List-coloring graphs without $K_{4,k}$-minors

Ken-ichi Kawarabayashi
The National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ARTICLE INFO

Article history:
Received 26 April 2005
Received in revised form 22 July 2008
Accepted 7 August 2008
Available online 9 September 2008

Keywords:
List-coloring
Hadwiger’s conjecture

1. Introduction

In this note, it is shown that every graph with no $K_{4,k}$-minor is 4k-list-colorable. We also give an extremal function for the existence for a $K_{4,k}$-minor. Our proof implies that there is a linear time algorithm for showing that either G has a $K_{4,k}$-minor or G is 4k-choosable. In fact, if the latter holds, then the algorithm gives rise to a 4k-list-coloring.

© 2008 Elsevier B.V. All rights reserved.

Abstract

In this note, it is shown that every graph with no $K_{4,k}$-minor is 4k-list-colorable. We also give an extremal function for the existence for a $K_{4,k}$-minor. Our proof implies that there is a linear time algorithm for showing that either G has a $K_{4,k}$-minor or G is 4k-choosable. In fact, if the latter holds, then the algorithm gives rise to a 4k-list-coloring.

© 2008 Elsevier B.V. All rights reserved.

Conjecture 1.1 (Hadwiger [6]). For all $k \geq 1$, every k-chromatic graph has the complete graph K_k on k vertices as a minor.

For $k = 1, 2, 3$, it is easy to prove, and for $k = 4$, Hadwiger himself [6] and Dirac [5] proved it. For $k = 5$, however, it seems extremely difficult. In 1937, Wagner [29] proved that the case $k = 5$ is equivalent to the Four-Color Theorem. So, assuming the Four-Color Theorem, the case $k = 5$ of Hadwiger’s conjecture holds. In 1993, Robertson, Seymour and Thomas [23] proved that a minimal counterexample to the case $k = 6$ is a graph G which has a vertex v such that $G - v$ is planar. By the Four-Color Theorem, the case $k = 6$ of Hadwiger’s conjecture holds. This result is the deepest in this research area. Hence the cases $k = 5, 6$ are each equivalent to the Four-Color Theorem [1, 2, 22]. So far, the conjecture is open for every $k \geq 7$.

For the case $k = 7$, Toft and the author [14] proved that any 7-chromatic graph has K_7 or $K_{3,4}$ as a minor. Recently, the author [10] proved that any 7-chromatic graph has K_7 or $K_{3,5}$ as a minor.

It is even not known whether there exists an absolute constant c such that every ck-chromatic graph has a K_c-minor. So far, it is known that there exists a constant c such that every $c \sqrt{k \log k}$-chromatic graph has a K_c-minor. This follows from the results of Kostochka [17, 16] or Thomason [24, 25]. This was proved 25 years ago, but nobody can improve the superlinear order $k \sqrt{k \log k}$.

So it would be of great interest to prove that a linear function of the chromatic number is sufficient to force a K_c-minor. From an algorithmic view, we can “decide” this problem in polynomial time. This was proved in [11, 13]. We refer the reader to [27] for further information on Hadwiger’s conjecture.

Let G be a graph. A list-assignment is a function L which assigns to every vertex $v \in V(G)$ a set $L(v)$ of natural numbers, which are called admissible colors for that vertex. An L-coloring of the graph G is an assignment of admissible colors to all vertices of G, i.e., a function $c : V(G) \to \mathbb{N}$ such that $c(v) \in L(v)$ for every $v \in V(G)$, and $c(u) \neq c(v)$ for every edge uv. If k is an integer and $|L(v)| \geq k$ for every $v \in V(G)$, then L is a k-list-assignment. A graph is k-choosable if it admits an L-coloring for every k-list-assignment L.

E-mail address: kkeniti@nii.ac.jp.
0766-218X/$-$ see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2008.08.015
When relaxing Hadwiger's conjecture to allow ck colors, the following conjecture involving list-colorings may also be true.

Conjecture 1.2. There exists a constant c such that every graph without K_k-minors is ck-choosable.

This was conjectured in [12]. Also, the following weaker version of the choosability analog of Hadwiger's conjecture was given by Woodall [32,33].

Conjecture 1.3 (Woodall [32]). Every graph with no $K_{r,s}$-minor is $(r + s - 1)$-choosable.

Note that the choosability analog of Hadwiger's conjecture is false, because there is a planar graph which is not 4-choosable [28] (but every planar graph is 5-choosable [26]).

Again, it is even not known that Conjecture 1.2 holds, so it would be of interest to know even the cases where r is small. For the usual graph coloring, Woodall [31] made a related conjecture. Woodall [32,33] proved Conjecture 1.3 when $r = 1, 2$.

The main purpose of this note concerns the cases $r = 3, 4$. We shall prove the following results.

Theorem 1.4. If G does not contain a $K_{4,k}$-minor, then G is $4k$-choosable.

This immediately implies that every graph without a $K_{4,k}$-minor is $4k$-choosable.

Actually, Theorem 1.4 follows from the following extremal function for the existence of a $K_{4,k}$-minor, which is of independent interest.

Theorem 1.5. Let G be a graph such that $|V(G)| > 2k + 2$ and $|E(G)| > 2k(|V(G)| - k - 1) + 1$, where $k \geq 2$. Then G has a $K_{4,k}$-minor.

Let us remark that the extremal function “$2k(|V(G)| - k - 1) + 1$” is perhaps not best possible, and we conjecture that the factor 2 is not necessary. If true, this, together with our proof, would imply that every graph without a $K_{4,k}$-minor is $2k$-choosable. Let us observe that the cases $k \leq 4$ are already proved in [7], and are best possible.

There are several results [3,15,18–20] concerning the extremal function for the existence of complete bipartite graph minors. These results say that if k is large enough compared to s, then an average degree just over k suffices to ensure the existence of a $K_{k,s}$-minor. In particular, the result in [15] implies that if k is sufficiently large, then every graph with no $K_{4,k}$-minor is $(k + 13)$-choosable. But these results give no information on the chromatic number of a graph with no $K_{4,k}$-minor when k is not sufficiently large. Hence it is useful to have our result, which applies to every graph with no $K_{4,k}$-minor. Note that when $k = 4$, the result in [7] implies that every graph with no $K_{4,4}$-minor is 8-choosable.

To see that Theorem 1.5 implies Theorem 1.4, consider a minimal counterexample G to Theorem 1.4. When $k = 1$, then the result easily holds. So suppose $k \geq 2$. Then it is easy to prove that the minimum degree is at least $4k$. For suppose not and that v has degree at most $4k - 1$. Then, by induction, $G - v$ has a desired list-coloring. Since v has at least $4k$ colors available, we can easily extend the list-coloring of $G - v$ to G. Hence every vertex has degree at least $4k$, and this implies that G has at least $4k + 1$ vertices and at least $2k|V(G)|$ edges. On the other hand, by Theorem 1.5, if G has at least $2k|V(G)|$ edges for $k \geq 2$ and $|V(G)| \geq 2k + 2$, then G has a $K_{4,k}$-minor. Thus we can conclude that G is not a counterexample, and hence Theorem 1.4 holds.

Let us point out that this proof implies a polynomial time algorithm to $4k$-list-color a graph with no $K_{4,k}$-minor. More precisely, there is a linear time algorithm (linear in the number of vertices plus the number of edges of G) which shows either

1. G is $4k$-choosable, or
2. G has a $K_{4,k}$-minor.

Actually, when (1) holds, the algorithm gives a $4k$-list-coloring. To see this, if G has a vertex v of degree at most $4k - 1$, then we just delete v from G. We keep doing this procedure until there is no vertex of degree at most $4k - 1$. If this procedure continues until the resulting graph is empty, then clearly we can 4k-list-color G recursively in linear time. If the resulting graph is not empty, this graph contains a $K_{4,k}$-minor by Theorem 1.5. This can be clearly found in linear time.

In order to prove our main result, we need the definition of “rooted minor”.

If v_1, \ldots, v_k are k distinct vertices in a graph G, then we say that G has a $K_{a,k}$-minor rooted at v_1, \ldots, v_k if there are disjoint connected subgraphs $H_1, \ldots, H_k, K_1, \ldots, K_k$ such that each K_i contains v_i and is adjacent to all of H_1, \ldots, H_k. We say that G has every rooted $K_{a,k}$-minor if, for every choice of k distinct vertices v_1, \ldots, v_k of G, G has a $K_{a,k}$-minor rooted at v_1, \ldots, v_k.

Rooted minor problems are studied by many researchers. For example, the following result is known.

Theorem 1.6 (Robertson–Seymour [21]). Suppose G is 3-connected. Then G has every rooted $K_{2,3}$-minor unless G is planar, in which case it has a $K_{2,3}$-minor rooted at v_1, v_2, v_3 if and only if v_1, v_2, v_3 are not all on the boundary of the same face.
Theorem 1.6 follows from (2.4) in [21]. See also (3.5) in [23].
Actually, this result is used to prove more interesting results on Hadwiger's conjecture; see [14,23].
Furthermore, every rooted $K_{2,4}$-minor problem and every rooted $K_{3,4}$-minor problem are discussed in [7,8], respectively. Moreover, the general connectivity function for the existence of every rooted minor is obtained by the author [9].
Recently, the following extremal function for the existence of every rooted $K_{2,k}$-minor was obtained by Wollan [30].

Theorem 1.7. Every k-connected graph G on n vertices with at least $kn - \left(\frac{k+1}{2}\right) + 1$ edges contains every rooted $K_{2,k}$-minor.

The lower bound on the number of edges in Theorem 1.7 is best possible. To see this, let G be the join of a maximal planar graph H of order $n - k + 3$, and a complete graph K_{k-3}. Then $|E(G)| = 3(n - k + 3) - 6 + \left(\frac{k-3}{2}\right) + (n - k + 3)(k - 3) = kn - \left(\frac{k+1}{2}\right)$. If v_1, v_2, v_3 are in one face of H and v_4, \ldots, v_k are the vertices of K_{k-3}, then just as in Theorem 1.6, there is no $K_{2,k}$-minor rooted at v_1, \ldots, v_k.

We will use Theorem 1.7 in our main proof.

2. **Proof of the main theorem**

We prove Theorem 1.5 by induction on the number of vertices. We first prove the case $|V(G)| = 2k + 2$. Then it is easy to see that $|E(G)| \geq \binom{2k+2}{2} - k$. Therefore, there are at most k missing edges in G. Suppose $k \geq 4$. Then clearly there are four vertices that have at least $n - 6 = 2k - 4 \geq k$ common neighbors. Therefore, G has $K_{4,k}$ as a subgraph. If $k \leq 3$, then G has at most eight vertices. Since there are at most three missing edges, we can easily find $K_{4,k}$ as a subgraph in G.

Thus we may assume $|V(G)| \geq 2k + 3$. If G has a vertex v of degree at most $2k$, then

$$|E(G - v)| \geq |E(G)| - 2k \geq 2k(n - k - 1) + 1 - 2k = 2k(|V(G) - v| - k - 1) + 1.$$

Thus by induction, $G - v$ has a $K_{4,k}$-minor. So, we may assume that every vertex in G has degree at least $2k + 1$.

We now claim that G is $(k + 2)$-connected. Suppose not. Then G has subgraphs A and B such that $G = A \cup B$, both $A - B$ and $B - A$ are not empty, and $|V(A) \cap V(B)| \leq k + 1$. Since every vertex has degree at least $2k + 1$, it follows that $|A|, |B| \geq 2k + 2$.

We may assume that neither A nor B satisfies the induction hypothesis of Theorem 1.5, so otherwise there is a $K_{4,k}$-minor in either A or B by the induction hypothesis. Then

$$|E(G)| \leq |E(A)| + |E(B)| \leq 2k(|V(A)| - k - 1) + 2k(|V(B)| - k - 1) \leq 2k(|V(G)| + k + 1 - 2k - 2) \leq 2k(|V(G)| - k - 1).$$

This contradicts the hypothesis of Theorem 1.5. Thus G is $(k + 2)$-connected, as claimed.

We also claim that every edge in $E(G)$ is contained in at least $2k$ triangles. Suppose not, and there is an edge $e \in E(G)$ such that e is contained in at most $2k - 1$ triangles. Let G' be the graph obtained from G by contracting e. Then it follows that

$$|E(G')| \geq |E(G)| - 2k \geq 2k(|V(G)| - k - 1) + 1.$$

Thus G' satisfies the induction hypothesis of Theorem 1.5, and so G' contains a $K_{4,k}$-minor. Hence we may assume that every edge is contained in at least $2k$ triangles.

Let $e = xy$ be any edge of $E(G)$, and let v_1, \ldots, v_k be k vertices that are adjacent to both x and y. Let $G'' = G - \{x, y\}$. Clearly G'' is k-connected since G is $(k + 2)$-connected. Note that G'' omits at most $2|V(G)| - 3$ edges of G. Suppose $k \geq 3$.

Since G has at least $2k + 3$ vertices,

$$|E(G'')| \geq |E(G)| - 2|V(G)| + 3 \geq 2k(|V(G)| - k - 1) + 1 - 2|V(G)| + 3 = k(|V(G)| - 2) + (k - 2)|V(G)| - 2k^2 + 4 \geq k(|V(G)| - 2) - k - 2 \geq k|V(G'')| - \left(\frac{k + 1}{2}\right) + 1.$$

Thus G'' has a $K_{2,k}$-minor rooted at v_1, \ldots, v_k by Theorem 1.7. Together with x, y, this gives rise to a $K_{4,k}$-minor.

It remains to consider the case $k = 2$. If G is a complete graph, clearly it contains $K_{4,2}$ as a subgraph. Take two nonadjacent vertices x', y'. Since G is now 4-connected, there are four disjoint paths between x' and y', and clearly this gives rise to a $K_{4,2}$-minor.

This completes the proof of Theorem 1.5.
Acknowledgments

I would like to thank the referee who suggested improvement of both the result and the proof. I also thank Paul Wollan for letting me know his result from [30]. The author’s research was partly supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, Grant number 16740044, by the Sumitomo Foundation, by the C & C Foundation, by the Inamori Foundation, and by an Inoue Research Award for Young Scientists.

References