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Abstract

A mathematical model for electrically conducting flow of Herschel-Bulkley fluid through a uniform tube
of multiple stenoses has been studied. Analytical solutions of resistance to the flow and wall shear stress have
been calculated. It is found that the resistance to the flow increases with the heights of the stenoses, power
law index, volumetric flow rate, radius of the plug core-region and yield stress, but decreases with induced
magnetic field and shear stress. It is also observed that the wall shear stress is increasing with the heights of
the stenoses and radius of the plug core-region.
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1 Introduction

Diseases in the blood vessels and in the heart, such as heart attacks and strokes, are the major mortality
worldwide. The underlying cause for these events is the formation of lesions, known as atherosclerosis. These
lesions and plaques can grow and occlude the artery and hence prevent blood supply to the distal bed. Plaques
with calcium in them can also rupture and initiate formation of blood clots (thrombus). The clots can form as
emboli and occlude the smaller vessels that can also result in interruption of blood supply to the distal bed.
Plaques formed in coronary arteries can lead to heart attacks and clots in the risk factors for the presence of
atherosclerotic lesions.

Hence the formation of stenosis/ atherosclerosis is found to be largely responsible for the cause of several
vascular diseases. Thus a proper knowledge of the flow characteristics of blood in such blood vessels may
lead to better understanding of the development of these diseases. This in turn may help in proper diagnosis
of such diseases and design and development of improvised artificial organs.

In view of this, a number of researchers have studied different aspects of blood flow analysis in arteries.
Young [1], Lee and Fung [2],Padmanabhan [3] have studied the flow of blood in stenosed artery by considering
blood as a Newtonian fluid. Blood behaves cerebral circulation can result in a stroke. There are number of
differently when flowing in large vessels, in which Newtonian behavior is expected and in small vessels
where non-Newtonian effects appear Buchanan et al.[4], Mandal[5],Ismail et al. [6], Radhakrishnamacharya
[7]. In small vessels blood behaves like a Herschel-Bulkley fluid rather than Power law and Bingham fluids
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Chaturani and Samy [8]. But the blood can be regarded as magnetic fluid in which red blood cells are magnetic
in nature. Liquid carries in the blood contain magnetic suspension of the particle Tzirtzilakis [9].

The MHD principles may be used to de accelerate the flow of blood in a human arterial system and is useful
in the treatment of certain cardiovascular disorders and in the diseases which accelerate blood circulation like
hemorrhage and hypertension etc. Das and Saha [10].

The effect of magnetic field on blood flow has been analyzed by treating blood as an electrically conductive
fluid Chen [11]. Ogulua and Abbey [12] studied the effects of heat and magnetic field on blood through
constricted artery. Shaw et al. [13] have shown the influence of the externally imposed body acceleration
on the flow of blood through an asymmetric stenosed artery by considering blood as Casson fluid. Bali and
Awasti [14] Studied the effect of an externally applied uniform magnetic field on the multi-stenosed artery.
Sankar and Lee [15] have shown the effect of magnetic field in the pulsatile flow of blood through narrow
arteries treating blood as Casson fluid. Recently Lokendra Pramar et al. [16] studied the role of magnetic field
intensity through overlapping stenosis. Bhargva et al. [17] Showed that the magnetic field can be used as a
flow control mechanism in medical applications.

With this motivation, a mathematical model on the effect of magnetic field on Herschel-Bulkley fluid
through a uniform tube with two stenoses is developed. Expressions for the velocity, resistance to the flow
and wall shear stress have been calculated by assuming that the stenosis to be mild. The effects of various
parameters on these variables have been investigated

2 Mathematical Formulation

Consider the steady flow of an electrically conducting Herschel Bulkley fluid through a tube of uniform cross
section with two stenoses. Assuming that the flow is axi-symmetric and the stenosis over a length of the artery
have been developed in axi-symmetric manner. Let the length of the tube is L, the magnitude of the distance
along the artery over which the stenosis is spread out be Li, the locations of the stenosis be indicated by di and
the maximum heights of the stenosis δi (where i=1,2). Here we consider the transverse magnetic field since
the bio-magnetic fluid (blood) is subjected to a magnetic field. The schematic diagram is shown in Figure -1.
The cylindrical polar coordinates (z,r,θ) is chosen so that the z -axis coincides with the axis of the tube

The radius of the cylindrical tube is given as

h =
R
(
z
)

R0
=
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1− δ1
2
(
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L1

(
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Where R(z) is the radius of the tube with stenosis ,R0(z) is the radius of the tube without stenosis, ro is the
radius of the plug flow region.
The basic momentum equation governing the flow is (Rekha Bali et al. [13])

− ∂p
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+
1
r

∂
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(
rτrz
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+ µ0M

(∂H
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= 0 (2.2)

Where τrz is the shear stress for Herschel Bulkley fluid, is given by

τrz =
(−∂u

∂r
)n

+ τ0, if τrz ≥ τ0 (2.3)

∂u
∂r

= 0, i f τrz < τ0 (2.4)

where r, z denote the radial and axial coordinates respectively, µ0 magnetic permeability, M magnetization,
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H magnetic field intensity, p pressure,u is the velocity of the fluid, τrz stress,τ0 yield stress.

When τrz < τ0 i.e. the shear stress is less than yield stress, there is a core region which flows as a plug
(FIG.1), and Eq. (2.4) corresponds to vanishing velocity gradient in that region. However the fluid behavior
is indicated whenever τrz > τ0.
The boundary conditions are

τrz is f inite at r = 0 (2.5)

u = 0, at r = h
(
z
)

(2.6)

Introducing the following non-dimensional quantities

z =
z
L

, δ =
δ

R0
, R
(
z
)
=

R
(
z
)

R0
, P =

P
µUL/R2

0
, τ0 =

τ0

µ
(
U/R0

) , τrz =
τrz

µ
(
U/R0

) , Q =
Q(

πR2
0U
) , H =

H
H0

(2.1)

Where H0 is external transerverse uniform constant magnetic field.
Using the non-dimensional scheme the governing equations from (2.1)-(2.6) can be written as

The radius of the cylindrical tube is given as
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Where

τrz =
(−∂u

∂r
)n
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∂u
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= 0, i f τrz < τ0 (2.9)

The following restrictions for mild stenoses (MARUTHI PRASAD et al. [7]), are supposed to be satisfied.

δi � min(R0, Rout)

δi � Li,

where Rout=R(z) at z = L
Here Li,δi (i=1, 2) are the lengths and maximum heights of the two stenoses. (The suffixes 1 and 2 refer to the
first and second stenosis respectively).
The boundary conditions (2.5) and (2.6) becomes

τrzis f initeatr = 0 (2.10)

u = 0, atr = h(z) (2.11)
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3 Solution

The solution of equation (2.8) under the boundary conditions (2.10) and (2.11), the velocity is obtained as
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n Using the boundary condition (2.9), the upper limit of the plug flow
region (i.e. the region 0 ≤ r ≤ r0 ) for which τrz < τ0 is obtained as
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Taking r=r0 in Eq. (3.1), the plug core velocity
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The volume flow rate is defined by
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When k=1,H=0 and τ0 → 0 Eq. (3.8) reduces to the results of YOUNG [1] .
The pressure drop ∆p across the stenosis between z=0 to z=1 is obtained by integrating Eq. (3.8), as
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The resistance to the flow,λ, is defined by
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the pressure drop in the absence of stenosis (h=1) is denoted by ∆PN , is obtained from Eq. (3.9).
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The resistance to the flow in the absence of stenosis is denoted by λN is obtained from Eq. (3.10) as

λN =
∆PN

Q
=

1
Q

∫ 1

0

( 2Q
1
k [
(
k + 1

)(
k + 2

)(
k + 3

)
]

1
k{(

k + 2
)(

k + 3
)(

1− r0
)k+1 − 2

(
k + 3

)(
1− r0

)k+2
+ 2(1− r0)k+3

} 1
k
+ F

)
dz (3.12)

The normalized resistance to the flow denoted by

λ =
λ

λN
(3.13)

And the wall shear stress
τh =

h
2

dp
dz

(3.14)

4 Results

The expressions for velocity (u), core velocity(up), volumetric flow rate (Q) ,resistance to the flow (λ) and
wall shear stress(τh)are given by the equations (3.1,3.4,3.6,3.13,3.14). The effects of various parameters on the
resistance to the flow ((λ)) , wall shear stress (τh) have been computed numerically by using mathematica 8.1
and results are shown graphically in Fig.2-14, by taking d1=0.2,d2=0.6,L1=L2=0.2,L=1.

It is observed that the resistance to the flow increases with the heights of the stenosis (δ1,δ2) (fig.2-10).It can
be seen from the fig 2-3 that, the resistance to the flow increases with the power law index (k=1/n) along with
the heights of the primary and secondary stenosis (δ1,δ2).It is interesting to note that the increase in resistance
is significant only when the height of the second stenosis exceeds the value 0.02.

From, Fig.7 & 8 it is observed that the resistance to the flow increases with volumetric flow rate (Q), radius
of plug core region (r0) (Fig.9 & 10) and yield stress (τ0) (Fig.11).

It is interesting to observed that the resistance to the flow decreases with the increase of the magnetic
field (H) (Figs.4 & 5), and it is also seen that resistance to the flow is more in non-Newtonian fluid than the
Newtonian fluid (Fig.6).

The effects various parameters on shear stress are shown in (Figs. 12-14). It is noted that the wall shear
stress is increasing with the heights of the stenoses and the radius of the plug-core region.

5 Conclusion

A mathematical model for electrically conducting flow of Herschel-Bulkley fluid through a uniform tube of
multiple stenoses has been studied. It is observed that the resistance to the flow increases with the heights
of the stenoses, power law index, volumetric flow rate, radius of the plug core-region and yield stress, but
decreases with induced magnetic field and shear stress. It is also observed that the wall shear stress is
increasing with the heights of the stenoses and radius of the plug core-region.

Figure 1: Schematic diagram of multiple stenosed artery
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Figure 2: Variation of impedance λ with δ2 for different k (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,Q=0.1,δ1=0.0,r0=0.2)

Figure 3: Variation of impedance λ with δ2 for different k (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,Q=0.1,δ1=0.01,r0=0.2)

Figure 4: Variation of impedance λ with δ2 for different H (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,Q=0.1,k=2,δ1=0.0,r0=0.2)
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Figure 5: Variation of impedance λ with δ2 for different H (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,Q=0.1,k=2,δ1=0.01,r0=0.2)

Figure 6: Comparison of magnetic field effect on Newtonian and non-Newtonian fluids.
(d1=0.2,d2=0.6,L1=L2=0.2,L=1,Q=0.1,H=0.2,δ1=0.01)

Figure 7: Variation of impedance λ with δ2 for different Q (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,r0=0.2,δ1=0.0)
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Figure 8: Variation of impedance λ with δ2 for different Q (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,r0=0.2,δ1=0.01)

Figure 9: Variation of impedance λ with δ2 for different r0 (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,δ1=0.0,Q=0.1)

Figure 10: Variation of impedance λ with δ2 for different r0 (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,δ1=0.01,Q=0.1)
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Figure 11: Variation of impedance λ with δ2 for different τ0 (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,δ1=0.0,Q=0.1,τh=1)

Figure 12: Variation of impedance λ with δ1 for different τh (d1=0.2,d2=0.6,H=0.2,L1=L2=0.2,L=1,k=2,δ2=0.0,Q=0.1,τ0=1)

Figure 13: Variation of wall shear stress τh with δ1 for different δ2 (r0=0.02,k=2,Q=0.01)
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Figure 14: Variation of wall shear stress τh with r0 for different δ1 (δ2=0.1,k=2,Q=0.01)
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