A Trace Conjecture and Flag-Transitive Affine Planes

R. D. Baker
Department of Mathematics, West Virginia State College, Institute, West Virginia 25112-1000

G. L. Ebert
Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553

K. H. Leung
Department of Mathematics, University of Singapore, Kent Ridge, Singapore 119260

and

Q. Xiang
Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553

Communicated by the Managing Editors
Received April 12, 2000; published online May 10, 2001

For any odd prime power q, all $(q^2 - q + 1)$th roots of unity clearly lie in the extension field F_q of the Galois field F_q of q elements. It is easily shown that none of these roots of unity have trace -2, and the only such roots of trace -3 must be primitive cube roots of unity which do not belong to F_q. Here the trace is taken from F_q to F_q. Computer based searching verified that indeed -2 and possibly -3 were the only values omitted from the traces of these roots of unity for all odd $q < 200$. In this paper we show that this fact holds for all odd prime powers q. As an application, all odd order three-dimensional flag-transitive affine planes admitting a cyclic transitive action on the line at infinity are enumerated. © 2001 Academic Press

1 Research partially supported by NSA grant MDA 904-00-1-0029.
2 Research partially supported by NUS research grant RP 3982723.
3 Research partially supported by NSA grant MDA 904-99-1-0012. This author thanks Department of Mathematics, National University of Singapore for its hospitality during the time of this research.
1. INTRODUCTION

This article deals with a cyclotomic question in the Galois field \(\mathbb{F}_q^6 \) of order \(q^6 \), where \(q \) is any odd prime power. This question is motivated by the classification of certain flag-transitive affine planes. Our arguments will reduce the problem to showing the existence of some irreducible polynomial in \(\mathbb{F}_q[x] \). We denote the set of all nonzero squares of \(\mathbb{F}_q \) by \(\mathcal{O}_q \), the set of nonsquares by \(\mathcal{O}_q^* \), and the nonzero elements of \(\mathbb{F} \) by \(\mathbb{F}^* \). Let \(\text{Tr} \) be the trace from \(\mathbb{F}_q^6 \) to \(\mathbb{F}_q^4 \); that is, \(\text{Tr}(x) = x + x^q + x^{q^2} + x^{q^3} + x^{q^4} + x^{q^5} \) for \(x \in \mathbb{F}_q^6 \).

With the exception of the Lüneburg planes and the Hering plane, all known finite flag-transitive affine planes have a translation complement which contains a linear cyclic subgroup that either is transitive or has two equal-sized orbits on the line at infinity. Under a mild number-theoretic condition involving the order and dimension of the plane (see [5]), it can be shown that one of these actions must occur. We call flag-transitive planes of the first kind \(C \)-planes and those of the second kind \(H \)-planes.

Subject to the number-theoretic condition mentioned above, all odd order two-dimensional flag-transitive affine planes are \(H \)-planes, and these have been completely classified in [1]. In particular, there are precisely \(\frac{1}{2}(q - 1) \) such (nondesarguesian) planes of order \(q^2 \) for any odd prime \(q \).

In [2] it is shown that every odd order three-dimensional flag-transitive affine plane of type \(C \) arises from a “perfect” Baer subplane partition of \(PG(2, q^2) \). Perfect Baer subplane partitions by definition are an orbit of some Baer subplane under a Singer subgroup of order \(q^2 + 1 \). Moreover, in [3] it is shown that every perfect Baer subplane partition is equivalent to one which is an orbit of a Baer subplane which may be represented (as a root space in \(\mathbb{F}_q^6 \)) by a linearized polynomial of the form \(x^{q^2} + mx^{q^2} + nx + x \), where \(m \) and \(n \) are elements of \(\mathbb{F}_q^6 \) satisfying four conditions. The last condition says that \(t = mn^{q^{q^2}} + m^{q^2}n^{q^2} \) is an element of \(\mathbb{F}_q^6 \), other than \(-1\), which is not expressible as \(N_{\mathbb{F}_q^6/\mathbb{F}_q^2}(1 + u) \) for any \(u \in \mathbb{F}_q^6 \) with \(u^{q^2 - q + 1} = 1 \). Here \(N_{\mathbb{F}_q^6/\mathbb{F}_q^2} \) denotes the norm from \(\mathbb{F}_q^6 \) to \(\mathbb{F}_q^2 \), where one notes that \(N_{\mathbb{F}_q^6/\mathbb{F}_q^2}(1 + u) \in \mathbb{F}_q^2 \) whenever \(u^{q^2 - q + 1} = 1 \). The conjecture made in [3] was that for any odd prime power \(q \),

\[
\mathbb{F}_q \setminus \{ N_{\mathbb{F}_q^6/\mathbb{F}_q^2}(1 + u) \mid u^{q^2 - q + 1} = 1 \} = \begin{cases}
\{ 0 \} & \text{if } q \not\equiv 1 \pmod{3} \\
\{ 0, -1 \} & \text{if } q \equiv 1 \pmod{3}
\end{cases}
\]

Since the perfect Baer subplane partitions (and the resulting flag-transitive planes) corresponding to \(t = 0 \) are known, the proof of this conjecture would lead to a complete classification of three-dimensional odd order flag-transitive affine planes of type \(C \). Here we prove this conjecture.
It will suit our purposes to first reformulate the conjecture in terms of traces from \mathbb{F}_{q^6} to \mathbb{F}_q. If $u \in \mathbb{F}_{q^6}$ and $u^{q^2-1} = 1$, then $u^{q^2+1} = u^q$, $u^q = u^{-1}$, $u^{q^2} = u^{-q} = u^q$, and $u^{q^2-1} = u^{-1} = u^q$. Thus $N_{\mathbb{F}_{q^6}/\mathbb{F}_q}(1+u) = (1+u)^{q^2+1} = (1+u)(1+u^q)(1+u^{-q}) = 2 + \text{Tr}(u)$. Hence what we must show is that

$$\mathbb{F}_q \setminus \{\text{Tr}(u) | u^{q^2-1} = 1 \} = \begin{cases} \{-2\} & \text{if } q \not\equiv 1 \pmod{3} \\ \{-2, -3\} & \text{if } q \equiv 1 \pmod{3} \end{cases}$$

Our approach is based on the observation that any $u \in U = \{u \in \mathbb{F}_{q^6} | u^{q^2-1} = 1 \}$ which does not belong to the subfield \mathbb{F}_q has minimal polynomial $p(x)$ over \mathbb{F}_q which is irreducible, self-reciprocal, of degree 6, and has $-\text{Tr}(u)$ as the coefficient of x^5. Thus the value set in question can be studied by examining these irreducible polynomials. We actually work “backwards” by counting the number of irreducible cubics $f(x)$ over \mathbb{F}_q in a certain one parameter family, and then “lifting” each $f(x)$ to a degree 6 polynomial $p(x) = x^3 f(x + \frac{1}{x})$. This lifted polynomial will be monic, self-reciprocal, and irreducible over \mathbb{F}_q. The final step will be to show that $p(x)$ is, in fact, a minimal polynomial for an element of U. We end up showing not only that the values $\text{Tr}(u)$, for $u \in U$, cover $\mathbb{F}_q \setminus \{-2, -3\}$, but that in addition the coverage is very “uniform.” This depends upon early work of Hasse [6, 7], and thus we begin by reviewing quadratic characters.

2. QUADRATIC CHARACTER SUMS

In this section we collect a few facts about sums involving quadratic characters. Hence, let η denote the quadratic character of \mathbb{F}_q, so that

$$\eta(x) = \begin{cases} 1 & \text{if } x \in \mathbb{F}_q^* \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x \in \mathbb{F}_q \setminus \mathbb{F}_q^* \end{cases}$$

We begin with a well known result. All sums are over \mathbb{F}_q unless otherwise noted.

Proposition 1. Let q be an odd prime power and $f(x) = ax^2 + bx + c \in \mathbb{F}_q[x]$ with $a \neq 0$. Then

$$\sum_{x \in \mathbb{F}_q} \eta(ax^2 + bx + c) = \begin{cases} -\eta(a) & \text{if } b^2 - 4ac \neq 0 \\ (q-1) \eta(a) & \text{if } b^2 - 4ac = 0 \end{cases}.$$
Proof. The standard argument multiplies the sum by \(\eta(4a^2) = 1 \), distributing through \(\eta(4\alpha) \) and completing the square to get \(\eta(a) \sum \eta(y^2 - d) \), where we have replaced \(2ax + b \) by \(y \) and written \(d \) for \(b^2 - 4ac \). The case when \(d = 0 \) is clear. For \(d \neq 0 \) one counts the solutions of \(y^2 - d = z^2 \). This is easy once we rewrite this equation as \((y + z)(y - z) = d \), and observe that \(y \) is just the average of complementary divisors of \(d \).

The following result is a special case of the Hasse–Weil bound, first proved by Hasse [6, 7] (cf. [8, p. 1]) in 1936.

Theorem 2. Let \(q \) be a prime power, and let \(N \) be the number of solutions \((x, y) \in \mathbb{F}_q \times \mathbb{F}_q\) of the equation \(y^2 = f(x) \), where \(f(x) \in \mathbb{F}_q[x] \) is a polynomial of degree 4 with distinct roots. Then

\[
|N + 1 - q| \leq 2 \sqrt{q}.
\]

Stating this theorem in terms of quadratic character sums, we have

Corollary 3. Let \(q \) be an odd prime power, let \(f(x) \in \mathbb{F}_q[x] \) be a polynomial of degree 4 with distinct roots, and let \(\eta \) be the quadratic character of \(\mathbb{F}_q \). Then

\[
\left| 1 + \sum_{x \in \mathbb{F}_q} \eta(f(x)) \right| \leq 2 \sqrt{q}.
\]

Proof. Let \(N \) be the number of solutions \((x, y) \in \mathbb{F}_q \times \mathbb{F}_q\) of \(y^2 = f(x) \). Given \(x \), there are 0, 1, or 2 choices for \(y \) accordingly as \(f(x) \) belongs to \(\mathbb{F}_q \), \(\{0\} \), or \(\mathbb{F}_q \). Thus \(N = \sum_{x \in \mathbb{F}_q} (1 + \eta(f(x))) = q + \sum_{x \in \mathbb{F}_q} \eta(f(x)) \), and the corollary follows from Theorem 2.

We now state and prove a useful lemma about the number of irreducible cubic polynomials in a family of polynomials parameterized by the coefficient of \(x \).

Lemma 4. Let \(q \) be an odd prime power, \(a \in \mathbb{F}_q \) with \(a \neq -3 \) or \(-4 \), and set \(c = -(a + 4)^2 \). Let \(\mathcal{P} = \{ f(x) = x^3 + ax^2 + bx + c \mid b \in \mathbb{F}_q, \quad f(4) \in \mathbb{F}_q \} \), a family of cubic polynomials parameterized by the coefficient \(b \) of \(x \). Then \(\mathcal{P} \) contains \((q - 1)/2\) polynomials, of which at least \(\frac{1}{3}(q + 1 - 2 \sqrt{q}) \) but not more than \(\frac{1}{2}(q + 1 + 2 \sqrt{q}) \) are irreducible over \(\mathbb{F}_q \). In particular, \(\mathcal{P} \) contains at least one polynomial \(f(x) \) which is irreducible over \(\mathbb{F}_q \).

Proof. There are obviously \(q \) polynomials \(f(x) = x^3 + ax^2 + bx - (a + 4)^2 \) as \(b \) varies over \(\mathbb{F}_q \). With the restriction \(-f(4) = -(64 + 16a + 4b - (a + 4)^2) \in \mathbb{F}_q \), the number of choices for \(b \) (hence the number of \(f(x) \)) is reduced to \((q - 1)/2 \) since \(-f(4)\) is a linear expression in \(b \).
We consider the subset \mathcal{R}_0 of those polynomials which are reducible over \mathbb{F}_q. We wish to develop a character sum for the cardinality of \mathcal{R}_0. Let $f(x) \in \mathcal{R}_0$, and let $t \in \mathbb{F}_q$ be a root of $f(x)$. Since $f(0) = c \neq 0$, we know $t \neq 0$ and thus the equation $f(t) = 0$ can be solved for b to obtain

$$b = \left\lfloor \frac{t^2 + at + c}{t} \right\rfloor.$$

Since b is uniquely determined by t, any element of \mathbb{F}_q is a root of at most one polynomial of \mathcal{R}. Define the mapping $\phi: \mathbb{F}_q^* \to \mathbb{F}_q$ by $\phi(t) = -\left\lfloor \frac{t^2 + at + c}{t} \right\rfloor$. Using this expression for b, we compute

$$-f(4) = -\left\lfloor \frac{64 + 16a + 4b - (a + 4)^2}{(a + 4)^2} \right\rfloor = (a + 4)^2 - 16a - 64 + 4\left\lfloor \frac{t^2 + at - (a + 4)^2}{t} \right\rfloor = (t - 4)(4t + 4(a + 4) + (a + 4)^2)/t$$

$$= (t - 4)[4 + (a + 4)/t + (a + 4)^2/t^2] = (t - 4)[2 + (a + 4)/t]^2.$$

Thus we set $Q = \{ t \mid t(t - 4)[2 + (a + 4)/t]^2 \in \mathbb{Z}_q \}$, and observe that $\mathcal{R}_0 = \{ f(x) = x^3 + ax^2 + \phi(t)x + c \mid t \in Q \}$. Moreover, we have that every polynomial of \mathcal{R}_0 looks like $f(x) = (x - t)(x^2 + (a + t)x - c/t)$. In order to determine the number of polynomials in \mathcal{R}_0 we need to look at all roots of $f(x)$, and hence the possible roots of $h_1(x) = x^2 + (a + t)x - c/t = x^2 + (a + t)x + (a + 4)/t$. If $f(x) = (x - t)^3$, then we find $-2t = a + t$ and $t^2 = -c/t$, which imply $a^3 - 27c = a^3 + 27(a + 4)^3 = 0$. Since $a^3 + 27(a + 4)^3 = (a + 3)(a + 12)^2$, we have either $a = -3$, which we excluded, or $a = -12$. But the latter requires $t = 4$, whereas $4 \notin Q$. Hence $f(x)$ cannot have a root of multiplicity 3. Since $t \neq 0$ we can use the discriminant $\delta(t) = (a + t)^2 t^2 + 4tc = (a + t)^2 t^2 - 4t(a + 4)^2$ of $t \cdot h_1(x)$ to sort out any additional roots. Toward that end we observe that $\delta(t) = t(t - 4)[t^2 + (2a + 4) t + (a + 4)^2]$ and set $\delta_0(t) = t^2 + (2a + 4) t + (a + 4)^2$. Let $\gamma(t) = t(t - 4)$, so that $\delta(t) = \gamma(t) \delta_0(t)$. Since $\gamma(t) \in \mathbb{Z}_q$ for all $t \in Q$, it follows that the quadratic character of $\delta_0(t)$ is the opposite of that of $\delta(t)$ for all $t \in Q$. Note that t is the unique root of $f(x)$ if and only if $\delta(t) \in \mathbb{Z}_q$. If $\delta(t) = 0$, then $f(x)$ has a double root since $h_1(x)$ has a double root. Let $f(x) = (x - t_1)(x - t_2)^2$ be such a polynomial. Then $\delta(t_1) = 0$, and t_1 must be one of at most 2 roots of $\delta_0(t)$. On the other hand, $\delta(t_2) \in \mathbb{Z}_q$ since relative to this root $f(x)$ factors to leave $h_1(x) = (x - t_1)(x - t_3)$. Of course, if t is a root of an $f(x)$ with three distinct roots, then we also must have $\delta(t) \in \mathbb{Z}_q$. Hence we claim that the number of reducible polynomials is given by

$$|\mathcal{R}_0| = \sum_{t \in Q} \frac{1}{2} [2 - \eta(\delta(t))] = \sum_{t \in Q} \frac{1}{2} [2 + \eta(\delta_0(t))].$$
Those \(f(x) \) with a unique root get a value of \(\frac{2x+1}{x} = 1 \) from that root. Those \(f(x) \) with three distinct roots get a value of \(\frac{2x+1}{x} = 1 \) from each root, and hence a total of 1 as required. Finally, for \(f(x) = (x - t_1)(x - t_2)^2 \)
the root \(t_1 \) contributes \(\frac{2x+1}{x} = \frac{1}{3} \) while the root \(t_2 \) contributes \(\frac{2x+1}{x} = \frac{1}{4} \), and the total is again 1. In order to actually evaluate the sum we need to use the characteristic function for \(Q \) to convert to a sum over all of \(F_q \). But for \(t \neq 0, 4 \) or \(-\frac{a+4}{2}\), we have \(\eta(\gamma(t)) = -1 \) or 1 according as \(t \in Q \) or \(t \not\in Q \), so the characteristic function for \(Q \) viewed as a subset of \(F_q \) is just \(1 \). Therefore we have shown that

\[
|P_0| = \frac{1}{6} \sum_{t \in \mathbb{F}_q \setminus \{0, 4, -\frac{a+4}{2}\}} \left[1 - \eta(\gamma(t)) \right] \left[2 + \eta(\delta(t)) \right]
\]

In order to evaluate the sum with range \(\{0, 4, -\frac{a+4}{2}\} \) we compute that \(\gamma(4) = 0 \), \(\delta(0) = (a+4)^2 \), \(\delta(4) = (a+4)(a+12) \), and \(\gamma(-\frac{a+4}{2}) = \delta(-\frac{a+4}{2}) = \frac{1}{2}(a+4)(a+12) \). Thus, if \(a \neq 12 \), the sum is \(\frac{1}{6} [6] = 1 \). When \(a = 12 \), this sum has only two summands since \(-\frac{a+4}{2} = 4 \) and becomes \(\frac{1}{6} [5] = \frac{1}{6} \). Thus in either case the sum is given by the expression \(\frac{1}{6} [5 + \eta((a+12)^2)] \). Hence

\[
|P_0| = \frac{1}{6} \sum_{t \in \mathbb{F}_q} \left[1 - \eta(\gamma(t)) \right] \left[2 + \eta(\delta(t)) \right] - \frac{1}{6} [5 + \eta((a+12)^2)]
\]

By Proposition 1 we have that \(\sum \eta(\gamma(t)) \) and \(\sum \eta(\delta(t)) \) are both -1. In the special case \(a = -12 \), we observe that \(\delta(t) = t(t-4)^2(t-16) \). Again using Proposition 1 we have that \(\sum \eta(\delta(t)) = \sum \eta(t(t-16)) - \eta(-48) = -1 - \eta(-3) \). Substituting these values we obtain

\[
|P_0| = \begin{cases} \frac{q-2}{3} - \frac{1}{6} \left[1 + \sum_{t \in \mathbb{F}_q} \eta(\delta(t)) \right] & \text{for } a \neq -12 \\ \frac{q-2}{3} + \frac{1}{6} \left[1 + \eta(-3) \right] & \text{for } a = -12 \end{cases}
\]
By Theorem 3, since $\delta(t)$ has distinct roots for $a \neq -12$, we have $|1 + \sum \eta(t)| \leq 2q^{1/2}$. Therefore, after noting that the case $a = -12$ clearly satisfies $|1 + \eta(-3)| \leq 2q^{1/2}$, we conclude that

$$\frac{1}{2}(q - 2 - \sqrt{q}) \leq |\mathcal{B}_a| \leq \frac{1}{2}(q - 2 + \sqrt{q}).$$

Hence, we have that $|\mathcal{B}_a| < (q - 1)/2$, and $\mathcal{P} \setminus \mathcal{B}_a \neq \emptyset$. The bounds on $|\mathcal{P} \setminus \mathcal{B}_a|$ are just $\frac{1}{2}(q - 2 - \sqrt{q}) = \frac{1}{2}(q + 1 + 2\sqrt{q})$. The proof is complete.

3. SELF-RECIPOCAL POLYNOMIALS

In this section we will exploit the connection between a self-reciprocal degree 6 polynomial $p(x)$ and a naturally related cubic polynomial $f(x)$, thereby allowing us to establish the existence results we seek. First we translate Lemma 4 to the exact form required.

Lemma 5. Let q be an odd prime power. Then for every $a \in \mathbb{F}_q$, $a \neq 2$ or 3, there exists $b \in \mathbb{F}_q$ such that the polynomial $f(x) = x^3 + ax^2 + bx + (2b' + 4 - a^2)$ is irreducible over \mathbb{F}_q and $a^2 - 4(a' + b' + 3) \in \mathbb{F}_q$. Indeed, the number of such b' lies between $\frac{1}{2}(q + 1 - 2\sqrt{q})$ and $\frac{1}{2}(q + 1 + 2\sqrt{q})$.

Proof. Note that $f(x - 2) = x^3 + (a' - 6) x^2 + (b' - 4a' + 12) x - (a' - 2)x$. Let $a = a' - 6$, $b = b' - 4a' + 12$, and $c = -(a' - 2)$, as $a' \neq 2$ or 3, we have $a = a' - 6 \neq -4$ or -3. Also, $c = -(a + 4)^2$, and $a^2 - 4(a' + b' + 3) = -f(2) = -f(4 - 2)$. Thus, we may apply Lemma 4 to the polynomial $f(x - 2)$ to get the desired result.

The conditions of Lemma 5 that force $-f(2)$ and $-f(-2)$ to have opposite quadratic character are critical in showing the irreducibility of the associated degree 6 polynomial in the following lemma.

Lemma 6. Let q be an odd prime power. If $f(x) = x^3 + ax^2 + bx + (2b + 4 - a^2) \in \mathbb{F}_q[x]$ is irreducible over \mathbb{F}_q and $a^2 - 4(a + b + 3) \in \mathbb{F}_q$, then $p(x) = x^3 + ax^2 + (3 + b) x + (2a + 2b + 4 - a^2) x^3 + (2 + b) x^2 + ax + 1$ is a monic, self-reciprocal polynomial which is irreducible over \mathbb{F}_q. Moreover, there exists $u \in U = \{u \in \mathbb{F}_q^* \mid u^{q^2 - q + 1} = 1\}$ such that $p(x)$ is the minimal polynomial of u over \mathbb{F}_q.\[\]
Proof. Since \(p(0) = 1 \neq 0 \), any root \(u \) of \(p(x) \) is nonzero and must have \(u + \frac{1}{2} \) a root of \(f(x) \). Thus \(p(x) \) cannot have any roots in \(\mathbb{F}_q \) as the roots of \(f(x) \) lie in \(\mathbb{F}_q \backslash \mathbb{F}_q \). Thus it suffices to show that \(p(x) \) cannot factor as the product of two irreducible cubics in \(\mathbb{F}_q[x] \). Suppose to the contrary that \(r(x) = x^3 + r_2 x^2 + r_1 x + r_0 \in \mathbb{F}_q[x] \) is an irreducible cubic which divides \(p(x) \). Let \(u \) be a root of \(r(x) \). Hence \(u \in \mathbb{F}_q \) and \(u, u^q, u^{q^2} \) are the three distinct roots of \(r(x) \). Since \(p(x) \) is self-reciprocal, it follows that \(u^{-1} \) also is a root of \(p(x) \). If \(u^{-1} \) were \(u, u^q, \) or \(u^{q^2} \), then \(u^2 = 1 \) as \(2 \) is the gcd of \(q^3 - 1 \) and any one of \(2, q + 1, \) or \(q^2 + 1 \). But this implies \(u = \pm 1 \), an obvious contradiction. Thus the reciprocal polynomial \(r^*(x) = x^3 r \left(\frac{1}{x} \right) = r_0 x^3 + r_1 x^2 + r_2 x + 1 \) of \(r(x) \) must be its complementary factor, yielding the factorization \(p(x) = r(x) r^*(x) \) of an associate of \(p(x) \). Evaluation of the identity at \(0 \) shows \(c = r_0 \). Next evaluation at \(1 \) yields \(-r_0 \cdot \left(a^2 - 4a - 4b - 12 \right) = \left(r(1) \right)^2 \) as \(r^*(1) = r(1) \). Then evaluation at \(-1 \) yields \(r_0 (a - 2) = -\left[r(-1) \right]^2 \) since \(r^*(-1) = -r(1) \). If \(a = 2 \), then \(f(x) = (x + 2)(x^2 + b) \), contradicting the irreducibility of \(f(x) \). Thus \((a - 2)^2 \in \mathbb{F}_q \), forcing \(a^2 - 4(a + b + 3) \in \mathbb{F}_q \), a contradiction. Therefore \(p(x) \) is irreducible as claimed.

Let \(u \) be a root of \(p(x) \). Since \(p(x) \) is irreducible over \(\mathbb{F}_q \), we have \(u \in \mathbb{F}_q \backslash \mathbb{F}_q^2 \). Again, since \(p(x) \) is self-reciprocal, \(\frac{1}{2} \) is also a root of \(p(x) \). Hence \(u^{-1} \) is equal to one of \(u, u^q, u^{q^2} \). Rewriting \(u^{-1} = u^{q^2} \) as \(u^{q^2 + 1} = 1 \), we see that the choices \(u, u^q, \) or \(u^{q^2} \) would imply that the order of \(u \) divides \(q + 1 \), and hence \(u \in \mathbb{F}_q \), a contradiction. Similarly the choices \(u^q \) or \(u^{q^2} \) are not possible since \(u^{q^2 + 1} \in \mathbb{F}_q \) and hence either of these choices would force \(u \in \mathbb{F}_q^2 \). Thus we conclude that \(u^{q^2 + 1} = 1 \).

Now, it can be easily verified that \(\alpha = -\text{Tr}(u), \beta = \text{Tr}(u^{1+q}) + \text{Tr}(u^{1-q}) \) and

\[
2\beta + 4 - a^2 = -\text{Tr}(u^{1+q} + u^{1-q}) - (u^{1-q} + u^{-1+q} - u^{1-q}).
\]

Observe that \(a^2 = 6 + \text{Tr}(d^2) + \text{Tr}(u^{1+q}) + \text{Tr}(u^{1-q}) + \text{Tr}(u^{1+q^2}) + \text{Tr}(u^{1-q^2}) \). Substituting \(a^2 \), \(\alpha \) and \(\beta \) into Eq. (1), and noting that \(\text{Tr}(u^{1-q}) = \text{Tr}(u^{1+q}) \) and \(\text{Tr}(u^{1+q}) = \text{Tr}(u^{1-q}) \), we then get

\[
v + v^{-1} + \text{Tr}(u^{1+q} + u^{1-q}) - 2 - \text{Tr}(a^2) = 0,
\]

where \(v = u^{1-q} + u^{q^2} \). Using the definition of \(v \), we have \(u^{1+q} + u^{q^2} = u^{1-q} + u^{q^2} u^{2q} = u^{2q} \). Since \(v^{q-1} = 1 \), we see that \(\text{Tr}(u^{1+q} + u^{q^2}) = \text{Tr}(v^{-1} u^2) \). Write \(d = u^2 + u^{2q} + u^{2q^2} \), so that \(\text{Tr}(v^{-1} u^2) = v^{-1} d + \text{Tr}(u^{q^2} d) \). Hence, we obtain from Eq. (2) that

\[
v + v^{-1} + v^{-1} d + \text{Tr}(u^{q^2} d) - 2 - d = (v - 1) [\text{Tr}(1 + d^q) - (1 + d)] / v = 0.
\]

If \(v = 1 \), then \(u \in U \) and we are done.
Suppose \(v \neq 1 \). Then \(r(1 + d^q) - (1 + d) = 0 \). We will deduce a contradiction. Note that \(\gcd(1 + q, 1 - q + q^2) = \gcd(3, 1 + q) \). So if we let \(3^r \mid (1 + q) \), then \(c > 0 \) if and only if \(q \equiv 2 \pmod{3} \). Let

\[
U' = \{ x \in F_q \mid x^{3^r(1 - q + q^2)} = 1 \} \quad \text{and} \quad R = \{ x \in F_q \mid x^{(1 + q)^r} = 1 \}.
\]

As \(u^{1 + q^2} = 1 \), there exist \(t \in R \) and \(y \in U' \) such that \(u = ty \). Note that \(v = u^{1 - q + q^2} = t^3s \) where \(s \) is an element such that \(s^3 = 1 \). In fact, \(s = y^{1 - q + q^2} \) and \(s^{q + 1} = 1 \). Hence, the equation \(r(1 + d^q) - (1 + d) = 0 \) becomes \(t^3 - s^{-1}d + t^3d^q - s^{-1} = 0 \). Let \(w = s^{-1}y^2 \). Now

\[
d = (ty)^2 + (ty)^2q^2 + (ty)^2q^4
\]

\[
= t^2(y^2 + y^{2q^2} + y^{2q^4})
\]

\[
= t^2(s(w + w^q + w^q^2)).
\]

Moreover, as \(y^{2(1 - q + q^2)} = s^2 \), \(y^{2(1 + q^2)} = s^2y^{2q^2} \). we see that

\[
d^q = t^{-2}(y^{2q^2} + y^{2q^4} + y^{2q^6})
\]

\[
= t^{-2}s^{-2}(y^{2q^2} + y^{2q^4} + y^{2q^6} + y^{2q^8} + y^{2q^9} + y^{2q^{10}})
\]

\[
= t^{-2}(w^{1+q} + w^{1+q^2} + w^{1+q^4} + w^{1+q^8} + w^{1+q^{10}}).
\]

Finally,

\[
w^{1+q^2} + w^{1+q^4} + w^{1+q^8} + w^{1+q^{10}} = s^{-3}(y^{1-q+q^2} + y^{2q^2} + 2q^2 = s^{-3}y^{2(1+q+q^2)} = s^{-1}.
\]

Substituting \(d \) and \(d^q \) into the equation \(t^3 - s^{-1}d + t^3d^q - s^{-1} = 0 \), we obtain

\[
i^3 - t^2(w + w^q + w^q^2) + t(w^1 + w^q + w^q^2 + w^q^3 + w^q^4 + w^q^5 + w^q^6 + w^q^7 + w^q^9)
\]

\[
= w^{1+q^2} + w^{1+q^4} + w^{1+q^8} + w^{1+q^{10}}.
\]

(3)

Obviously, the only solutions for \(t \) satisfying Eq. (3) are \(w, w^q \) and \(w^q^2 \). Recalling that \(w = s^{-1}y^2 = y^{1+q+q^2} \), \(y \in U' \) and \(t \in R \), straightforward gcd computations show that any of the above three choices for \(t \) yield \(y \neq 1 \), \(t = 1 \), and thus \(u = ty = 1 \). This is a contradiction since \(u \neq 1 \). Therefore \(v = 1 \) and \(u \in U \). The proof is complete. \(\square \)

4. THE TRACES

We now prove the main theorem on the traces of the \((q^2 - q + 1)\)th roots of unity.
Theorem 7. Let q be an odd prime power. For any $s \in \mathbb{F}_q$, $s \neq -2$, or -3, there exists $u \in U = \{u \in \mathbb{F}_q | u^{q^2-q+1} = 1\}$ such that $\text{Tr}(u) = u + u^q + u^{q^2} + u^{q^3} = s$. In fact,

$$q + 1 - 2\sqrt{q} \leq |\{u \in U | \text{Tr}(u) = s\}| \leq q + 1 + 2\sqrt{q}.$$

Proof. For $s \neq 6$, the inequalities come directly from Lemma 5 and Lemma 6. There are six u’s for each of the $(q-1)/2 - |\mathbb{F}_q|$ irreducible polynomials. For $s = 6$ we must remember to add in the case of $u = 1$, but in this case the number of polynomials $p(x)$ is $\frac{1}{2}(q - q(-3))$ (about the midpoint of the interval of values), and the result also holds here. \[\square \]

The bounds on $|\{u \in U | \text{Tr}(u) = s\}|$ found in Theorem 7 are known to be sharp for all small q in the following sense: For every integer N between $\frac{1}{2}(q + 1 - 2\sqrt{q})$ and $\frac{1}{2}(q + 1 + 2\sqrt{q})$ there exists an $a \neq 2, 3$ such that the number of polynomials $p(x)$ is exactly N. Hence with $s = a$ we have $|\{u \in U | \text{Tr}(u) = s\}| = 6N$. This has been verified with the computational software package MAGMA [4] for all odd prime powers $q \leq 100$.

5. CONCLUSION

In the discussion after Theorem 4.2 in [3] it is shown that $-2 \in \mathbb{F}_q \setminus \{\text{Tr}(u) | u \in U\}$ for all odd prime powers q, and $-3 \in \mathbb{F}_q \setminus \{\text{Tr}(u) | u \in U\}$ if $q \equiv 1$ (mod 3). Moreover, $\text{Tr}(1) = 6 = -3$ if $q \equiv 0$ (mod 3), while $\text{Tr}(u) = -3$ for any primitive cube root of unity $u \in U$ when $q \equiv 2$ (mod 3). To see the latter fact, simply observe that $u^{q^3} + u = u^{q+1} + u = u^2 + u = -1$ if $o(u) = 3$, and such elements u exist in U precisely when $q \equiv 2$ (mod 3). Thus Theorem 7 shows that the conjecture stated in [3] is true, and hence all odd order three-dimensional flag-transitive affine planes of type C are known (see Theorem 5.1 of [3]). In particular, if the order of such planes is q^3, where q is an odd prime, then the number of isomorphism classes is precisely $\frac{1}{2}(q - 1)$, the same as the number of two-dimensional flag-transitive affine planes of type H with order q^2 for odd primes q. It should be noted that in the three-dimensional case there are known examples of odd order planes of type H and even order planes of type C, but enumerating these planes would require different techniques.

REFERENCES