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Abstract: This paper deals with the adaptive dead–zone compensation strategy
based on notion of H∞ optimality. It is assumed that the dead–zone model can
be divided into unknown parameters term and bounded disturbance term, an
adaptive H∞ control method is given. Proposed control strategy does not include
the discontinuous function, therefore, it is effective for the practical applications.
Moreover, in the closed–loop control system, the L2 gains from the disturbance
to generalized outputs are made less than prescribed positive constants. The
effectiveness of the proposed method is demonstrated by numerical simulations.
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1. INTRODUCTION

Some industrial motion control system has non-
smooth nonlinear characteristics, such as dead–
zone, saturation, backlash, and so forth. These
nonsmooth nonlinearities are often encountered in
actuators. At the macro level, many factors affect
nonlinearities such as lubrication, velocity, tem-
perature and even the history of motion. For high
or ultra precision positioning of nano–order scale
production system, considering the nonsmooth
nonlinearities is very important. Because, these
phenomena will cause the serious disadvantage
on control performances for a precision position-
ing control. Therefore, the research of nonsmooth
nonlinearities has been great interest to control
researchers for a long time.

Especially, dead–zone characteristics are often en-
countered in various areas of mechatronics. Dead–
zone is most important nonsmooth nonlinearities

arisen in actuators, such as DC servo motors
and hydraulic servo valves, etc. When the ex-
pected accuracy of the motion system is high,
we have to compensate the dead–zone phenom-
ena. In general, the dead–zone parameters are
poorly known, and it is hard to measure the
output of the dead–zone. Therefore, an adaptive
control method which based on the dead–zone
inverse was proposed (Tao and Kokotović 1995).
A perfect asymptotical adaptive cancellation of
an unknown dead–zone method was shown (Cho
and Bai 1998), but, unfortunately, it is assumed
that the output of the dead–zone is measurable.
A fuzzy logic controller for the systems with
dead–zone (Kim, Lee, and Chong 1994, Zhang
and Feng 1997, Lewis Tim, Wang, and Li 1999)
and neural networks precompensator (Selmic and
Lewis 2000) were also proposed.

The aforementioned researches are based on a
dead–zone inverse method. Recently, new piece–



wise description of dead–zones has been pro-
posed (Wang, Su, and Hong 2004). This descrip-
tion is organized as the linear for the dead–
zone input term and bounded disturbance func-
tion term. Using this description, an approach for
adaptive control of nonlinear system with dead–
zones is proposed without using the dead–zone
inverse method (Wang, Su, and Hong 2004). This
method ensured that all the closed–loop signals
are bounded and the state vector converges to
prescribed region which depend on the design
parameter ε. Besides, this control input and es-
timation strategies contain the saturated function
term which reflects the component for compensa-
tion of the bounded function. It has already been
noticed that if the controller design parameter ε
is chosen too small, the linear region of saturated
function will be too thin, which cause a risk of
exciting high–frequency fluctuations. Moreover, if
we choose the controller design parameter ε as
nearly 0, then the controller contains a discon-
tinuous structure, which may cause chattering
phenomena. It means that the control strategy
may have a performance limitation due to the
discontinuous structure. For the practical appli-
cations, it is not suitable that there exist a trade–
off between the design parameter and trajectory–
following requirements.

In this paper, we propose a new adaptive con-
trol method without using the dead–zone in-
verse method and saturated functions. Based on
inverse optimal control strategy (Freeman and
Kokotović 1996, Miyasato 1999), an adaptive
H∞ control method is given which controller
can be designed without solving the Hamilton–
Jaccobi–Isaacs equation. We can also show that
the bounded disturbance can be compensated by
the control input without using the saturated
functions. Moreover, we can conclude that the
L2 gin from the bounded disturbance to tracking
error is prescribed by given constant, that is, the
H∞ control performance is attained adaptively for
generalized output. Besides, it is shown that the
overall system is bounded. As a consequence of
the analysis, we can design the closed–loop system
which can consider the trade–off between control
performance and control input power. Numerical
simulations will be given to show the effectiveness
of our proposed method.

2. SYSTEM DESCRIPTION AND CONTROL
OBJECTIVE

The nonlinear dynamic system preceded by actu-
ators with dead–zone can be written as

x(n)(t)+
r∑

i=1

aiYi

(
x(t), ẋ(t), · · · , x(n−1)(t)

)
= bw(t)

(1)

where Yi are known continuous, linear or nonlin-
ear functions, ai are unknown but constant pa-
rameters, and b is unknown but constant. Without
loss of generality, we assume b > 0.

The dead–zone with input u(t) and output w(t),
as shown in Fig. 1, is described by

w(t) =





mr(u(t)− br) for u(t) ≥ br

0 for bl < u(t) < br

ml(u(t)− bl) for u(t) ≤ bl

= D(u(t)). (2)
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Fig. 1. Dead–zone model

We make the assumptions that the dead–zone has
the following properties:

(A1) The dead–zone output w(t) is not available
for measurement.

(A2) The dead–zone slopes in positive and neg-
ative region are same, i. e., mr = ml = m.

(A3) The dead–zone parameters br, bl, and m
are unknown, but their signs are known: br >
0, bl < 0, m > 0.

(A4) The dead–zone parameters br, bl, and m
are bounded, i. e., each lower and upper
bounds are known and it can be described
as follows:

br ∈ [brmin, brmax], bl ∈ [blmin, blmax],

m ∈ [mmin,mmax].

(A1) ∼ (A4) are satisfied in real plants. Then,
model (2) can be rewritten as follows:

w(t) = D(u(t)) = mu(t) + d(u(t)) (3)

where d(u(t)) can be described from (2) and (3)
as

d(u(t)) =




−mbr for u(t) ≥ br,
−mu(t) for bl < u(t) < br,
−mbl for u(t) ≤ bl.

(4)

From (A2) and (A4), we can evaluate d(u(t)) as
follows:

|d(u(t))| ≤ ρ (5)



where ρ is upper–bound of d(u(t)), which can be
chosen as

ρ = max{mmaxbrmax,−mmaxblmin}, (6)

where blmin is negative values.

The control objective is to design a control strat-
egy for u(t) in (3) to let the plant state vector,
x(t) =

[
x(t), ẋ(t), · · · , x(n−1)(t)

]T
, follow a speci-

fied desired trajectory,

xd(t) =
[
xd(t), ẋd(t), · · · , x

(n−1)
d (t)

]T

,

i. e., which satisfies as follows:

lim
t→∞

x(t) = xd(t).

We make the following assumption for the desired
trajectory.

(A5) The desired trajectory

x(t) = [x(t), ẋ(t), · · · , x(n−1)(t)]T

is continuous and available. Besides

[xT
d (t), x(n)

d (t)]T ∈ Ωd ⊂ Rn+1

with Ωd being a compact set.

Due to the analysis of an adaptive control strat-
egy, a filtered tracking error is defined as

s(t) =
(

d

dt
+ λ

)n−1

x̃(t), λ > 0. (7)

(7) can be rewritten as follows:

s(t) = ΛTx̃(t),

with

ΛT = [λn−1, (n− 1)λn−2, · · · , 1],

x̃(t) = x(t)− xd(t).

Moreover, we define as

ΛT
v = [0, λn−1, (n− 1)λn−2, · · · , (n− 1)λ],

then it follows:

ṡ(t) = ΛT
v x(t) + x̃n(t),

= ΛT
v x(t)−

r∑

i=1

aiYi(x(t)) + bmu(t),

+ bd(u(t))− x
(n)
d (t). (8)

In the controller design, system parameters ai, b,
and m which are in (8) are unknown and a robust
adaptive control strategy should be considered.

To present the adaptive control strategy, we define
an unknown parameter vector θ and a constant φ
as follows:

θ ≡ [a1/bm, · · · , ar/bm]T ∈ Rr, φ ≡ 1/bm.

Then, we can define the estimated errors as

θ̃ = θ̂ − θ, φ̃ = φ̂− φ,

where θ̂ and φ̂ are estimate values of θ and φ,
respectively.

3. PREVIOUS RESULT

In this section, we shall introduce the previous
research (Wang, Su, and Hong 2004) which is
based on adaptive control without constructing
the inverse of the dead–zone.

Based on the error equation (8), the following
adaptive control strategy is given:

u(t) = −kds(t)+φ̂ufd(t)+Y T(x)θ̂−k∗ sat
(

s(t)
ε

)
,

(9)
˙̂
θi = −γYi(x)sε,

˙̂
φi = −ηufdsε, (10)

where

sat (s(t)/ε) =





1 for s(t)/ε ≥ 1,
s(t)/ε for −1 < s(t)/ε < 1,
−1 for s(t)/ε ≤ −1,

(11)
and

sε = s(t)− ε sat
(

s(t)
ε

)
,

ufd(t) = x
(n)
d (t)− ΛT

v x̃(t),

Y ≡ [Y1, · · · , Yr]
T ∈ Rr.

γ and η are positive constants and k∗ is a control
gain which satisfying

k∗ ≥ ρ/mmin,

where ρ is defined in (6).

It has already shown that the stability of the
closed–loop system described by (1), (2), (9), and
(10) is ensured. Besides, all the closed–loop signal
are bounded and the state vector x(t) converges
to Ωε =

{
x(t)

∣∣|x̃i| ≤ 2i−1λi−nε, i = 1, · · · , n
}

for
∀ t ≥ t0.

Remark 1.

From the definition of Ωε, the convergence re-
gion of x(t) is depend on ε. The control input
(9) and (10) contains the term sat (s(t)/ε) which
reflects the component for compensation of the
bounded function d(u(t)). It has already been
noticed that if ε is chosen too small, the linear
region of function sat (s(t)/ε) will be too thin,
which cause a risk of exciting high–frequency fluc-
tuations (Wang, Su, and Hong 2004). Besides, if
we choose the design parameter ε as nearly 0, then
the controller contains a discontinuous structure,
which may cause chattering phenomena. It means
that a control strategy (9) may have a perfor-
mance limitation due to the discontinuous struc-
ture. Moreover, for the practical applications, it
is not suitable that there exist a trade–off be-
tween the controller parameter ε and trajectory–
following requirements.

In the next section, we will introduce a differ-
ent adaptive control approach. Based on the in-
verse optimality method, an adaptive H∞ control



method without including the saturated function
is proposed.
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4. ADAPTIVE H∞ CONTROL METHOD

To solve the problems of the previous researches,
we have proposed another adaptive control method
which can compensate the bounded function
d(u(t)) (i. e., disturbance) without using a satu-
rated function. According to this method (Freeman
and Kokotović 1996, Miyasato 1999), the resulting
control system is shown to be sub–optimal to
the cost functionals which prescribe the L2–gains
from the disturbance to the tracking error.

First of all, we give the virtual process as follows:

ṡ(t) = f(s(t)) + g1
d(u(t))

m
+ g2v(t),

f(s(t)) = −kds(t), g1 = 1, g2 = 1,

where kd is positive constant and v(t) is a new
control input which will be given in the following.
For the virtual system, we can derive positive
functions h, δ satisfying the following Hamilton–
Jaccobi–Isaacs (HJI) equation and define the pos-
itive function Ṽ = 1

2s2(t),

∂Ṽ

∂s
f(s(t))+

1
4

(
g2
1

γ2∞
− g2

2

δ

) (
∂Ṽ

∂s

)2

+hs2(t) ≤ 0.

(12)
Substitute Ṽ into (12), then we have

−kds
2(t) +

(
1

γ2∞
− 1

δ

)
s2(t)

4
+ hs2(t) ≤ 0. (13)

By utilizing the aforementioned, the adaptive con-
trol method for (1) and (2) is constructed in the
following way.

u(t) = −kds(t) + φ̂ufd(t) + Y T(x)θ̂ + v(t), (14)

˙̂
θi(t) = −γYi(x)s(t), (15)
˙̂
φi(t) = −ηufds(t). (16)

It should be noted that the right hand side of the
estimation strategies θ̂ and φ̂ do not contain the
saturated function sε, it only uses the signal s(t).

Then, the following theorem is given.

Theorem 1.

The adaptive controller (14) and estimation strate-
gies (15) and (16) applied to the plant (1) with
dead–zone (2), and set the new control input v(t)
as follows:

v(t) = − 1
2δ

g2
∂Ṽ

∂s
= − 1

2δ
s(t), (17)

then the control system is sub–optimal in the
sense that it minimizes the upper bound on the
quadratic cost functional J defined by

J = sup
d(u(t))

m ∈L2

{∫ t

0

(
hs2(τ) + δv2(τ)

−γ2
∞

(
d(u(τ))

m

)2
)

dτ + V (t)

}
, (18)

for any t ≤ ∞, h and γ are positive constants, and
V (t) is positive function defined as

V (t) =
1
2

[
1

bm
s2(t) +

1
γ

θ̃T(t)θ̃(t) +
1
η
φ̃2(t)

]
.

(19)

Proof

Taking the time derivative of (19) along the tra-
jectory of the (8), then we have

V̇ =
1

bm
sṡ +

1
γ

θ̃T ˙̃
θ +

1
η
φ̃

˙̃
φ

=−kds
2 + sφ̃ufd(t) + sY T(x(t))θ̃ + sv(t)

+ s
d(u(t))

m
+

1
γ

θ̃T ˙̂
θ +

1
η
φ̃

˙̂
φ (20)

We apply the estimation strategy (15) and (16),
substitute (13) into (20), then

V̇ ≤−1
4

(
1

γ∞
− 1

δ

)
s2 − hs2 + v(t)s +

d(u(t))
m

s

= δ

(
1
2δ

s + v(t)
)2

− δv2(t)− hs2

− γ2
∞

(
d(u(t))

m
− 1

2γ2∞
s

)2

+ γ2
∞

(
d(u(t))

m

)2

(21)

Choosing v(t) as (17) and integrating both sides,
then we can conclude that the all signals in the
closed–loop system are bounded and the v(t) is
a sub–optimal control input which minimize the
upper bound on the cost functional (18). 2

Remark 2.

Since the above arguments, the bounded dis-
turbance d(u(t))/m can be compensated by the
control input (14) and (17). Theorem 1 shows
that the L2 gin from the bounded disturbance



d(u(t))/m to tracking error s(t) is prescribed by
given constant γ∞, that is, the H∞ control per-
formance is attained adaptively for generalized
output

√
hs2(t) + δv2(t). Besides, it is shown that

the overall system is bounded.

Remark 3.

As a result, the proposed method is one of the
high–gain output feedback control method, but
the control gain is determined by notion of H∞
control method. Moreover, we can design the
closed–loop system which can take into account
of the trade–off between control performance and
control input power.

5. SIMULATION STUDIES

To show the effectiveness of the proposed method,
we apply the proposed adaptive controller to a
nonlinear system with dead–zone. In this paper,
we consider the plant which described as (Zhang
and Feng 1997, Wang, Su, and Hong 2004)

ẍ(t) = a1
1− e−x(t)

1 + e−x(t)
− a2(ẋ2(t) + 2x(t)) sin ẋ(t)

− 0.5a3x(t) sin 3t + bw(t) (22)

where w(t) is an output of a dead–zone.

In the following, all of the plant and dead–zone pa-
rameters are same which was used in the previous
work (Wang, Su, and Hong 2004). The parameters
are a1 = a2 = a3 = 1, b = 1, br = 0.5, bl = −0.6,
and m = 1. The control objective is to track the
system state [x(t), ẋ(t)]T to the desired trajectory
[xd(t), ẋd(t)]T. Lower and upper bounds of the
dead–zone which was shown in (A4) are selected
as blmin = −0.7, blmax = −0.1, brmin = 0.1,
brmax = 0.6, mmin = 0.85, and mmax = 1.25.
The desired trajectory is given as xd(t) = 2.5 sin t
and plant initial values are selected as x(0) =
[−2.5, 3.5]T. The design parameters common to
(9), (14), (10), (15), and (16) are selected as
kd = 10, γ = 0.5, η = 0.5, and λ = 10. For
each control strategies (9) and (14), the design
parameters are choosen as ε = 0.1, k∗ = 2.5,
and δ = 0.01. In the simulation, we set the initial
values for the estimation strategies as:

Case 1: φ(0) = θ1(0) = θ2(0) = θ3(0) = 0.85,

Case 2: φ(0) = θ1(0) = θ2(0) = θ3(0) = 0.35.

Figs. 3 and 4 show the position tracking error.
From Fig. 3, it clearly shows that the proposed
adaptive controller results in good tracking perfor-
mance compared with the previous method using
(9) and (10).

Fig. 5 shows the position tracking error using (9)
and (10) with ε = 0.1 and ε = 0.01.
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Fig. 3. Error signals of Case 1.
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Fig. 4. Error signals of Case 2.

10 15 20 25 30 35 40 45 50
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time t [s]

Er
ro

rs

ε=0.01
ε=0.1

Fig. 5. Error signals for ε = 0.1 and 0.01.

As we have shown in remark 1, from Fig. 5, it
clearly shows that the design parameter ε selected
as 0.01, then the control performance is improved
compared with ε = 0.1. Figs. 6 and 7 show the
time history of the signal s(t)/ε which is input for
the saturated function (11). Comparing Figs. 6
and 7, in the case of ε = 0.01, the signal s(t)/ε
involves high–frequency fluctuations between 1
and −1. This means that the output of the func-
tion sat(s(t)/ε) eventually becomes discontinuous,
therefore, it is not appropriate for the practical
applications. Fig. 8 depicts the position tracking
error when the design parameter δ is changed with
the control method (14) and estimation mecha-
nism (15) and (16). This figure shows that the
control performance is improved when the design
parameter δ is selected as 0.01. This suggests
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that if the design parameter δ is chosen small,
then the effect of the bounded disturbance can be
suppressed.

6. CONCLUSIONS

In practical applications dead–zones with un-
known physical parameters must be taken into
account for the precise control performance. In
this paper, an adaptive H∞ control strategy was
proposed for a class of continuous–time nonlinear
dynamic system with dead–zone. It is assumed
that the dead–zone model can be described by the
unknown parameters part and bounded distur-
bance part, the adaptive H∞ control method was

proposed without constructing a dead–zone in-
verse. Besides, it was also shown that the bounded
disturbance can be suppressed by the proposed
control method without using the saturated func-
tions, and it is effective for the practical appli-
cations. The proposed control strategy achieves
both stabilization and good tracking performance
compared with the previous method using satu-
rated functions. Simulations results showed the
effectiveness of our proposed method.
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