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 Abstract - The supervisory control strategy set points for an 
existing HVAC system could be optimized using a two-objective 
evolutionary algorithm. The set points for the supply air 
temperature, the supply duct static pressure, the chilled water 
temperature, and the zone temperatures are the problem 
variables, while energy use and thermal comfort are the 
objective functions. Different evolutionary algorithm methods 
for two-objective optimization in HVAC systems are evaluated. 
It was concluded that controlled elitist non-dominated sorting 
genetic algorithms offer great potential for finding the Pareto-
optimal solutions of investigated problems. The results also 
showed that the on-line implementation of optimization process 
could save energy by 19.5%. The two-objective optimization 
could also help control daily energy use while bringing about 
further energy use savings as compared to a one-objective 
optimization.  

 

I. INTRODUCTION 

 The performance of the heating, ventilating, and air 
conditioning (HVAC) system can be improved through the 
optimization of the supervisory control strategy. The variable 
air volume (VAV) HVAC system control set points can be 
adjusted by the supervisor to maximize the overall operating 
efficiency. Most existing HVAC system processes are 
optimized at the local loop level; for example, in the existing 
HVAC system investigated in this paper, which is installed at 
the Montreal campus of the École de technologie supérieure 
(ÉTS), each local control of an individual subsystem is 
individually determined, thus leading to the poor performance. 
The global optimization of these set points can improve the 
overall operating efficiency. The set points that should be 
optimized could account for more than 60 variables. The high 
number of variable problems makes the traditional optimization 
methods require a sequential, and therefore computationally 
intensive, approach to find the optimal set of solutions [1]. In 
addition, since the optimization of a supervisor control 
strategy should be run on-line at a specific interval (e.g., 15 
minutes), the computation must be quite rapid. Using a two-
objective optimization algorithm, such as energy use and 
thermal comfort, could also provide an opportunity to control 
the thermal comfort and energy use according to the day or 

month, thereby bringing about further energy savings [2]. 
Thus, the optimization of a supervisory control strategy 
requires a set of solutions put through a single simulation run; 
in this case, the multi-criterion optimization method is required.  
From a large number of multi-objective optimization methods, 
Srinivas and Deb [3] investigated Goldberg’s notion of non-
dominated sorting in genetic algorithms to find multiple Pareto-
optimal points simultaneously. The results of this study 
showed that the non-dominated sorting genetic algorithm 
(NSGA) performs better than other investigated methods 
among three two-objective problems. Deb introduces an elitist 
non-dominated sorting genetic algorithm (NSGAII) [4]. The 
simulation results showed that the NSGAII performs better 
than nine other investigated methods. Therefore, the NSGA 
and NSGAII are selected and evaluated to solve the HVAC 
optimization problem. These evaluations are done using the 
simplified VAV model. However, the optimization of the 
existing HVAC system is conducted using the detailed and 
validated VAV model.  

II. OPTIMIZATION PROCESS  

The real-time, on-line optimization of the HVAC 
supervisory control strategy is investigated through the 
optimization of existing HVAC system set points. The air-
handling unit (AHU-6) of the existing HVA C systems at the 
ÉTS campus, which meets the load for 70 interior zones on the 
second floor, is studied. Fig. 1 shows the schematic diagram of 
this investigated HVAC system.  
 The performance of this system can be improved through 
the optimization of its supervisor control strategy. The 
“optimized supervisor” specifies the set points using the 
optimization process as shown in Fig. 2, which includes (i) the 
VAV model, (ii) the two-objective genetic algorithm 
optimization program, and (iii) three main tools, namely, data 
acquisition, indoor load prediction, and selection tools. The 
data acquisition tool receives and processes the on-line 
measured data. The load prediction tool predicts the sensible 
indoor loads for the optimization period using an on-line 
measured data of the previous period. Since a set of optimal 
solutions is obtained by using the two-objective optimization 
algorithm, the selection tool is used to select the appropriate 
solution in order to minimize daily energy use.  



 At each optimization period (e.g., 15 minutes), the genetic 
algorithm program sends the trial investigated controller set 
points to the VAV system model, where the energy use and 
thermal comfort (objective functions) are simulated and 
returned back to the GAP. The VAV model determines the 
energy use and thermal comfort resulting from the change in 
outdoor conditions and indoor loads (independent variables) 
and controller set points (dependent variables or problem 
variables). The independent variables (identified by index IV) 
are: the (i) the enthalpy of outdoor air (Ho)IV, (ii) the indoor 
sensible loads at each zone i (qsi)IV ,and (iii) the total load of 
the building (qt)IV. However, the dependent variables or 
problem variables (identified by index PV) are: (i) the zone 
temperatures (Tzi,)PV, (ii) the supply duct static pressure (Ps)PV, 
(iii) the supply air temperature (Ts)PV, and (iv) the chilled water 
supply temperature (Tw)PV. The optimization process shown in 
Fig. 2 was applied in the optimization calculations of the 
investigated existing HVAC system whose detailed component 
models were developed and validated against the monitored 
data [5].  
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Fig. 1 Schematic diagram of the existing HVAC system  
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Fig. 2 Optimization process including VAV model and optimization 
program.  

 

The results of this optimization are briefly presented in part B 
of chapter VI (Results and Discussion) of this paper. 
The goals of the two-objective optimization are: (i) to find 
solutions close to true Pareto-optimal solutions and (ii) to find 
solutions that are widely different from each other. To evaluate 
the candidate evolutionary algorithms, the solutions obtained 
should be compared with known Pareto-optimal solutions. For 
that reason, the VAV model was simplified in order to be able 
to predict the Pareto-optimal front. It was verified that the 
energy use (objective function) obtained by the simplified 
model is close to the energy use obtained by the detailed 
model. In addition, it should be noted that the thermal comfort 
(second objective function) is the same as in the detailed 
model.  

III. SIMPLIFIED VAV SYSTEM MODEL  

In order to evaluate different evolutionary algorithm 
methods, the water flow rate constraint and energy use 
calculations (first objective function), including the fan and 
chiller energy uses, are determined as follows.  

A. Fan energy use  
The fan energy use ( •

W f , kW) is calculated as a function of 

the fan airflow rate ( •
Qf , l/s) and total static pressure (fan 

efficiency equals 0.68). The total static pressure is equal to the 
static pressure set point ((Ps)PV, pa) plus the remaining duct 
pressure drop, which is a function of the fan airflow rate (sum 
of the zone airflow rates, •

Qz ). Applying existing system 

characteristics, the fan energy use is then given as:  
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B. Chiller energy use  
 The chiller energy is given by the following: 
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The outdoor air fraction in the supply air ? is determined using 
the standard economizer logic: 
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To simplify (3), the following assumptions are made: 
(i) The air leaving the cooling coil is saturated and 

its enthalpy (Hs) is calculated a function of 
supply air temperature (Ts)PV.  

(ii) The coefficient of chiller performance (COP) 
could be determined as: 
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where the PLR is the part load ratio, which is equal to the ratio 
of the cooling coil load (

•
Qc ) to the design load (722 kW). It is 

assumed in the equation above that the COP is increased by 
0.1 as the chilled water supply temperature (Tw)PV is increased 
by 1°C. It should be noted that the chilled water supply 
temperature is limited within [6-11].  
 

C. Water flow rate constraint  
 The water flow rate, which is used in the constraint 

verifications (11) presented below, could be determined as 
follows: 
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The water heat transfer coefficient at rating (hw,rate) of the 
investigated existing system is 200186 W/°C, and the water 
flow rate at rating (

rateQw
• ) is 33 l/s. The equation above is 

obtained by assuming that the water heat transfer coefficient 
(hw) is a function of the water flow rate ( •

Qw ) as follows: 
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IV PROBLEM FORMULATION 

 The optimization seeks to determine the set point values of 
the supervisory control strategy of the ÉTS system. These set 
points should be optimized for the energy use and the building 
thermal comfort. The optimization problem is formed by 
determining the problem variables, the constraints, and the 
objective functions. The problem variables are the zone 
temperatures (70 variables) set points, the supply duct static 
pressure, the supply air temperature, and the chilled water 
supply temperature. The resulting problem variables consist of 
73 variables. These variables should be determined on-line at 
each optimization period in order: (i) to reduce energy use, and 
(ii) to improve thermal comfort. During the optimization 
process, the chiller and fan energy uses are determined using 
the detailed and validated VAV component models. However, 
in order to evaluate the evolutionary algorithm methods, the 
energy use is calculated as the sum of the fan and chiller 
energy uses and using the simplifications presented above.  
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Using (1) and (3), the energy use (
•

W t ) can be determined at 
each independent variable (IV) and proposed problem variable 
(PV).  

The zone comfort is represented as the “Predicted Percentage 
of Dissatisfied” (PPD), and calculated using the following 
equation:  
 

)]PMV.PMV.(EXP[PPD 221790403353095100 ⋅+⋅−⋅−=    (9) 
 

The predicted mean vote (PMV) is an index devised to 
predict the mean response of a large group of people according 
to the ASHRAE thermal sensation scale. In a practical 
situation, the PMV values tabulated can be used to predict the 
performance of a VAV system for a combination of variables 
[6]. In this paper, the zone air velocity is assumed to be fixed at 
less than 0.1 m/s. The thermal comfort function is then a 
function of the zone temperatures (i.e., the PPD is equal to 5 for 
23.1°C and to 12 for 25°C). The two-objective functions and the 
constraints could then be represented as follows: 
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The function f1 is simplified by (1, 3, and 8) or detailed by the 
VAV model. The function f2 is determined by (9). The 
constraints result from restrictions on the operation of the 
HVAC system. They cover the lower and upper limits of 
problem variables: (i) the supply air temperature (13–18 °C), (ii) 
the zone air temperature (21–25 °C), (iii) the chilled water 
supply temperature (6–11 °C), and (iv) the static pressure (150–
250 Pa). The constraints also cover the design capacity of 
components. The fan airflow rate is restricted within the design 
( l/s 2300=

•

desQf ) and minimum limit (
desQf

•
⋅4.0 ). The zone airflow 

rates are also restricted within the maximum (
max

•

iQz ) and 

minimum limits, which are equal to 30% of design airflow rate 
(

desiQz
•

⋅3.0 ). The maximum limit could be determined as follows: 
 



des

PV
desii Ps

PsQzQz )(.,max,

••
=                                                  (12) 

 

The design static pressure (Psdes) of the investigated system is 
250 Pa and the design airflow rate at each zone i (

desiQz
• ) is 

known.  
 

V. OPTIMIZATION ALGORITHM 

A. Genetic algorithm 
 In this study, a genetic algorithm (GA) search method 
based on the mechanics of Darwin’s natural selection theory 
was developed in order to solve the optimization problem. 
Since energy use and thermal comfort are the objective 
functions, the multi-objective optimization must be 
investigated. In this paper, the NSGA and NSGAII are 
investigated and evaluated for solving the HVAC optimization 
problem.  
 The NSGAII uses the elite-preserving operator, which 
favors the elites of a population by giving them an opportunity 
to be directly carried over to the next generation. After two 
offspring are created using the crossover and mutation 
operators, they are compared with both of their parents to 
select two best solutions among the four parent-offspring 
solutions. The NSGAII employs the crowded tournament 
selection operator [6]. As a result of the constraint functions, a 
penalty must be imposed on the objective functions. The 
constraint violation is calculated using the penalty function 
approach. The penalty parameters are set at 100 and 5 for 
energy use and thermal comfort objective, respectively. The 
simulated binary crossover operator (SBX) is used here to 
create two offspring from two-parent solutions. The random 
simplest mutation operator is applied in order to randomly 
create a solution from the entire search space. 
 The NSGA uses both the non-dominated sorting strategy 
and the sharing strategy (niche method) before the 
reproduction operator. The crossover and mutation operators 
remain as usual (as in the NSGAII described above). The idea 
behind the non-dominated sorting procedure is that a ranking 
selection method is used to emphasize good solutions while a 
niche method is used to maintain stable subpopulations of 
good points.  

 

B. Comparison of two-objective optimization methods 
 Since many two-objective optimization methods are 
available, it is natural to ask witch of them performs better 
when compared to other algorithms on the investigated 
problem (HVAC problem). The performance of these 
optimization methods is evaluated through the HVAC problem 
presented in (10 and 11).  In these evaluations, the following 
two performance metrics are used: (i) metric evaluating the 
closeness to the Pareto-optimal front, and (ii) metric evaluating 
diversity among non-dominated solutions. In the first metric, 
the distances of the solutions obtained from the Pareto-optimal 
solutions are calculated and divided by the number of 

solutions. In the second one, the Spread metric [4] is used, 
considering the distance between neighboring solutions and 
extreme solutions located on the Pareto-optimal front.  
  
C. Pareto-optimal solutions 
 In order to compare the different optimization methods, the 
Pareto-optimal solutions, which vary with the independent 
variables, should be known. At each optimization period, the 
Pareto-optimal solutions corresponding to these independent 
variables (IV) are obtained. The optimal supply air temperature 
set point, which has the greatest effect on the energy use 
objective function, is at its minimum possible value while all 
constraints in (11) are respected. The optimal zone 
temperatures vary within the range [23.1 - 25°C]. The optimal 
static pressure should be at its lowest possible level while 
constraint 2 in (11) is respected. The optimal chilled water 
supply temperature is at its highest possible value while the 
water flow rate is less than 33 l/s, and constraint 4 in (11). 

VI. RESULTS AND DISCUSSION  

A. Comparison results  
 The comparison is achieved at three different optimization 
periods (summer, midseason, and winter), but only one summer 
day period is presented here. In this case, the enthalpy of 
outdoor air is assumed to be 71.25 kJ/kg (this corresponds to 
an outdoor temperature of 28°C and a relative humidity of 
70%). The fraction of outdoor air in the supply air (?) is 0.2. 
The NSGA and NSGAII program is executed for 100 
generations, with a population size of pz= 50, and with different 
parameters. The best parameters, which are: crossover 
probability pc=0.9 and distribution index ?c =4, mutation 
probability pm=0.04, and NSGA sharing value shareσ  0.15X, 

are only presented. Fig. 3 shows the optimal solutions 
obtained by NSGA after 100 generations, while Fig. 4 shows 
the optimal solutions obtained by NSGAII after 100 
generations. The Pareto-optimal solutions front is presented in 
the two figures. The spread and the distance are determined for 
two programs, as shown in Table 1. The NSGAII performs 
better for this HVAC problem with the parameters mentioned 
above. 
 If the initial solutions are not properly selected, premature 
convergence may occur. Assuming that all initial supply air 
temperatures values are higher than 14°C, with high 
exploitation, the crossover operator may not be able to find the 
new solution in the supply air temperature direction as shown 
in Fig. 5 and Fig. 6, and premature convergence is  observed. In 
order to overcome this problem, the mutation operator 
probability could be increased, but the good solutions 
obtained could be deteriorated. Deb proposes the NSGAII with 
a controlled elitist operator for better convergence [8]. By 
applying the controlled elitist operator, the NSGAII produces a 
better convergence and distribution of solutions. 
Fig. 7 shows the solutions obtained by a controlled elitist 
NSGAII. The true optimal solutions are found using a 
controlled elitist NSGAII with higher than 200 generations. The 



controlled NSGAII is therefore used to solve the investigated 
HVAC problem.  

 
Fig.3 Optimal solutions obtained by NSGA after 100 generations 

 

 
Fig.4 Optimal solutions obtained by NSGAII after 100 generations 

 

 
Fig.5 Search for optimal supply air temperature (13°C) in decision space 
using NSGAII, the crossover with low probability of mutation operator 

cannot find real optimal solution.  
 

TABLE I 
METRIC PERFORMANCE FO R INVESTIGATED GA METHODS 

Type  NSGAII NSGA 

Spread 0.4312 1.2651 
Distance 0.3465 0.7278 

 

B. Application results 
 The optimization process shown in Fig. 2 using the 
controlled elitist NSGAII is applied to the existing HVAC 
system. As mentioned earlier, the detailed and validated VAV 
model is used here. The actual  energy use was determined 
through monitoring data and appropriate validated models. To 
compare the optimal and actual  energy demands, only one 
solution for each optimization period was selected among the 
set of solutions considered. This solution has the same PPD as 
the PPD obtained from the monitored data. Fig. 8 shows this 
comparison of the actual and optimal energy demand for the 
same PPD on July 29, 2002. The energy demand of the 
optimized control strategy is less than that of the actual  one. 
The energy saved by optimization is 18.8% for July 29, and 
19.5% for July 25 to 31. 

 
Fig. 6 Search for optimal Pareto-optimal front in objective space using 
NSGAII when the initial solutions are not properly selected, and with 

low probability of mutation.  
 

 
Fig. 7 Search for optimal Pareto-optimal front in objective spaces using 
controlled NSGAII when the initial solutions are not properly selected, 

and with low probability of mutation 
The thermal comfort is presented in this study as the 

objective function, but the optimization problem could be 
solved by defining the thermal comfort criterion as the 
constraint. The only optimal solution would then be obtained, 
having a high PPD limit. The advantage of using a two-
objective scheme is to minimize daily energy use through the 



fluctuation of the building PPD during occupied periods, 
taking into account the required energy demand. 

This is achieved by using the selection tool, as shown in 
Fig. 2. For July 29, the energy demand is 43 kW for a PPD of 
9.8% and 46.4 kW for a PPD of 5.1% at 4:00 PM. To improve 
the thermal comfort from 9.8 to 5.1%, it needs 3.4 kW. However, 
in the morning, it needs only 1.6 kW. The optimal selection tool 
using the strategy described next selects a low PPD in the 
morning and a high one in the early afternoon. At each period, 
the selection tool selects the solution requiring the least 
energy use (extreme right solution in Fig. 7). The additional 
energy use required for improving the thermal comfort PPD 
from one selected solution to the next is determined and 
compared with the permission set point recorded by the 
operator in the selection tool (e kW/PPD). If this further energy 
use requirement is lower than the permission set point, the next 
solution will be selected; otherwise the first solution is, and so 
on, for all the solutions. This strategy could be applied only by 
using the two-objective problem, which ensures the evaluation 
of a set of optimal solutions at each run.  
 To evaluate the optimization results of the existing VAV 
system using the one-objective and the two-objective 
problems, different permission set point values are selected in 
the selection tool during occupied periods. Daily energy use 
and daily thermal comfort (PPD) are calculated and illustrated 
as a function of the permission set point in Fig. 9. The curves 
K and J represent optimal solutions using the two-objective 
and one-objective optimization algorithms, respectively. The 
2% energy use savings could be obtained using a two-
objective optimization algorithm as compared to the one-
objective optimization scheme applied to the same daily PPD. 
(11). 

VI. CONCLUSION  

 The supervisory control strategy set points are optimized 
using a two-objective genetic algorithm. The set points are 
optimized for existing HVAC systems.  The evolutionary 
algorithm program required in the optimization process is also 
selected and evaluated. These evaluations performed using the 
metrics evaluating closeness to the Pareto-optimal front and 
evaluating diversity among non-dominated solutions are 
realized with the simplified VAV model. The results of the 
evaluation of evolutionary algorithms show that the controlled 
NSGAII produces better convergence and distribution of 
optimal solutions located along the Pareto front. The 
optimization process using the controlled elitist NSGAII was 
applied to the existing HVAC system using the detailed VAV 
model. The energy demand of the optimized control strategy is 
less than that of the actual one by 19.5% for July 25 to 31. 
Other results indicate that the application of a two-objective 
optimization algorithm could help control daily energy use or 
daily building thermal comfort while providing further energy 
use savings as compared to the one-objective optimization 
approach. 
 

 
Fig.8 Actual and optimal energy demands for July 29, 2002 

 
Fig. 9 Optimal daily energy use obtained by two-objective selection tool 
(curve K) and one-objective optimization (curve J) for existing HVAC 

system 
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