ), Germany
b Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Germany
c Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
d Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
e Medical Image Computing Group, Div. Medical and Biological Informatics, German Cancer Research Center (DKFZ), Germany

ABSTRACT

Having gained a tremendous amount of popularity since its introduction in 2006, tract-based spatial statistics (TBSS) can now be considered as the standard approach for voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data. Aiming to improve the sensitivity, objectivity, and interpretability of multi-subject DTI studies, TBSS includes a skeletonization step that alleviates residual image misalignment and obviates the need for data smoothing. Although TBSS represents an elegant and user-friendly framework that tackles numerous concerns existing in conventional VBA methods, it has limitations of its own, some of which have already been detailed in recent literature. In this work, we present general methodological considerations on TBSS and report on pitfalls that have not been described previously. In particular, we have identified specific assumptions of TBSS that may not be satisfied under typical conditions. Moreover, we demonstrate that the existence of such violations can severely affect the reliability of TBSS results. With TBSS being used increasingly, it is of paramount importance to acquaint TBSS users with these concerns, such that a well-informed decision can be made as to whether and how to pursue a TBSS analysis. Finally, in addition to raising awareness by providing our new insights, we provide constructive suggestions that could improve the validity and increase the impact of TBSS drastically.

Introduction

Diffusion magnetic resonance imaging (MRI) can provide an insight into the living human brain in health and disease, especially in white matter anatomy, and provides quantitative parameters related to white matter (WM) microstructure (Tournier et al., 2011). Much of the knowledge about changes in WM microstructure that we have gained from diffusion MRI originates from studies that compared such diffusion markers between populations of interest, commonly a healthy control group and a diseased population. The value and impact of such studies is directly tied to the ability of researchers to present results that are unbiased, objective, and anatomically specific. Tract-based spatial statistics (TBSS) (Smith et al., 2006) has become a very popular tool for the evaluation of diffusion tensor imaging (DTI) data in this context.

TBSS pioneered the idea of projecting volumetric data onto a WM skeleton to circumvent the partial volume effect (PVE) and gain statistical power from this dimensionality reduction (Smith et al., 2006). The approach does not require data smoothing and could alleviate many concerns that were raised regarding the conventional voxel-based morphometry (VBM) framework that was previously used in many DTI studies (e.g., Jones et al. (2005)). Although TBSS has advanced the state of the art in diffusion MRI group studies significantly, the increased complexity resulting from adding the skeletonization step reduces overall transparency. In other words, while TBSS is very user-friendly and delivers comprehensive images, it may also obscure several aspects of the raw data that the reader of a study or even the researcher that performed the analysis might not be aware of. With more and more scientists adopting the technique, it is therefore increasingly important to raise awareness of the limitations of the approach. In previous studies, some problems related to TBSS have been investigated. Edden and Jones (2011) reported that the shape of the skeleton as well as the statistical results are rotationally variant. Zalesky (2011) quantitatively assessed the performance of the projection algorithm in moderating registration misalignments and showed that only 10% of post-registration misalignment was corrected by the TBSS projection algorithm. Keihaninejad et al. (2012) demonstrated the dependence of specificity and sensitivity of TBSS results on the registration target and suggest the use of a group-wise atlas as target. Van Hecke et al. (2010) discussed potential pitfalls and limitations of TBSS, like the...
assumption that the effect of interest occurs in voxels where the local FA is highest. Below we discuss important issues that we address in this study.

One major point of debate is the potentially limited anatomical specificity of TBSS. The technique was introduced as being “tract-based”, in response to the challenge of comparing voxels of “the same part of the same WM tract from each and every subject”, both “in terms of resolving topological variabilities and in terms of the exact alignment of the very fine structures present in such data” (Smith et al., 2006). However, making a distinction between adjacent, differently oriented fiber bundles with similar FA values is challenging and alternative methods are described by Kindlmann et al. (2007) and Yushkevich et al. (2008) to overcome this limitation. Since TBSS only makes use of the FA map and discards the orientation information captured in the diffusion data, two different problems arise. First, complications in terms of anatomical specificity occur in regions where pathways of different structures merge, such as those related to the superior projections of the corpus callosum (CC) and the corona radiata fiber bundles. Without the (long-distance) directional tract information derived from the orientation information, it is virtually impossible to assign the FA values to the same anatomical structure across subjects in a consistent way as the skeletonization step causes these different bundles to collapse on top of each other (see Fig. 1). Furthermore, even in regions where the assignment of voxels to tracts is unambiguous, the tract specificity of the TBSS projection step is unknown. The region where the cingulum bundle (CB) and CC are in close proximity is a good example of this, and in the original TBSS-paper, it has been explicitly stated that the CB and CC are correctly differentiated by the projection algorithm (Smith et al., 2006, page 1494, second paragraph): “The superior part of the cingulum (i.e. above the corpus callosum) is slightly extended across its cross-section in the inferior–superior direction, and well-localized across subjects by virtue of the strong, nearby corpus callosum, and hence the normal projections described above work well (similar issues relate to the fornix”). However, this was not shown experimentally. Since we question the tract-specificity of TBSS throughout this paper, we do not use the words “tract-center” or “tract” when referring to the skeleton, but “locally maximal FA value”, or “FA-skeleton”, because we think this is a less ambiguous and thus more appropriate expression.

Another factor that plays a central role in the TBSS processing pipeline, and one that may greatly affect the anatomical specificity of TBSS, is the quality of image registration. The mean FA skeleton has been shown to be less “alignment-invariant” than anticipated and alternative skeleton-based approaches that try to address this point have been published, but have not yet reached a comparable level of acceptance (Kindlmann et al., 2007; Yushkevich et al., 2008; Zhang et al., 2010a).

A further point of debate is the robustness and interpretability of TBSS results. The original TBSS paper includes inter-subject and intersession test–retest results regarding the reproducibility of FA values (Smith et al., 2006). However, the influence of the user in terms of parameter settings and the noise level on the final TBSS result, i.e. the significant maps, has not been shown. Being a fully automated technique, TBSS is generally considered to be largely user-independent. However, there are several parameters that have to be adopted in each TBSS analysis. While this is potentially important to allow a proper adaptation of the method to each specific analysis, many papers vary the parameters without motivating their choice. This is critical, since important aspects of the underlying data, such as SNR or alignment problems, remain unnoticed when looking only at the final result. We anticipate that the influence of different TBSS configuration options on the final result is largely unclear and/or underestimated by TBSS users. One important example is the choice of template in TBSS studies. Many studies use the FMRIB template that is distributed with TBSS. This might be mainly for computational reasons, since the generation of a study-specific target is computationally expensive to obtain, especially in larger populations. However, while the choice of template is known to significantly impact the results of other group analysis methods (Van Hecke et al., 2011), its impact on the final TBSS result is largely unknown. An initial study was performed by Keihaninejad et al. (2012), who demonstrated the positive impact of improved alignment on TBSS by the use of a group-wise atlas construction.

Taken together, although TBSS may provide plausible results, the final significance maps overlaid on the template image may also hide potential methodological imperfections related to the quality and/or analysis of the data. In this paper, a deeper look under the surface of the TBSS framework is provided. We address several methodological aspects of the technique: how unbiased, objective, and anatomically specific are TBSS results? What are major sources of bias, user-dependence, and non-specificity and to what extent do these factors affect the final TBSS result? With the detailed analyses presented in this study, we provide an in-depth investigation of the major pitfalls in analyzing and interpreting data with TBSS. We conclude with suggestions that define good practice when using TBSS and we propose improvements that may further raise the validity and impact of TBSS.

Methods

TBSS settings

In all experiments, the TBSS pipeline was applied using the recommended parameters. For the in-vivo datasets a permutation test with n = 5000, corrected for multiple comparisons and threshold-free cluster enhancement (TFCE (Smith and Nichols, 2009)) was used to compare patients and controls, with p = 0.05 as threshold for significance. Unless otherwise stated, an FA threshold of 0.2 was applied and the FMRIB58 template (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA) was used as registration target. Four dataset types (two in-vivo human brain, physical phantom, and synthetic FA images) were used to perform the TBSS analyses in this work. Details on these data sets and experiments are provided in the following paragraphs.

Dataset types

Two in-vivo dataset types were used. The first (in-vivo dataset I) was acquired at 1.5 T (Symphony, Siemens Medical Solution, Erlangen,
Germany) for 15 Alzheimer’s disease patients and 15 healthy controls using a twice refocused single-shot echo planar imaging (EPI) sequence. Parameters: repetition time (TR) 4700 ms, echo time (TE) 78 ms, field of view (FOV) 240 mm, in-plane resolution of 2.5 mm, 50 axial slices of 2.5 mm thickness, 6 gradient directions (b = 1000 s/mm²) and a b = 0 s/mm² image, and 10 repetitions. The second in-vivo dataset type (in-vivo dataset II) was acquired at 3 T (Intera, Philips, Best, The Netherlands) from 50 Alzheimer’s disease patients and 50 healthy controls recruited as described previously (Reijmer et al., 2013). A single-shot spin echo EPI with the following parameters was used: TR 6638 ms, TE 73 ms, FOV 220 mm, in-plane resolution of 1.72 mm, 48 axial slices of 2.5 mm thickness, 45 gradient directions (b = 1200 s/mm²) and a b = 0 s/mm² image (number of signal averages = 3).

Preprocessing included correction for motion and eddy currents (FSL (Jenkinson et al., 2012), FLIRT (Greve and Fischl, 2009; Jenkinson and Smith, 2001; Jenkinson et al., 2002)) and image masking (FSL, BET (Smith, 2002)). The tensors were estimated with the weighted linear least squares approach (Veraart et al., 2013).

Physical phantom datasets were acquired at 3 T (TRIO, Siemens Medical Solution, Erlangen, Germany) using an EPI sequence with monopolar gradient scheme and the following parameters: Resolution 2.5 × 2.5 × 2.5 mm³, FOV 160 × 160 mm², TR/TE 290/78 ms, 180 diffusion directions with b = 1000 s/mm², 20 b = 0 s/mm² images, bandwidth = 2004 Hz/px, and GRAPPA acceleration factor 2. All images were corrected for eddy currents using FSL. All voxels with intensities below approximately three times the noise threshold (derived from the mean intensity of the background signal) in the non-diffusion weighted image were excluded from diffusion tensor calculations and are excluded from further analysis.

To investigate tract-specificity, we segmented two major adjacent WM tracts – the CB and the CC – in all subjects in native space (in-vivo dataset I/II, 15/50 Alzheimer’s disease patients and 15/50 healthy controls). We did this by thresholding the main diffusion direction, which is clearly distinguishable between the two tracts, as follows: voxels with FA > 0.4 in the analyzed region of interest (Fig. 2a) were marked CB if the first eigenvector deviated not more than 30° from the anterior–posterior direction and were defined as part of the CC if they did not deviate more than 30° from the left–right direction. Using the same transformations as in the conventional TBSS pipeline, each of the binary segmentations is followed through the TBSS pipeline (Fig. 2b–d).

To determine the potential sources of voxel misassignments between adjacent WM tracts we investigated the effect of the FA skeleton projection procedure and registration quality on the outcome results. In the first experiment, a conceptual weakness of the TBSS skeletonization and projection step is demonstrated by making use of the synthetic FA map. This volume emulates two tracts of different FA (0.9 and 0.6) and different thickness (15 mm and 5 mm) that traverse each other at a 90° angle, similar to the CB and CC (Fig. 3a). The tracts are separated by a 1 mm thick gap. In the second experiment, based on the in-vivo datasets, we used an alternative registration method (DTI-TK (Zhang et al., 2006)) and repeatedly followed the CB and CC segmentations through the pipeline to assess the influence of registration quality on the misassignment problem. In contrast to the standard TBSS registration (FNIRT), DTI-TK uses the full tensor information for the registration. We choose DTI-TK since it was the overall winner of a registration algorithm challenge as previously published (Wang et al., 2011). Zhang et al. (2007) and Van Hecke et al. (2007) also found that the use of full tensor features or integration of all the diffusion-weighted images instead of tensor-derived indices for the registration can improve the alignment of WM tracts and the detection of WM
differences. Because a tensor template is needed as registration target for this approach, the IXI aging template (Zhang et al., 2010b) (65–83 years old, 21 males and 30 females, www.nitrc.org/projects/dtitk) is used for the DTI-TK registration and its FA map for the standard TBSS registration. In the last experiment we compared the statistical significant maps produced by TBSS at different levels of voxel misassignment to evaluate the impact of voxel misassignments on the final TBSS statistical results (Fig. 4).

Influence of resolution/partial volume and skeleton shape
Even after image registration local misalignments between the individual subjects may occur. For example the Fornix could be slightly shifted from subject to subject, potentially distorting a comparison of this region between different subjects. TBSS aims at compensating such residual misalignments by projecting the locally maximal FA values of the individual subjects onto the FA skeleton. The local maxima search, however, is performed only on a ray perpendicular to the

![Fig. 3. Potential source of misassignment. (a) Synthetic FA map (simulating a coronal view of the CC and the CB as in Fig. 2b). The obtained FA skeleton is shown in blue. (b) Distance map calculated by TBSS (higher intensities reflect larger distances to the skeleton). (c) The search area for local FA maxima for the upper fiber strand (yellow area). (d) The misassignment of a voxel from the bottom tract (the highest FA value in the search area) to the upper skeleton (yellow arrow).](image)

![Fig. 4. Impact of misassignments on TBSS results. (a) The position of the region shown in c is highlighted in cyan color. (b) The fraction of voxels per subject that have a contribution of at least 10% of the neighboring strand strongly depends on the registration technique. (c) Sagittal view (upper tract: CB, lower tract: CC) of the TBSS statistical results obtained by the TBSS standard pipeline and with an advanced tensor-based registration technique (DTI-TK). Both in-vivo dataset types were investigated. The DTI-TK registration decreased the number of misassigned voxels by a factor of seven. The highly significant differences in the CB that were identified by the conventional pipeline completely disappear when the number of misassignments is decreased.](image)
skeleton and thus can only be successful if the direction of this ray matches the direction of the misalignment. This can be problematic and may cause serious artifacts especially when assessing tubular structures. We studied the performance of this procedure in two in-vivo group comparisons (Fig. 5, in vivo dataset I/II).

A deeper understanding of the connection between partial volume effects, the skeleton shape, the FA maximum search direction, and the projected FA values chosen for the subsequent group comparison is provided by a previously presented resolution phantom (Bach et al., 2013) (physical phantom datasets). This phantom (see Fig. 6a) consists of 6 circular fiber strands, each with an outer diameter of 60 mm. They have square cross-sections of 5×5, 3×3, 2.5×2.5, 2×2, 1.5×1.5 and 1×1 mm2. Two different image volumes of the phantom were generated by varying its relative position to the imaging matrix by shifting the FOV (Fig. 6b). The two different FOV positions are shown by the green and red squares in Fig. 6c. In one case the strand is "halved" by the voxels (green squares). In the other case the whole strand thickness is covered by just one voxel (red squares). Therefore the same strand appears in the image with different partial volume effects. This can be seen on the FA maps in Fig. 6b, which show the six fiber strands of the resolution phantom from the side. In the first evaluation, we compared the resulting TBSS skeletons that were generated from the different images in order to test potential biases that occur during the skeleton projection step of TBSS.

Effect of user-specified settings

Two parameters that commonly differ between TBSS studies were varied in order to determine the extent to which TBSS results depend on the user input: (i) the choice of the registration target and (ii) the FA threshold defined in the skeletonization process. In the first evaluation the choice of registration target was varied between two options, including the FMRIB58 template, which is provided with the TBSS software, and a study-specific target, i.e. the most representative subject from a group of subjects. In the second evaluation the FA threshold in the skeletonization process was varied between 0.15 and 0.3. The analysis was performed for both in-vivo datasets.

Results

Influence of adjacent WM tracts

The results in this section were obtained from in-vivo dataset I/II. Fig. 2e/f shows examples of voxels misassigned from the CB to the CC and vice versa (white and black arrows). The contribution of one tract to the other is not binary, even on a voxel basis, since the registration and interpolation steps introduce a blurring of the binary segmentations. The blue arrows in Fig. 2e/f, for example, point to yellow voxels, where the original colors green and red overlap. Black skeleton voxels represent voxels that could not be identified as being part of the CB or
The FA values on the red skeleton tended to be lower, even though the red con...

Figure 2f shows the frequency distribution of the projected FA values for the red and green skeletons. In green and red, which result in different search directions for the TBSS projection step.

The conceptual limitation of the TBSS skeletonization and projection step is demonstrated using the synthetic FA map. Fig. 3a shows the input FA image of two fiber strands and the resulting FA skeleton. The TBSS projection step applies a distance transform to the skeleton (Fig. 3b) in order to determine the search area for the local FA maximum. The resulting search area for the upper skeleton voxel is highlighted in Fig. 3c. It can be seen that the search area partially covers the neighboring fiber tract (Fig. 3d). This is a potential source of misassignment (yellow arrow), especially if the neighboring tract has high FA values. Whenever adjacent WM tract bundles are of different diameter, the search area of the thinner bundle can reach to the thicker bundle. The example demonstrates that, even under ideal conditions with a perfect registration and no noise or partial volume, voxels can be misassigned by this procedure. The second source of voxel misassignments that we investigated was the quality of image alignment in the context of tract assignment. To this end we used the in-vivo datasets. The overall percentage of voxels, which have a contribution of at least 10% of the neighboring strand, could be reduced by a factor of about seven by replacing the TBSS registration procedure with the DTI-TK image registration approach (Fig. 4b). Fig. 4c demonstrates this effect on the statistical results of TBSS. In particular, conventional TBSS found highly significant group differences in both the CB and the CC. In dataset II this result is more pronounced than in dataset I. However, when using the DTI-TK image registration method, the group differences in the CC became spatially more homogeneous for dataset I and the group differences in the CB disappeared completely for both dataset types. This effect is also reproducible for other registration targets (IXI adult template and study-specific template created with DTI-TK; see Supplement 1).

Influence of partial volume and skeleton shape

Fig. 5a illustrates the mismatch between the FA maximum search direction and the direction of residual registration misalignments in the fornix. Fig. 5b/c shows the midsagittal view of the fornix (cyan-colored rectangle in Fig. 5a). There is a good concordance between the mean FA skeleton (transparent blue) and the FA maps (background) of the subjects shown in the first column of Fig. 5b/c (green arrows). Four further subjects are shown for each dataset and the red arrows indicate areas where the mean FA skeleton does not cover the fornix. The direction for the local maximum search is perpendicular to the skeleton sheet, which lies in the image plane, but the directions of the misalignments between the FA skeleton and the individual FA maps lie within this plane (cf. Fig. 5a). In this case, the search for the local FA maxima, which should give the tract center, fails.

Using the physical phantom datasets, Fig. 6d/e shows the TBSS skeletons for the 2.5 mm thick strand in green and red respectively. Using TBSS, the fibers were reduced to thin sheets with a thickness of one voxel. In the first case (green, Fig. 6c and d), this sheet appears thick in the side view and thin in the top view. The second sheet (red, Fig. 6c and e) appears thin in the side view and thick in the top view. The sheet orientation has an impact on the TBSS projection step, since the search direction for the local FA maximum is limited to the directions perpendicular to the sheet. This leads to search directions that are radial to the fiber-ring-plane (Fig. 6d, bottom) in the one case, and perpendicular in the other configuration (Fig. 6e, bottom). Fig. 6f shows a frequency distribution of the FA values derived from the fiber skeleton, demonstrating the influence of the above effect on the projected FA values. In comparison to the red skeleton (red bars), the green skeleton yielded an increased amount of high FA values (green bars). The reason for this effect is the flipping of the search direction of the TBSS projection step, which influences the correct identification
of FA maxima in the tract center. The FA values on the red skeleton tended to be lower, even though the red configuration was much less effected by partial volume effects than the green configuration.

Influence of image noise level

The influence of noise level on the skeleton structure as well as on the statistical results of the group-comparison patients versus controls is demonstrated in Fig. 7 (in-vivo dataset I). In the first two rows, different numbers of repetitions were used to calculate the diffusion tensors. The influence of noise level decreases from left to right. The results show increasing numbers of false-positive tract centers in the skeleton structure with increasing noise levels (green arrows). Furthermore, it can be seen that significant group differences between patients and controls were detected even on those purely noise-induced structures (blue arrows).

The level of significance for group differences between patients and controls was also heavily dependent on the noise level. The FA of the fornix, in this example, (red arrows) differed significantly between groups when using one repetition, but not when two repetitions were used. At three repetitions the FA of the fornix again appeared as significantly different between patients and controls, while slightly decreasing in significance when going from three to ten repetitions (from \(p = 0.02 \) to \(p = 0.04 \)).

While Fig. 7a shows only one representing subset for each noise level (1, 2, 3 and 10 rep.), Fig. 7b shows four possible subsets with two repetitions each (subset 1 with repetitions 1 and 2; subset 2 with repetitions 3 and 4; subset 3 with repetitions 5 and 6; subset 4 with repetitions 7 and 8). The FA skeleton differed only slightly from subset to subset. While subset 1 did not yield significant differences between patients and controls in the fornix, the remaining subsets did show significant differences in this area. Apart from the fornix, similar effects were found in other areas of the skeleton (black arrows).

For in-vivo dataset II similar results were obtained (Supplement 2). The 45 diffusion directions of this dataset were split into two subsets of 22 diffusion directions. The significance maps differed between noise levels (22 vs. 45 diffusion directions) as well as between the subsets (22 vs. 22 diffusion directions).

Influence of the user

Fig. 8 shows the different results obtained by using different registration targets. For in-vivo dataset I with 30 subjects, the FMRIB58 target is characterized by a smoother FA map and a clearer depiction of the major WM structures compared to the study-specific registration target. This directly affected the structure of the FA skeleton (blue arrows) and the statistical results (green arrows). The fornix exhibited significant group differences when using the FMRIB58 target but did not reveal significant group differences when using the study-specific atlas. This statement also holds true for in-vivo dataset II with 100 subjects (green arrows), although differences in the mean FA skeleton shape due to the different registration targets are much less pronounced (blue arrows). For dataset II, a study-specific target was additionally created with DTI-TK. The results obtained with this target are consistent
with the results of the study-specific TBSS approach. One advantage of creating the DTI-TK study-specific target is that the computation time, rather than scaling with \(n^2 \) as in the TBSS approach, scales with \(n \). The standard TBSS procedure requires 10,000 pair-wise image registrations for \(n = 100 \) subjects.

Fig. 9 shows the effect of varying the FA threshold in the skeletonization process. For in-vivo dataset I, at a low threshold of 0.15, the FA skeleton also includes finer structures that disappear at higher threshold values. This also included some false-positive tract centers that we could not associate with any underlying WM tracts (see blue arrows, dataset I). At increasing threshold values, some known WM structures shrink or disappear (e.g. the capsula externa, fornix, and cerebellum; see green arrows, dataset I/II). Interestingly, the significance levels between patients and controls also changed with different threshold levels in both datasets. The fornix, for example, is present on all skeletons but exhibited significant differences only at the lower threshold levels. The CC is characterized by a high FA (up to 0.9) and, here, neither the skeleton nor the statistical results are affected by the relatively small changes in the FA threshold (see red arrows, dataset I/II).

An additional, unexpected finding regarding the quality of the mean FA and FA skeleton images in the previous experiments was that parts of the peripheral WM areas were masked out (e.g. Fig. 8, dataset II, frontal peripheral areas, and Fig. 9, dataset II, transversal view, posterior peripheral areas). These effects could be traced back to inaccuracies in
the FSL BET brain extraction step. Since all brain masks are combined using a logical AND, an inaccuracy in one subject can severely affect the resulting mask for the mean FA image.

Discussion

TBSS is by far the most popular approach for performing voxel-wise DTI analyses. It provides dedicated processing steps and deals with smoothing and misalignment issues in diffusion MRI-based group analysis studies. However, it also builds upon a certain set of assumptions that we have investigated in detail in this work. Most TBSS users are well informed about the major processing steps and well aware of their major weaknesses, such as the abandonment of directional information in the skeletonization process. Unfortunately, though, this knowledge is not of much use when interpreting the final results of a TBSS study. TBSS results usually do look very appealing and it is impossible to quantify or even see any underlying ambiguities in the data without taking further efforts and looking deeper into the data. In fact, while some publications have discussed potential improvements or weaknesses of TBSS (Edden and Jones, 2011; Keihaninejad et al., 2012; Van Hecke et al., 2010; Zalesky, 2011), the extent to which these weaknesses can actually impact the final results of a typical group comparison and the conclusions drawn from it is mostly unknown. In the present study, we explore several key issues in this regard to further raise awareness of the pitfalls of TBSS and to provide constructive suggestions for future improvements of the technique.

Anatomical inaccuracies in the skeleton projection step

One of our major findings is the extent of anatomical inaccuracies that is inherent in the FA skeleton projection and the substantial bias that it can introduce. TBSS is known to be purely FA-based and it was previously reported that adjacent WM tracts are not necessarily separable based only on their FA (Kindlmann et al., 2007; Yushkevich et al., 2008). It was yet unknown, though, that the percentage of voxels that is misassigned to the wrong tract reaches such high numbers in two prominent tracts in the brain, the body of the CB and the CC. Interestingly, exactly this separation of the superior CB and the CC was explicitly
stated to be solved and assumed to “work well” in the original TBSS publication (Smith et al., 2006, page 1494, second paragraph) despite the lack of any analysis in that article to substantiate this claim. We have shown that this assumption is not met and we have provided examples where inadequate separation of adjacent WM tracts occurs, even under ideal conditions. These are perfect registration, no partial voluming, and infinite SNR. Under real conditions with residual misalignment, noise contributions, and partial volume effects, an even larger bias originating from the projection step can be expected.

Do these confounding factors really make a difference? In other words, should one worry about the validity of the outcome results given these issues, or could one simply proceed and assume that these effects are negligible? One could possibly argue that a decreased confidence in the projection step will only increase the variability and, thus, may just lower the sensitivity of the technique for finding potential changes between groups. However, as we have shown in this work, the situation is much more severe. With standard TBSS settings, the complete superior CB was incorrectly identified as having significant differences between groups, which was purely due to anatomically inaccurate assignments during the skeleton projection procedure. This finding was consistent in both datasets, which differ strongly in terms of number of subjects, field strength and number of gradient directions. Thus, our data suggests that this is an artifact that can occur regardless of the exact dataset description. There are two main factors that can contribute to the observation that the FA in a large region would appear significantly different between groups as a result of voxel misassignment. First, since the projection depends on the quality of each subject’s alignment with the skeleton, which, in turn, is tightly bound to the morphology of the subject, the quality of assignments is highly group-dependent if the disease of interest moderates not only microstructure but also morphology (as demonstrated in the box plots in Fig. 2b). Second, due to the fact that TFCE depends on statistical support from adjacent voxels in order to detect statistically significant differences in voxel clusters, the missing or increasing support of voxels in close proximity can quickly spread over the structure and can dramatically change the overall significance map. The statistical results obtained with TFCE are thus also influenced by the overall number of neighborhood voxels (i.e. the size of the skeleton sheet structure).

Bias in the skeleton projection step

Delving deeper into the skeleton projection step related to anatomical specificity, we have performed detailed analyses of the behavior of TBSS in images of a physical phantom with precisely defined fiber bundles with a diameter in the order of the voxel resolution. The assumed benefit of the TBSS projection step of compensating post-registration alignment errors was previously analyzed by Zalesky (2011), who reported that TBSS cannot compensate 90% of errors but still gives good correspondence in the FA values. Looking at finer bundles, such as the fornix, we expected that this FA value correspondence would also be strongly reduced. We were able to demonstrate that the positioning of the acquisition matrix and concomitant partial volume effects caused errors in the skeletonization projection, which is in line with previous findings by Edden and Jones (2011). One of the added benefits in this work is that we included well-defined phantom data that could act as a ground-truth reference of the underlying fiber architecture. One finding regarding the phantom experiments was particularly intriguing: We expected to find the highest FA values on the skeleton in cases where the imaging matrix is perfectly aligned with the phantom fiber tracts. In addition, with imperfect alignment the FA was expected to be lower due to partial voluming (Bach et al., 2013). However, when the TBSS skeleton projection was applied, the opposite was found. We have shown that this effect occurs due to the ill-defined skeleton sheet orientation and the related projection path. This effect is quite relevant, also when looking at in-vivo datasets, especially when analyzing finer tubular (e.g., the fornix) or circular (e.g. the uncinate fasciculus) structures. In general, the dominant factor that defines the orientation of the skeleton sheet may actually be related to the variation in anatomical alignment rather than the shape of the structure. In other words, the smearing effect of imperfectly aligned structures when creating the mean FA template may lead to artificial sheet-like or tubular structures in the skeleton and can make a correct projection of the original structure impossible.

While many authors might not be aware of this effect, the authors of the TBSS publication have briefly noticed potential problems with small tubular structures like the fornix. In particular, in their results, they confirmed the quality of the projection vectors in the fornix to ensure that their finding is not based on pure chance. As a confirmation step of this kind would be advisable for every TBSS study that investigates finer structures, a valuable future extension of TBSS would be to further simplify this type of verification within the application. However, looking at our in-vivo experiments in the fornix, the FA skeleton orientation seems to be primarily determined by the inter-subject variability of the fornix position rather than by its shape, leading to a vast amount of voxels on the fornix skeleton that project directly into the cerebrospinal fluid and that do not belong to the fornix at all.

It is important to remember that in regions with complex fiber architecture, such as the area where the CC and corticospinal tract kiss/cross, it is much harder or even impossible to differentiate individual tracts while generating the skeleton and performing the projection procedure. In this context we want to emphasize that the skeleton should be referred to as the FA skeleton, not the tract skeleton, and that statistical results on this skeleton should be interpreted with these assignment problems in mind. A promising future improvement of TBSS could be to implement a skeletonization and projection step that does not ignore the directional information in the data. Yushkevich et al. (2008) use, for example, fiber tractography in order to distinguish between adjacent tracts. Until such a technique is developed in TBSS, one could consider an extended use of the “extra treatment” that was originally added to manually guide the skeleton projection in the temporal cingulum as one of the important tubular structures in the brain (Smith et al., 2006). However, a clear distinction between tubular and sheet-like is not always possible and the required regions of interest would have to be drawn manually to produce a study-specific template. Unfortunately, this would be a major obstacle for the usability of TBSS and would also further reduce the objectivity of such analyses.

Statistical power and sensitivity to pathologies

The original TBSS publication provided insights into the repeatability of FA measurements across sessions and across subjects (Smith et al., 2006), reporting an inter-session coefficient of variation between 3% and 5% and an inter-subject coefficient of variation of between 5% and 15%. These numbers, however, were derived by manually defining and comparing seven voxels of interest on the skeleton for different major structures and did not include important aspects that arise when considering the entire processing pipeline. In our experiments we demonstrated the significant impact of noise on the final TBSS result. We showed that the noise level strongly affects the significance values of specific structures in the skeleton. We noticed that in terms of statistical significance these structures tended to appear or disappear as a whole rather than on voxel level. We also observed this effect when varying the subsets for analysis while keeping the same level of noise and when changing the noise level for each subject’s dataset. While such effects can dramatically change the conclusions drawn in a study (Bells et al., 2012), these may also be attributed in part to the TFCE approach (Smith and Nichols, 2009).

Another problem that we identified in our experiments is the noise-dependency of the shape of the FA skeleton. This is critical not only because TFCE depends on the skeleton shape, but also because we have identified significant group differences on artificial, noise induced structures that are anatomically meaningless (e.g. a skeleton part within the...
TBSS is state of the art — some recommendations for use

Despite the methodological considerations presented in this work, TBSS is currently still the leading technique for voxel-wise DTI analysis as many alternative approaches are far less reproducible and may have similar problems in many of the discussed situations. In addition, one of the major strengths of TBSS is the minimal input required from the user. To encourage TBSS users to maximize the robustness and validity of their analyses we would like to conclude our discussion with suggestions for best practice. Two major obstacles for TBSS becoming completely objective are the degrees of freedom in the interpretation of results and the remaining parameter settings of the method.

First, the unambiguity in interpretation of the results is particularly unwarranted if studies only show a single arbitrary slice position from the multiplanar image maps. This problem could be alleviated by showing multiple equidistant slices in the image. Furthermore, when reporting and interpreting results, as demonstrated experimentally in this paper, this should be done with great care and, ideally, only after a check of the plausibility of the results. For example, for structures that are in close proximity to each other, such as the CC and CB, the potential influence of post-registration misalignments and voxel misalignments could be checked using an approach similar to the one we have adopted in our experiments, that is, by following the segmentations of structures throughout the pipeline. A further post-hoc evaluation can be performed by splitting the healthy controls into two groups and looking for any unexpected false positives when performing TBSS on these two groups. In this design, no regions with significant differences are then expected. Furthermore, TBSS offers an “extra treatment” to manually guide the skeleton projection for tubular structures. As we have shown that the standard projection procedure leads to significant artifacts in tubular structures, this extra treatment should be considered whenever tubular structures are of special interest to a study.

The second obstacle, which is related to the parameter settings in TBSS, is much harder to tackle. The parameters allow the method to be adapted to many different scenarios with different requirements, but they leave room for tweaking TBSS to produce nice-looking but unstable results. The choice of the registration target, for example, has previously been investigated by Keihaninejad et al. (2012) and it was proposed that a group-wise atlas construction be applied to improve the alignment of DTI data and, consequently, the specificity and sensitivity of TBSS results. In our analyses, we further investigated the effect of choosing different registration targets. We noticed that a large variation is introduced in the FA skeleton geometry and, subsequently, in the final statistical results. Keihaninejad et al. (2012) reported significant differences in the appearance of the fornix between AD patients and controls when registering to the FMRIB58 template and that the significance vanished if a group-wise atlas was chosen as registration target. We analyzed this using two further AD datasets with up to one hundred subjects and the effect emerged even more clearly. In contrast to Keihaninejad et al. (2012), differences in the statistical results already occurred when switching between the two TBSS standard options: 1. registration to the FMRIB58 template or 2. registration to the most representative subject of the group. Similar findings were obtained by varying another important user setting, the FA threshold in the skeletonizing process. Again, some structures were found to differ significantly between groups for one setting, but not for the other. This is critical, since many users do not have the knowledge or expertise to evaluate such effects in detail. Furthermore, the optimal parameters for their specific study cannot be known in advance.

We therefore propose a clear rule for TBSS studies in this regard: Report only results that are based on the default parameter settings given by TBSS as long as there is no clear evidence from literature not doing so is advisable. All settings that deviate from the default configuration in TBSS should be explicitly mentioned and motivated. In addition, the stability of findings with regard to the FA skeleton threshold should be checked for low-FA structures like the fornix or the capsula externa, as these can be particularly unreliable. With regard to the choice of the registration target, a recommendation can already be made on the basis of both previous studies and our work: Replace the TBSS registration step with tensor-based, group-wise registration, e.g. using DTI-TK. Moreover, the study specific TBSS approach becomes impractical for large datasets, since the computation time scales quadratically with the number of subjects, whereas it scales linearly for DTI-TK.

| Table 2: Recommendations regarding the interpretation of TBSS results. |
|-------------------|-----------------|----------------|
| Result | Remarks |
| FA-skeleton | In general the FA skeleton used by TBSS does not represent the center of a specific WM-tract. Be aware of this fact when interpreting and describing TBSS-results (e.g. do not use the word tract center when referring to the FA-skeleton). |
| Significance maps | Keep in mind that the final significance maps overlaid on the template image may hide potential methodological imperfections related to the quality and/or analysis of the data. Especially in the case of rather specific or unexpected findings, this should be analyzed and reported carefully. |

Table 1: Recommendations regarding the TBSS processing pipeline.

<table>
<thead>
<tr>
<th>Choice</th>
<th>TBSS – standard setting</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration technique</td>
<td>FA-based (FNIRT)</td>
<td>Tensor-based (e.g. DTI-TK)</td>
</tr>
<tr>
<td>Registration target</td>
<td>FMRIB58 study specific (FNIRT)</td>
<td>Study specific (DTI-TK)</td>
</tr>
<tr>
<td>Skeletonization</td>
<td>FMRIB58 skeleton study specific</td>
<td>Study specific</td>
</tr>
<tr>
<td>Skeleton FA threshold</td>
<td>Default 0.2, adjustable</td>
<td>Check stability, adapt if necessary, comment choices other than 0.2</td>
</tr>
<tr>
<td>Multiple comparisons</td>
<td>TFCE (widely used), adjustable</td>
<td>Open research question, comment choices other than TFCE</td>
</tr>
<tr>
<td>Visualization</td>
<td>Screenshots of fslview</td>
<td>Provide multiple equidistant slices at different orientations</td>
</tr>
<tr>
<td>Analyzing tubular</td>
<td>Extra-treatment of temporal cingulum is possible</td>
<td>Consider extra-treatment whenever tubular structures are of special interest</td>
</tr>
</tbody>
</table>

Thus, statistical correction is a major and important area of research in the future.

The current trend of increasing the resolution in diffusion-weighted MRI potentially aggravates the problems associated with skeleton-based analyses. Reducing a full tract bundle to a one-voxel thick skeleton becomes increasingly problematic at smaller voxel sizes (higher resolutions) with regard to statistical power, since a much higher percentage of the information in the image gets eliminated in the projection step. Therefore, and in light of increasingly accurate registration schemes and multi-compartment modeling, the original motivation of TBSS and the skeleton projection may need to be reconsidered. Note that this is in line with a current study that shows improved results with high-quality non-linear registration compared to the registration projection in TBSS (de Groot et al., 2013). This optimized registration approach is also sensitive to pathologies that may be overlooked using TBSS, e.g. in cases where the tract perimeter and not the tract center is affected by a disease. It is obvious that TBSS should not be used for topology-changing diseases such as brain tumors.
Table 3

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality confirmation of projection vectors</td>
<td>The authors of the TBSS publication confirmed the quality of the projection vectors in the fornix to ensure that their result is not a finding based on pure chance. Such a confirmation step would be advisable for every TBSS study that investigates finer structures. A modified skeletonization approach, which takes the directional information into account, could potentially improve the anatomical specificity of TBSS. The technique proposed by Yushkevich et al. (2008) considers the directional information and should be further explored in the future.</td>
</tr>
<tr>
<td>Skeletonizing considering directional information</td>
<td>T2CE may provide improved sensitivity and an easily interpretable output compared to other correction methods. However, according to our results, it also seems to introduce unwanted effects (e.g. in relation to the skeleton shape). We consider this an important area for future research.</td>
</tr>
<tr>
<td>Meaningful correction for multiple comparisons</td>
<td>Take complete WM-tract into account: The skeletonization reduces a full WM-tract to a one voxel thick sheet. With increasing image resolution, more and more information gets lost in the projection step. This is problematic not only with regard to statistical power, but also with regard to pathologies that may affect the tract perimeter. In light of increasingly accurate registration schemes and multi-compartment modeling, the original motivation of TBSS and the skeleton projection may need to be reconsidered.</td>
</tr>
</tbody>
</table>

Our recommendations for a specific TBSS processing pipeline are summarized in Table 1. Two further tables show our recommendations regarding the interpretation of TBSS results (Table 2) and future improvements of TBSS (Table 3). Finally, to ensure complete reproducibility and examination of the results, we encourage researchers to make their datasets available (either publicly or on request), which is already a common practice in many other research fields.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.neuroimage.2014.06.021.

Acknowledgments

This study was partly funded by the German Research Council (DFG, LA 2804/1–1) and the contribution of Chantal Tax is supported by an FC-EW grant (No. G12.001.104) from the Dutch Scientific Foundation (NWO). The authors would like to thank the members of the Utrecht Vascular Cognitive Impairment Study Group for providing the diffusion MRI data (dataset II): University Medical Center Utrecht, The Netherlands, Department of Neurology: E. van den Berg, G.J. Biessels, M. Brundel, W.H. Bouvy, S.M. Heringa, L.J. Kappelle, Y.D. Reijmer; Department of Radiology/Image Sciences Institute: J. de Bresser, H.J. Kuijf, A. Leemans, P.R. Luijten, W.P. Th. M. Mali, M.A. Viergever, K.L. Vincken, J.M. Zwanenburg; Department of Geriatrics: H.L. Koek, J.E. de Wit; and Hospital Diakonessenhuis Zeist, The Netherlands: M. Hamaker, R. Faaij, M. Pleizier, E. Vriens.

References