Erratum to: Multiple sweeping using the Denavit–Hartenberg representation method

K. Abdel-Malek, S. Othman

Department of Mechanical Engineering and Center for Computer-Aided Design, The University of Iowa, Iowa City, IA 52242, USA
US National Advanced Driving Simulator and Simulation Center, 2401 Oakdale Avenue, The University of Iowa, Iowa City, IA 52242, USA

Please note that the reference to the Swept Volume Community web page on p. 567 should read: http://www.icaen.uiowa.edu/~amelek/sweep/sweptV.htm. Also Fig. 7 on p. 572 was incorrectly printed and should have appeared as follows:

Given a number of Sweep operations

1. Embed the \(z_i \) axis along the \(i \)th sweep axis
2. Embed the \(x_i \) axis normal to the \(z_i \) and \(y = z \times x \)
3. Define the sweep variables \(q_i \) (use reverse order for designation)

Fill-in the DH-Table

Form the Homogeneous Transformation Matrices

\[
{T_i} = \begin{bmatrix}
\cos\theta_i & -\cos\alpha_i \sin\theta_i & \sin\alpha_i \sin\theta_i & a_i \cos\theta_i \\
\sin\theta_i & \cos\alpha_i \cos\theta_i & -\sin\alpha_i \cos\theta_i & a_i \sin\theta_i \\
0 & \sin\alpha_i & \cos\alpha_i & d_i \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
{T_1}{T_2}{T_3} = \prod_{i=1}^{n-1} {T_i}
\]

Compute the Jacobian

Apply rank-deficiency conditions (compute \(p_i \))

Plot \(\xi(u) = \xi(p, u) \)

Fig. 7. Algorithm for creating and representing a solid model using the DH-method.