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Abstract

Before the era of tyrosine kinase inhibitors (TKIs), interferon-alpha (IFN-a) was the treatment of choice in chronic myeloid
leukemia (CML). Curiously, some IFN-a treated patients were able to discontinue therapy without disease progression. The
aim of this project was to study the immunomodulatory effects of IFN-a in CML patients in prolonged remission and isolate
biological markers predicting response. Due to rarity of patients on IFN-a monotherapy, a relatively small cohort of patients
still on treatment (IFN-ON, n = 10, median therapy duration 11.8 years) or had discontinued IFN-a therapy but remained in
remission for .2 years (IFN-OFF, n = 9) were studied. The lymphocyte immunophenotype was analyzed with a
comprehensive flow cytometry panel and plasma cytokine levels were measured with multiplex bead-based assay. In
addition, the clonality status of different lymphocyte subpopulations was analyzed by TCR c/d rearrangement assay. Median
NK-cell absolute number and proportion from lymphocytes in blood was higher in IFN-OFF patients as compared to IFN-ON
patients or controls (0.42, 0.19, 0.216109/L; 26%, 12%, 11%, respectively, p,0.001). The proportion of CD8+ T-cells was
significantly increased in both patient groups and a larger proportion of T-cells expressed CD45RO. Most (95%) patients had
significant numbers of oligoclonal lymphocytes characterized by T-cell receptor c/d rearrangements. Strikingly, in the
majority of patients (79%) a distinct clonal Vc9 gene rearrangement was observed residing in cd+ T-cell population. Similar
unique clonality pattern was not observed in TKI treated CML patients. Plasma eotaxin and MCP-1 cytokines were
significantly increased in IFN-OFF patients. Despite the limited number of patients, our data indicates that IFN-a treated CML
patients in remission have increased numbers of NK-cells and clonal cd+ T-cells and a unique plasma cytokine profile. These
factors may relate to anti-leukemic effects of IFN-a in this specific group of patients and account for prolonged therapy
responses even after drug discontinuation.
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Introduction

The Philadelphia chromosome (Ph) resulting from the reciprocal

translocation between chromosomes 9 and 22 is the hallmark of

chronic myeloid leukemia (CML). The t(9;22) translocation leads to

the formation of the BCR-ABL oncogene and produces a fusion

protein which has an autonomous tyrosine kinase activity [1]. The

discovery of tyrosine kinase inhibitors (TKIs) has dramatically

improved the survival of CML patients [2,3,4]. However, they are

not considered to be curative since they do not eliminate all Ph+ cells

and discontinuation of the therapy often leads to disease relapse [5].

Before the TKI therapy era, interferon alpha (IFN-a) was the

treatment of choice in CML [6]. Only a small proportion of

patients (10–20%) achieved a complete cytogenetic remission

(CCyR), but these patients had a prolonged survival [7,8]. Recent

multicenter studies have shown that combination of IFN-a with

the TKI imatinib improves the therapy outcome [9,10,11]. Also

studies evaluating the successful treatment discontinuation in

CML have suggested that IFN-a therapy may improve the

possibility to stop TKI therapy [5,12]. The mechanism of action of

IFN-a therapy is incompletely understood; the drug exerts both

direct cytostatic and immunomodulatory effects on leukemic cells.
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It can down-regulate the expression of the BCR-ABL1 gene, and

activate several transcriptional factors that regulate cell prolifer-

ation, maturation, and apoptosis [13,14,15,16,17]. IFN-a can also

induce recognition and elimination of CML cells by the immune

system [18,19,20,21]. Recent studies have also suggested that it

can promote the cycling of normal quiescent hematopoietic stem

cells [22]. If similar mechanism of action occurs with dormant

leukemic stem cells (LSCs), IFN-a treatment may induce their

cycling and thereby expose LSCs to the effects of TKIs and

chemotherapeutic agents.

The most striking evidence of the immunomodulatory effects

of IFN-a comes from studies which have shown that a

significant proportion of IFN-a treated patients in prolonged

CCyR were able to discontinue treatment without imminent

disease relapse. However, many of these patients still have

detectable minimal residual disease [23,24]. It would be

important to understand the mechanisms of drug-induced cure

and to assess which factors are important in the maintenance of

residual tumor cell dormancy.

The aim of this project was to study the immunomodulatory

effects of IFN-a treatment in two unique CML patient

populations: (1) patients in prolonged remission during IFN-a
monotherapy and (2) patients in prolonged remission after IFN-a
monotherapy discontinuation. Such patients are very rare

nowadays as TKI therapy has replaced IFN-a in the treatment

of CML and therefore, the sample size in this study is limited.

However, also with a small number of patients we were able to

find distinct changes in the immunoprofile of IFN-a treated

patients and these findings should be confirmed in upcoming

clinical studies evaluating the effect of IFN-a in the treatment of

CML.

Methods

Ethics statement
The study was conducted in accordance with the principles of

the Helsinki declaration and was approved by the Helsinki

University Central Hospital and University Hospital Olomouc

Ethics Committees. Written informed consents were obtained

from all patients and healthy controls prior to sample collection.

Study patients and samples
All CML treating physicians in Finland, Czech and Slovak

republic were contacted and we were able to identify 19 chronic

phase CML patients treated with IFN-a monotherapy. None of

the patients were previously treated with TKI therapy. 10 patients

were using IFN-a at the time of sampling (age at sampling 33–74

years; median time for treatment 142 months, range 63–231),

while 9 patients had discontinued the therapy (age at sampling 45–

68 years; median time on treatment 93 months, range 57–132) and

stayed in remission at least 2 years (median time without treatment

53 months, range 24–96 months). The reasons for IFN-a
discontinuation were request of the patient and/or side effects of

the therapy. The majority of the patients have been in CMR for a

long period and only in some patients BCR-ABL fusion gene was

detectable, but there was the plateau in the transcript level. More

detailed patient characteristics are presented in table 1. From 7

patients (4 IFN-ON and 3 IFN-OFF) a follow-up sample (time

between samples 15–31 months) was available. As controls we

included 4 patients with myeloproliferative neoplasms (MPN)

treated with IFN-a (3 patients with essential trombocythemia and

one patient with polycythemia vera; age at sampling 26–62 years;

median time for therapy 43 months, range 25–108) and 43 healthy

volunteers (age at sampling 20–64 years).

Fresh peripheral blood (PB) samples were collected from all

patients and healthy controls. Mononuclear cells (MNCs) were

separated by Ficoll gradient centrifugation (GE healthcare,

Buckinghamshire, UK).

Blood cell counts were obtained from routine laboratory tests.

Molecular genetic analysis of BCR-ABL transcripts was performed

with real-time quantitative PCR in quality-controlled laboratories.

The cytogenetic response was assessed using conventional G-

banding technique.

Immunophenotyping of PB lymphocytes and leukocyte
subpopulations

Immunophenotyping was done with a 6-color flow cytometry

panel including antibodies against the following antigens: CD3,

CD4, CD8, CD16/56, CD19, CD45, CD57, CD45RA,

CD45RO, T-cell receptor (TCR)-a/b, TCR-c/d, CCR2,

CCR3, and Vc9 with isotype controls. Regulatory T-cells (Treg)

were analyzed with CD3, CD4, CD25, and FOXP3 (clone

PCH101, eBioscience, San Diego, CA, USA) antibodies.

From the lymphocyte population, proportions of T-, B-, NKT-

like (T-cells with CD16/56 NK-cell marker) and NK-cells were

evaluated based on their surface antigen expression (CD3+,

CD19+, CD3+CD16/56+, CD3negCD16/56+, respectively). From

the CD3+ T-cells, proportions of CD4+ helper and CD8+ cytotoxic

T-cell subpopulations were identified. Also TCR status, CD45RA,

and CD45RO cell surface antigens were analyzed from T-cells

and CD4+ and CD8+ subtypes. Absolute numbers of defined cell

types were counted from PB cell populations using relative

numbers and total white blood cell counts. All antibodies were

purchased from BD Biosciences (San Diego, CA, USA) if not

otherwise mentioned. Cells were stained according to manufac-

turer’s recommendations. 1–56105 cells were analyzed with

FACSCanto (Beckton Dickinson, San Jose, CA, USA). The data

analysis was done with FACSDiva software (version 6.0, BD

Biosciences).

Analysis of HLA-A2 and measurement of PR1 specific
T-cells

10 patients (table 1) were analyzed for their HLA-A2 expression

with OLERUP SSPTM HLA-kit (Olerup SSP AB, Saltsjobaden,

Sweden) for locus A according to the manufacturer’s recommen-

dations. Approximately 5 million PB MNC from HLA-A*0201

positive patients were stained with the following antibodies: CD3,

CD4, CD8, and PR1 iTAgTM MHC Class I human Tetramer

(Beckman Coulter, Brea, CA, USA). 56105 CD8+ cells were

analyzed with FACSAria and the data analysis was done with

FACSDiva software.

Fluorescence activated cell sorting (FACS) of ab+ and cd+

T-cells
Approximately 10 million mononuclear cells (MNCs) from 10

CML patients, 4 MPN patients, and 3 healthy volunteers (mean

age 45) were stained with antibodies against the following antigens:

CD45, CD3, TCR a/b, and TCR c/d. Lymphocyte populations

were gated and sorted as following: CD3+ TCR ab+, and CD3+

TCR cd +. All antibodies were purchased from BD and sorting of

cells was performed on FACSAria. Purity of the sorted fractions

was confirmed with flow cytometry to be close to 100%.

DNA extraction
Genomic DNA was isolated from frozen, or sorted PB MNCs

by Genomic DNA from Tissue; NucleoSpinH Tissue or Tissue XS

(Machery-Nagel, Düren, Germany) according to manufacturer’s

Immunomodulatory Effects of Interferon-a in CML
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instruction. DNA concentration and purity was measured with

NanoDrop (Thermo Scientific, Waltham, MA, USA). DNA was

stored at 220uC.

Detection and sequencing of TCR c- and d-gene
rearrangements by PCR

TCR c- and d-gene rearrangements were studied by PCR

analysis using 12 primer pairs for c-gene and 6 primer pairs for d-

genes detecting most of the known TCR c- and d-gene

rearrangements. The lower detection limit of the assay is 1–5%

of clonal cells among polyclonal lymphocytes. The analysis was

done according to the BIOMED-1 PCR protocol [25]. Clonal

products were identified by heteroduplex analysis, sequenced and

analyzed as described previously [26].

Design of individual allele-specific oligonucleotide (ASO)
primers and establishment of clones in different cell
populations with RQ-PCR

Patient-specific allele-specific oligonucleotide (ASO) primers for

real-time quantitative PCR (RQ-PCR) were designed as explained

previously [26]. Basically, the ASO primers were designed to

match the hypervariable junction regions of the sequenced TCR

d- and TCR c-gene rearrangements. TaqMan RQ-PCR was

performed using the ASO-primers together with a consensus

primer and a TaqMan probe, which were selected according to

the D- and J-gene present in the detected clonal rearrangement

(primer and probe sequences available from the authors upon

request). DNA from sorted cell populations or diagnostic phase

Table 1. CML patient characteristics (n = 19).

No Dg Sex
Agea

(years)
Sokal
score

Disease duration
(months)

Course of IFN-a
therapyb Response

HLA-
A*0201 PR1 %f

1. CML CP M 28 - 358 5 MU/3x weekly (1. year),
3 MU/3x weekly – cont.

MCyR Neg ND

2. CML CP F 63 - 63 4.5 MU/daily (1. year),
3 MU/3x weekly – cont.

MCyR Pos ND

3. CML CP F 45 - 160 5 MU/daily (1. year),
3 MU/3x weekly – cont.

CMR Neg ND

4. CML CP M 62 LR 144 auto-PBSCTc,
1.5 MU/2x weekly – cont.

MMR Neg ND

5. CML CP F 35 LR 240 2 MU/3x weekly – cont. CMR Pos 0.6%

6. CML CP F 39 - 200 busulfand,
1.5 MU/2x weekly – cont.

MMR ND ND

7. CML CP M 29 - 163 4.5 MU/6x weekly – cont. CMR Pos 0.9%

8. CML CP F 21 - 148 mini-ICE, 3 MU/daily – cont. CMR Pos 3.9%

9. CML CP F 55 LR 102 3 MU/daily – cont. CCyR ND ND

10. CML CP M 58 LR 147 3 MU/daily – cont. CMR ND ND

11. CML CP M 44 LR 204 IFN-a (10 years),
7 years no therapy

CMR Pos 0.3%

12. CML CP M 53 LR 170 IFN-a (11 years),
3 years no therapy

CMR Neg ND

13. CML CP F 53 LR 134 auto-PBSCTc, IFN-a (8 years),
3 years no therapy

CMR Pos 0.6%

14. CML CP M 59 LR 86 IFN-a (6 years),
2 years no therapy

CMR ND ND

15. CML CP M 42 LR 84 CML-8e (5 years),
2 years no therapy

CMR ND ND

16. CML CP M 36 LR 112 auto-PBSCTc, IFN-a (5 years),
4 years no therapy

CMR ND ND

17. CML CP F 41 LR 172 auto-PBSCTc, IFN-a (7 years),
7 years no therapy

CMR ND ND

18. CML CP F 54 IR 168 IFN-a (9 years),
4 years no therapy

CMR Pos 0.9%

19. CML CP F 53 IR 152 IFN-a (8 years),
4 years no therapy

CMR ND ND

No, patient number; dg, diagnosis; CML; chronic myeloid leukemia; CP, chronic phase; auto-PBSCT, autologous peripheral blood stem cell transplantation; F, female; M,
male; IFN-a, interferon-a; IR, intermediate risk; LR, low risk; MCyR, major cytogenetic response, CCyR, complete cytogenetic response; CMR, complete molecular
response; MMR, major molecular response; cont, continues; HLA, human leukocyte antigen; PR1, a peptide for proteinase-3; ND, not done.
aAge at diagnosis;
bcourse of therapy; all patients were pretreated with hydroxyurea if not otherwise mentioned;
cauto-PBSCT, priming miniICE, conditioning high-dose busulfan;
dbusulfan sequential therapy regimen after pre-treatment with hydroxyurea;
eIFN-a administration in CML-8 protocol (combined with peroral cytarabine at the start);
fpercentage of PR-1 specific cells from CD8+ T-cells.
doi:10.1371/journal.pone.0023022.t001
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(patient 18, table 1) was amplified in duplicate reactions using

TaqMan Universal PCR Mastermix (Applied Biosystems).

Luminex assay of cytokines
The plasma of 10 healthy volunteers and patients treated with

IFN-a, including 19 CML patients and 4 control MPN patients,

were analyzed for following cytokines; interleukin-1b (IL-1b), IL-

1RA, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-

13, IL-15, IL-17, TNF-a (tumor necrosis factor alpha), IFN-a
(interferon alpha), GM-CSF (granulocyte macrophage colony-

stimulating factor), MIP-1a (macrophage inflammatory protein 1a

/CCL3), MIP-1b (macrophage inflammatory protein 1b /CCL4),

IP-10 (IFN-inducible protein 10 /CXCL10), MIG (monokine

induced by interferon gamma /CXCL9), Eotaxin (CCL11),

Rantes (CCL5), MCP-1 (monocyte chemoattractant protein 1 /

CCL2), and IFN-c (interferon gamma) using a Human Cytokine

25-plex Panel (Invitrogen) accoring to the manufactorer’s

instructions. Measurement and analysis was performed in Bio-

PlexTM 200 System (BioRad).

Statistical analysis
Statistics of the immunophenotyping results were done with

SPSS version 16.0. Assessment of the statistical significance of the

other experiments was done with GraphPrism (GraphPad

Software Inc., CA, USA). Cytokine profiles were analyzed with

nonparametric Mann-Whitney test and t test. P,0.05 was

considered statistically significant.

Results

Patient characteristics
All CML patients studied were in chronic phase. None of the

patients were treated with TKI therapy, or had undergone

allogeneic stem cell transplantation making this group of patients

rare and therefore limited. The median time on IFN-a therapy

was 11.8 years (range 5.3–19.3 years) in patients who were still on

treatment (IFN-ON) and 7.8 years (4.8–10.8) in patients who had

discontinued therapy (IFN-OFF, table 1). In IFN-OFF patients,

the median time without treatment before blood sampling was 4.4

years (2.0–8.0). Most (8/10) IFN-ON patients had at least CCyR

and 5 were in CMR. 2 patients had major cytogenetic response,

but the disease was stable and the treatment had continued for

more than 5 years in both patients. The IFN-a dose differed

markedly between patients ranging from 1.5 million units (MU)

twice weekly to 3 MU daily (table 1) mirroring well the real clinical

situation as the tolerated and effective dose of IFN-a varies greatly

between individual patients. 85% of patients (11 of 13) from whom

data was available belonged to low Sokal risk group and 15% to

intermediate risk group.

Increased amount of NK-cells in patients who have
successfully discontinued IFN-a therapy

Immunophenotyping of basic leukocyte subpopulations was

done with a multicolor flow cytometry panel. Median total

lymphocyte count did not differ significantly between healthy

controls (1.816109/l) and IFN-ON (1.526109/l) or IFN-OFF

patients (1.526109/l). The proportion of CD3+ T-cells from total

lymphocyte population was decreased in both CML patient

groups when compared to healthy volunteers (67% in IFN-ON,

56% in IFN-OFF vs. 73% in healthy controls, p = 0.0002)

(Figure 1A, Table S1). Similarly, the absolute T-cell numbers

were lower in the patient groups (0.896109/l, 0.826109/l vs.

1.36109/l, respectively, p = 0.0049) as well as the amount of

NKT-like cells (Table S1).

The proportion of NK-cells from total lymphocyte population

was significantly increased in the IFN-OFF group (26%) as

compared to IFN-ON group (12%) or to healthy controls (11%)

(Figure 1B, p = 0.0005). Absolute NK-numbers differed similarly

with marked variation in the IFN-ON group of patients (Table

S1).

The CD4/CD8 ratio was lower in IFN-ON (1.3) and IFN-OFF

(0.8) groups in comparison to healthy volunteers (2.2, p = 0.0402).

This predominantly reflected the higher proportion of cytotoxic

CD8+ T-cells (44% of total T-cell population in IFN-ON, 55% in

IFN-OFF vs. 31% in healthy controls, p = 0.0388, figure 1C,

Table S1). Furthermore, the absolute CD4+ T-cell numbers were

decreased both in IFN-ON (0.476109/l) and IFN-OFF (0.33

6109/l) groups when compared to healthy controls (0.846109/l,

p = 0.0010, Table S1). IFN-a treated MPN patients had

comparable numbers of NK-cells and CD8+ T-cells as healthy

controls (figure 1 B, C).

There was no difference in the proportion or absolute counts of

B-cells (Table S1). No significant difference was observed in the T-

cell receptor (TCR) subtype distribution between healthy volun-

teers and the IFN-a subgroups (Table S1).

CML patients treated with IFN-a have a higher
proportion of CD3+ CD45RO+ T-cells

We further examined the memory and activation status of T-

cells. Interestingly, both CML patient groups had significantly

larger proportion of CD45RO-positive T-cells, which are antigen

encountered memory cells (58% in IFN-ON group and 74% in

IFN-OFF group vs. 44% in healthy volunteers, p = 0.0059)

(figure 1D, Table S1). No significant difference was observed in

the proportion of CD57 activation antigen expressing T-cells

(Table S1), but patients in the IFN-OFF group in particular had

proliferating CD3+ T-cells as assessed by Ki-67 antigen expression

(figure 1E).

Increased proportion of regulatory T-cells in IFN-a
treated CML patients

The median proportion of Tregs from CD4+ lymphocytes was

significantly increased in IFN-OFF subgroup (6.1%) compared to

healthy volunteers (3.8%) and IFN-ON subgroup (5.2%)

(p = 0.0114, Table S1). However, no difference was observed in

absolute Treg numbers (Table S1).

Immunoprofile stays stable in follow-up samples
From 7 patients (4 IFN-ON and 3 IFN-OFF) a follow-up sample

was available. The time between the first and second sample

varied from 15 to 31 months. The proportion of NK-cells was

stable over time and no significant variation was detected in the

values between 2 time-points (data not shown). Similarly, in other

cell types (CD8+ cells and CD45RO+ cells) in which significant

differences were observed between the study cohorts, the results

between 2 time-points did not differ markedly.

HLA-A2 and PR1 specific T-cells
To be able to analyze the proportion of PR1 specific T-cells,

patients’ HLA-A2 status was determined as PR1 MHC Class I

human tetramer antibody staining is restricted only to HLA-A2

positive patients. Suitable samples for HLA-A2 analysis were

available from 10 CML patients, and 7 were positive for HLA-

A*0201 (table 1). All these 7 patients had detectable PR1 specific

CD8+ T-cells with the proportion varying between 0.3% and

3.9% of total CD8+ cell population (table 1).

Immunomodulatory Effects of Interferon-a in CML
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Figure 1. Flow cytometry analysis of basic lymphocyte subpopulations. Immunophenotyping was done with 6-color flow cytometry from
healthy controls (n = 16), IFN-a-treated CML patients (IFN-ON, n = 10), and CML patients who had discontinued IFN-a therapy (IFN-OFF, n = 9). Figures
represent relative proportions of analyzed cells and corresponding absolute numbers can be found in Table S1. Statistical significance of differences

Immunomodulatory Effects of Interferon-a in CML
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Clonal lymphocytes are common in IFN-a treated
patients

As our previous studies have shown that the majority of CML

patients have clonal lymphocytes already at the time of diagnosis

and that they expand during dasatinib (2nd generation TKI)

therapy [26], we wanted to study the presence of clonal

lymphocytes in IFN-a treated patients. Clonality of the cells was

determined by using a sensitive TCR c/d rearrangement PCR

assay (sensitivity of the assay is 1% of clonal cells within the total

assayed cell population). 22 healthy volunteers were analyzed as

controls. In three healthy volunteers (14%), a clonal TCR c-

rearrangement was confirmed. However, no clonal TCR d-gene

rearrangements were detected in healthy controls (table 2). The

healthy individuals with clonal T-cells (male 44 years, male 33

years, and female 47 years) were asymptomatic and had normal

blood counts.

In contrast, 18 of 19 (95%) CML patients treated with IFN-a
had a clonal rearrangement in TCR c- and/or d-genes (table 2).

Both IFN-ON and IFN-OFF patients had frequently clonal TCR

c- (80% vs. 100%, respectively) and TCR d-gene rearrangements

(60% vs. 67%). In most patients more than one clonal TCR

rearrangement was confirmed (15 of 19; 79%). 2 of 4 (50%) MPN

patients included in this study had clonal TCR c- and TCR d-

gene rearrangements. In one CML patient and two MPN patients

(male 34 years and female 26 years) no clonal rearrangements

could be detected with the set of primers used in this study.

Two CML patients had a diagnostic phase sample available

(patients 9 and 18). Patient 18 showed no clonal lymphocytes at

Table 2. Sequence confirmed clonal TCR c- and d-gene rearrangements.

No. Patient group TCR delta primer pairs TCR gamma primer pairs

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12

healthy - X

healthy - X

healthy - X

1 IFN-ON X X X X X

2 IFN-ON X X X X

3 IFN-ON

4 IFN-ON X X X X X X X

5 IFN-ON X X

6 IFN-ON X

7 IFN-ON X X

8 IFN-ON X

9 IFN-ON X X X

10 IFN-ON X X X X

11 IFN-OFF X X X X X X

12 IFN-OFF X X X X X

13 IFN-OFF X X X

14 IFN-OFF X X

15 IFN-OFF X X

16 IFN-OFF X

17 IFN-OFF X X

18 IFN-OFF X X

19 IFN-OFF X X X

20 MPN

21 MPN

22 MPN X X X X

23 MPN X X X X X

No refers to patient number in the Table 1; IFN-ON, CML patients with ongoing IFN-a therapy; IFN-OFF, CML patients who have discontinued the therapy; MPN
myeloproliferative neoplasm.
Clonality was determined by PCR and gel analysis using 12 primer pairs for the TCR c-gene rearrangements and 6 primer pairs for TCR d-gene rearrangements. Positive
clonal PCR products were confirmed with sequencing and are marked in the columns as X. Clonal TRGV9*01 / TRGJP*01 rearrangements are marked with bold and italic.
doi:10.1371/journal.pone.0023022.t002

in continuous variables was assessed by a non-parametric analysis of variance using the Kruskal-Wallis test (P-values reported in figures) and in case
of a significant main effect, pairwise comparisons of patient groups were calculated using Dunn’s multiple comparison test (statistically significant
differences between groups are marked with asterisks and line). For the analysis of Vc9+ cells (panel F), samples from 5 healthy controls, 4 IFN-ON,
and 5 IFN-OFF patients were available. The figures also include results from four patients with myeloproliferative neoplasm (MPN), but they were not
included in the statistical analysis.
doi:10.1371/journal.pone.0023022.g001
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diagnosis, while patient 9 had one clonal product detected with

primer pair TCR gamma 10 (table 2). A clone could be detected

with the same pair 8 years later during IFN-a therapy, but the

junction region sequence varied slightly suggesting that the clone

was not identical or it has evolved during the years.

A unique pattern of TCR c/d rearrangements is observed
in IFN-a treated patients

Surprisingly, in the majority of CML patients either on IFN-a
therapy (70%) or who had been able to discontinue the therapy

(78%), a clonal rearrangement was detected with the same primer

pair Vg2-Jg1.2 (table 2, TCR c primer pair 5). Also 2/4 MPN

control patients had a clone detected with this pair of primers.

However, no similarities could be found in the specific junction

regions (Table S2).

A similar finding was observed in TCR d-gene rearrangements

detected with primer pairs 1 and 3 (Vd1-Jd1 and Vd2-Jd1, both

generating complete rearrangements, table 2). 9 of 14 CML

patients (64%) who had a rearrangement detected with Vg2-Jg1.2

had also a clone detected with Vd1-Jd1 and/or Vd2-Jd1 (table 2).

Also the two MPN patients had the both TCR genes rearranged.

Similarly, no pattern could be found in the specific junction

regions (Table S3).

The same unique pattern has not been observed earlier in TKI-

treated patients [26] and was not either seen in healthy volunteers

(1 positive finding in 47 years old female of total 22 volunteers

studied).

Clonal TCR c- and d-gene rearrangements are found in
the cd+ T-cell population

To further elucidate in which cell population the clonal cells

resided, PB MNC from 8 CML and 2 MPN control patients

(Table S2 and S3) were sorted with FACS into pure CD3+ cd+,

and CD3+ ab+ T-cell populations. For 3 patients, patient specific

(ASO)-primers were designed for the detection of clonal TCR c-

and d-gene rearrangements (Table S2 and S3) and for the rest of

the patients (n = 5) above described PCR protocol was used to

detect the site of the clonal population. In all CML and MPN

patients, a clonal TCR c/d rearrangement was observed within

CD3+ cd+ T-cell population. Example of one patient is shown in

figure 2. ab+ T-cell populations were negative with corresponding

primers.

To be able to see if these specific clonal TCR c- and d-gene

rearrangements were present in small quantities also in the cd+ T-

cell population in healthy controls, we enriched cd+ T-cells from 3

healthy volunteers by FACS. One healthy control showed a clonal

population. Of note, the clone was only detected in the purified

cd+ T-cell population; PCR done from MNC showed no clonal

product indicating that the amount of cd+ T-cell clone is less than

1% from the total MNC. In contrast, in CML patients the clone

was detected also in the whole MNC population. However, most

of the clones (confirmed by sequencing) were detected against a

strong polyclonal background, indicating that majority of cd+ T-

cells are polyclonal.

Increased amount of Vc9+ cells in patients who had
discontinued IFN-a therapy

As the majority of IFN-a treated patients had a distinct clonal

rearrangement detected with the same primer pair Vg2-Jg1.2 in

the cd+ T-cell populations and as it has previously been described

that this primer pair recognizes Vd2Jc9 T-cells [27], we wanted to

analyze the proportion of Vc9+ cells in CML (n = 9) and MPN

(n = 3) patients and in healthy controls (n = 5). The majority of cd+

T-cells both in patients and in healthy controls were Vc9+ cells

(median percentages for healthy 78%, IFN-ON 57%, and MPN

patients treated with IFN-a 62%)(figure 1F). Especially in patients

who had discontinued the therapy, nearly all (median percentage

92%) cd+ T-cells were Vc9+ cells (figure 1F).

CML patients treated with IFN-a have a distinct cytokine
profile compared to healthy volunteers

Plasma cytokine levels were analyzed with a multiplex bead-

based cytokine assay assay (LuminexH) measuring 25 different

cytokines. IP-10 (CXCL10), IL-6, IL-12, and MCP-1 (CCL2)

levels were significantly increased IFN-ON patients when

compared with healthy controls (figure 3). As it is known that

IFN-a therapy can induce most of these factors [28], it was

interesting to observe that also patients who had discontinued

IFN-a therapy over 2 years prior to sample collection had higher

IL-6, IL-12, IP-10, eotaxin (CCL11), and MCP-1 levels when

compared to healthy controls (comparisons between 2 groups were

done with Mann-Whitney U-test). Especially plasma eotaxin levels

were markedly increased in IFN-OFF group compared to healthy

volunteers (1173 and 427.7 pg/ml, respectively; p,0.0001).

However, no differences in eosinophil counts were detected (data

not shown). Similarly, MCP-1 levels differed markedly between

these 2 groups (631.5 vs. 106.5 pg/ml, p = 0.0003) but no

differences in monocyte counts were observed (data not shown).

In 4 MPN control patients treated with IFN-a, plasma eotaxin

and MCP-1 levels were at the same range as in healthy volunteers

(figure 3D–E).

Figure 2. Clonal Vc9 rearrangement in cd+ T-cells. Example of
Vd2Jc9 clonality detection in patient number 4 (Table 1). PCR with Vg2-
Jg1.2 primers was carried out on FACS sorted cell fractions and the
clonal products were identified by heteroduplex analysis. Lane 1, DNA
ladder; lane 2 ab+ T-cell fraction; lane 3 cd+ T-cell fraction; lane 4 pool of
healthy controls showing polyclonal smear; lane 5, water control. Clonal
PCR product in the cd+ T-cell fraction is shown with a white arrow.
doi:10.1371/journal.pone.0023022.g002
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T-cells from IFN-a treated patients express cytokine
receptors for eotaxin and MCP-1

To examine if cd+ and ab+ T-cells have corresponding

receptors (CCR2 and CCR3) for the cytokines (MCP-1 and

eotaxin, respectively) which were increased in both CML groups,

samples from IFN-ON (n = 4), IFN-OFF (n = 3), MPN control

patients (n = 3), and healthy volunteers (n = 5) were analyzed with

flow cytometry. Both T-cell subsets in all study groups expressed

these receptors, although the proportion of CCR2 and CCR3

positive cells were low (0.1%–8.0% of cd+ and ab+ T-cells).

Possible factors predicting persistent leukemia dormancy
after IFN-a discontinuation

Based on previous studies in patients with prolonged complete

remission on IFN-a therapy [23,24], we estimated that approx-

imately 50% of our IFN-ON patients could discontinue IFN-a
without imminent disease relapse. Therefore, we were interested to

see if it would be possible to find markers that could be used in

predicting which patients will relapse after IFN-a discontinuation

and which will remain in remission and in the state of leukemia

dormancy. A hypothetical variable, which would predict in the

IFN-ON group which patients can stop IFN-a, would need to

fulfill at least the following criteria: (1) IFN-ON median values of

the variable should be significantly different (higher or lower) from

IFN-OFF values and (2) IFN-ON values of the variable should

have approximately twice the variance of IFN-OFF values

(figure 4A).

After review of all the immunological variables analyzed in the

present study, both NK cell proportion from lymphocytes and

absolute NK-cell count best fulfilled the criteria for a predictor

variable for drug discontinuation. To characterize the IFN-ON

cohort in more detail we next divided the IFN-ON cohort into two

subgroups based on the median NK-cell count of 0.26109/L: the

high NK group (NK-cell count.0.2) constituting patients most

likely to remain in remission after IFN-a discontinuation, and the

low NK group (,0.2) (figure 4B).

There were no evident differences in the high or low NK

groups with regards to gender, duration of disease or IFN-a dose

used. A trend for older age and a higher proportion of Vc9+ cd+

and RO+ T-cells and lower CD4/CD8 ratio was observed in the

IFN-ON NK high and INF-OFF groups as compared to IFN-ON

NK low group (figure 4C–F). Clonal cd+ T-cells were more often

observed in the IFN-ON NK high (100%) and INF-OFF (75%)

groups as compared to IFN-ON NK low group (40%). Interes-

tingly, IP-10 levels were lower in the IFN-OFF as compared to the

IFN-ON NK low group with IFN-ON NK high patients showing

values in between (figure 4H). No differences in plasma eotaxin

levels were observed (figure 4G). However, the number of patients

is small and confirmatory studies with larger patient populations

are warranted.

Discussion

CML is considered to be one of the most susceptible

malignancies to immune manipulation. Results from allogeneic

Figure 3. Plasma IP-10, IL-6, IL-12, eotaxin, MCP-1, and IFN-c cytokine levels. Plasma levels of 25 cytokines were measured with a multiplex
bead-based cytokine assay (LuminexH) from healthy controls (n = 10), IFN-a-treated CML patients (IFN-ON, n = 10), and CML patients who had
discontinued IFN-a therapy (IFN-OFF, n = 9). Statistical significance of differences in continuous variables was assessed by a non-parametric analysis of
variance using the Kruskal-Wallis test (P-values reported in figures) and in case of a significant main effect, pairwise comparisons of patient groups
were calculated using Dunn’s multiple comparison test (statistically significant differences between groups are marked with asterisks and line). The
figures also include results from four patients with myeloproliferative neoplasm (MPN), but they were not included in the statistical analysis.
doi:10.1371/journal.pone.0023022.g003
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hematopoietic stem cell transplantation and donor lymphocyte

infusion therapies have shown remarkable, curative anti-leukemia

effects mediated by alloreactive cytotoxic lymphocytes [29].

Encouraging data from clinical trials with BCR-ABL1 peptide

vaccines confirm the clinical usefulness of provoking anti-CML

immune responses [30,31]. Several groups have recently reported

a favorable outcome for CML patients treated with imatinib in

combination with IFN-a, compared to patients on imatinib

monotherapy [9,10,11] Furthermore, IFN-a therapy may increase

the likelihood to stop treatment without relapse [5,12]. Most

patients who have successfully discontinued the therapy, still have

detectable minimal residual disease, but the disease is stable and

does not progress [23,24]. This implies that IFN-a therapy has

induced an immune response with currently unknown mecha-

nisms, which is able to keep tumor cells dormant.

In this study, we focused on determining the immunomodula-

tory effects of IFN-a in patients who had used the drug as

monotherapy with an excellent treatment response. As TKIs

currently have substituted IFN-a as a first line therapy, this group

of patients is quite unique. The heterogeneity of the studied patient

population considering IFN-a dose and treatment duration as well

as reasons why patients have stopped the treatment needs to be

taken into account when evaluating these results, but they also

represent well the real clinical situation. The tolerated and

effective dose of IFN-a varies greatly between individual patients.

However, a common denominator in our patient cohort is the long

lasting response to therapy, which can usually be achieved only in

a small minority of IFN-a treated patients. The IFN-a treatment

duration (median 11.8 years in IFN-ON group and 7.8 years in

IFN-OFF group) is also considerably long as well as time without

any treatment in IFN-OFF group (4.4 years) and therefore it is

unlikely that the possible earlier autologous transplantation plays a

major role in this setting.

Despite these limitations in the patient number, we were able to

recognize distinct factors correlated with prolonged IFN-a therapy

response even after discontinuation of the drug. One of these

factors was a shift in the lymphocyte profile in IFN-a treated

patients into a more cytotoxic direction. Significant increase of

CD8+ T-cells was observed in CML patients who were still on

IFN-a therapy. In patients, who had been able to discontinue

therapy, the NK-cell counts were significantly higher. From a

proportion of patients we were able to analyze follow-up samples

taken .12 months interval from the first sample and importantly,

there was not significant intra-individual variation in immuno-

profile between different time points. Both CD8+ T-cells and NK-

cells display cytotoxic effects on leukemia cells, which may play a

role in tumor surveillance. In CML, CD8+ T-cells have been

reported to recognize leukemic cells [32]. Furthermore, NK-cells

have been shown to be able to kill CD34+ CML stem cells, which

also may play a role in the graft vs. leukemia effect after allogeneic

transplantation [33],[34]. Of note, in our previous studies with

TKI treated patients, no increase of NK- or CD8+ T-cells was

observed in imatinib treated patients [35]. Interestingly though, a

proportion of dasatinib treated patients developed expansion of

CD8+ T-cells and/or NK-cells [35,36], which was associated with

superior therapy responses [36].

A number of previous studies have implicated that PR1 (a

peptide for proteinase-3) is an important tumor antigen for CTL

immune response against CML and that specific anti-PR1 T-cells

are involved in the elimination of CML cells [37,38]. In addition,

it has been suggested that induction of a PR1-specific CTL

response by IFN-a may contribute to improved molecular

response in patients treated with imatinib+IFN-a, and that these

patients could discontinue imatinib and continue IFN-a without

relapse [12]. PR-1 specific CTLs have also been reported to persist

in patients who do not relapse after IFN-a withdrawal [39]. In

concord, patients in our cohort also had PR1 specific T-cells

detectable in small quantities. No clear differences were found in

their amount between patients who were still on IFN-a treatment

or who had discontinued the therapy, but this could be also due to

small patient number studied.

As our previous report showed that oligoclonal, Ph-chromo-

some negative lymphocytes are common in CML patients at

diagnosis and during TKI therapy, we hypothesized that these

cells could also be found in IFN-a treated patients. Indeed, clonal

lymphocytes were observed in most (95%) IFN-a treated CML

patients. Strikingly, and in contrast to TKI-treated patients or

healthy controls, a unique rearrangement pattern was observed in

IFN-a treated CML patients. A total of 79% of the patients had a

clonal rearrangement detected with the same primer pair (Vg2-

Jg1.2) whereas during TKI therapy only 10–20% of the patients

displayed similar rearrangement [26] suggesting that this phe-

nomenon was associated with IFN-a therapy. It is however

uncertain whether this similar rearrangement pattern could be a

consequence of same antigen recognition, as no similarities could

be found in the specific junction region. Interestingly though,

further characterization of the cell populations revealed that the

clonal cells resided only in cd+ T-cell population. It is believed that

cd T-cell responses are driven more by imbalance in the host (e.g.

cell transformation and inflammation) than by specific pathogen

challenges, which could explain that there were no similarities in

the junction regions. One hypothesis propose that these cells can

directly recognize antigens in the tissue, including ‘‘stress antigens’’

that are markers of cell infection or transformation [40]. The role

of cd+ T-cells in tumor immunology has been disputable, and

there are only few reports of their importance in hematology [41].

In myeloma patients, activated Vc9Vd2 cells were able to kill

malignant plasma cells [42]. Also in acute leukemia, it has been

reported that Vc9Vd2 cells are increased, and that they are related

to better disease-free survival after bone marrow transplantation

[42]. In addition, one recent report in CML showed that ex vivo

expanded cd+ T-cells were able to kill K562 cells [43]. Our results

show for the first time that significant amounts of clonal cd+ T-

cells exist in CML patients who can be considered to be cured

(patients without the treatment) which suggests that these cells

possess protective, anti-leukemic properties in vivo in patients.

Cytokines are important mediators of immune cell signaling and

chemokines (chemotactic cytokines) induce directed chemotaxis in

nearby responsive cells. In our patient cohort we noticed that

levels of several cytokines and chemokines (IL-6, IL-12, IP-10,

eotaxin, MCP-1, and IFN-c) were increased in CML patients

treated with IFN-a. IFN-a therapy itself may increase plasma

Figure 4. Characteristics of a predictor variable for IFN-a discontinuation. A. Example of a hypothetical variable differentiating patients who
can stop IFN-a therapy (empty circle) from those who cannot in the IFN-ON group. B. NK-cell count as a potential predictor variable. The figure
presents absolute NK-cell numbers in different patient groups. Patients still using IFN-a therapy were divided in 2 groups based if their absolute NK-
cell count was above (IFN-ON NK-high) or below (IFN-OFF NK-low) 0.26109/l. C–H. Biomarker profile of NK-high and NK-low groups. Patients using
IFN-a therapy (IFN-ON) were divided in 2 groups based on the absolute NK-cell count in the peripheral blood. In NK-high group, the absolute NK-cell
count was above 0.26109/l and in NK-low group below the given limit. Other variables are presented based on the group division by NK-cell number
and IFN discontinued patients as a separate cohort (IFN-OFF).
doi:10.1371/journal.pone.0023022.g004
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concentration of some cytokines, such as IP-10 [28], but

interestingly, it remained at higher level in the IFN-a discontinued

subgroup as well. Saudemont et al have earlier shown that IP-10

provides protection against leukemia in mice. Mice vaccinated or

treated with IP-10 transduced cell lines survived leukemia

significantly better than controls, which was explained by

increased percentage of NK cells, activation of NK cells and

improved cytotoxicity of these cells [44]. These results are in

accordance with our results and IP-10 could provide an additional

mechanism of elimination of dormant tumor cells [44].

Especially eotaxin and MCP-1 levels were higher in the IFN-a
discontinued subgroup as compared to healthy volunteers. The

same trend was not seen in the control MPN patients included in

this study or in CML patients treated with dasatinib or imatinib

(A. Kreutzman, unpublished observations). Increased plasma

levels of MCP-1 (CCL2) signify the activation of Th1 type

immune response, whereas the presence of eotaxin (CCL11) is an

indication of Th2 type response. In line with this dichotomy,

patients continuing IFN-a therapy tend to have higher MCP-1

levels than patients who had discontinued therapy. Furthermore,

patients who had discontinued the therapy had higher eotaxin

levels, which may indicate a switch to a Th2 type response. Both of

these cytokines have been related to outcome of cancer patients.

Eosinophils secrete eotaxin in response to tumors [45] and high

MCP-1 levels are associated with a more favorable prognosis in

pancreatic cancer [46]. Our results also confirmed that cd+ T-cells

in IFN-a treated CML patients expressed corresponding cytokine

receptors (CCR2/MCP-1 and CCR3/eotaxin).

There is a growing interest to find biomarkers predicting which

patients could stop IFN-a or TKI therapy without disease relapse.

A recent case report suggested that patients who were able to

discontinue IFN-a treatment, had an increased amount of

CD8+CD45RO+ memory cells compared to patients who relapsed

after imatinib or IFN-a discontinuation [47]. Accordingly, in our

limited material, we observed elevated numbers of CD45RO+

CD3+ T-cells especially in the IFN-a discontinuation subgroup.

Similarly, in dasatinib treated CML patients we have earlier

reported that majority of CD8+ T-cells are CD45RO+ [35] and

this phenotype is related to better therapy outcome [26,36].

Mahon et al has recently reported that patients who discontinued

imatinib treatment without disease relapse belonged more often to

Sokal low risk group and had increased numbers of NK-cells at the

time of discontinuation (Mahon FX et al. Blood 2009 114:

Abstract 859). Similarly, in our IFN-a cohort, 85% of the patients

had low Sokal risk, and absolute and relative NK-cell numbers

seem to divide patients into 2 different groups. All patients who

had been able to discontinue the therapy had NK-cell counts

above 0.26109/L, whereas approximately half of the patients who

still used IFN-a therapy had values less than 0.26109/L.

Interestingly, patients in NK-high group also had more often

RO+ T-cells and clonal Vg9 cells thus further refining the

predictive immunoprofile. The biomarker profile described in this

paper could be a candidate profile when considering which

patients can discontinue the IFN-a treatment without imminent

disease relapse, yet the patient population studied is small.

Prospective clinical trials are needed to confirm its usefulness in

decision-making.

Taken together, our results show that IFN-a treatment induces

distinct changes in the immunoprofile of CML patients, which

may contribute to prolonged therapy responses in this unique

group of patients. The potent immunomodulatory effects observed

imply that IFN-a still may have a role in the future therapy

protocols aiming in permanent cure of CML.
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