Real-Time GPS Precise Point Positioning-Based Precipitable Water Vapor Estimation for Rainfall Monitoring and Forecasting

Junbo Shi, Chaoqian Xu, Jiming Guo, and Yang Gao

Abstract—GPS-based precipitable water vapor (PWV) estimation has been proven as a cost-effective approach for numerical weather prediction. Most previous efforts focus on the performance evaluation of post-processed GPS-derived PWV estimates using International GNSS Service (IGS) satellite products with at least 3–9-h latency. However, the suggested timeliness for meteorological nowcasting is 5–30 min. Therefore, the latency has limited the GPS-based PWV estimation in real-time meteorological nowcasting. The limitation has been overcome since April 2013 when IGS released real-time GPS orbit and clock products. This becomes the focus of this paper, which investigates real-time GPS precise point positioning (PPP)-based PWV estimation and its potential for rainfall monitoring and forecasting. This paper first evaluates the accuracy of IGS CLK90 real-time orbit and clock products. Root-mean-square (RMS) errors of < 5 cm and ~0.6 ns are revealed for real-time orbit and clock products, respectively, during July 4–10, 2013. Second, the real-time GPS PPP-derived PWV values obtained at IGS station WUHN are compared with the post-processed counterparts. The RMS difference of 2.4 mm has been identified with a correlation coefficient of 0.99. Third, two case studies, including a severe rainfall event and a series of moderate rainfall events, have been presented. The agreement between the real-time GPS PPP-derived PWV and ground rainfall records indicates the feasibility of real-time GPS PPP-derived PWV for rainfall monitoring. Moreover, the significantly reduced latency demonstrates a promising perspective of real-time GPS PPP-based PWV estimation as an enhancement to existing forecasting systems for rainfall forecasting.

Index Terms—Precipitable water vapor (PWV), rainfall monitoring and forecasting, real-time orbit and clock correction, real-time precise point positioning (PPP).

I. INTRODUCTION

Since the introduction of global positioning system (GPS) meteorology in 1990s [1]–[4], GPS has been recognized as a cost-effective approach to determine precipitable water vapor (PWV) contents. Along with other meteorological sensors, GPS is able to provide PWV estimates with 1–3-mm root-mean-square (RMS) accuracy with respect to traditional atmosphere sensing techniques such as the radiosonde and the microwave radiometer (MWR) [5]–[10]. With the rapid deployment of GPS monitoring stations in local, regional, and global scales in recent years, ground-based GPS meteorology can offer much improved spatial and temporal resolutions for local or regional water vapor variations than the traditional techniques based on MWR and radiosonde observations.

Most GPS-based PWV systems to date rely on double-difference processing of GPS observations, e.g., Liou and Huang [11], Liou et al. [12], de Haan et al. [13], and Wang et al. [14]. There are some limitations for double-difference methods, such as they require the distance between GPS stations not less than 500 km and an absolute PWV value at one station in order to obtain the absolute PWV values at the other stations [3]. GPS PWV systems based on the processing of GPS undifferenced observations, known as precise point positioning (PPP), have been widely used in recent years since they can estimate absolute PWV with a single receiver [15]. Shoji [16] and Sato et al. [17] estimated PWV values based on the PPP technique using local and national GPS networks. Chiang et al. [18] and Choy et al. [19] utilized the GPS PPP-based PWV estimation approach to monitor typhoons and storms.

Although GPS PPP has the ability to provide high-precision PWV estimates, how to reduce the latency of GPS PPP-based PWV estimation remains a challenge. Several local and regional GPS networks have been employed to conduct near real-time PWV estimation using the International Global Navigation Satellite System (GNSS) Service (IGS) ultrarapid (IGU) orbit and clock products [16], [20]–[23]. However, the predicted IGU products suffer a latency of 3–9 h [24], which prevents the GPS PPP-based PWV estimation from real-time weather monitoring and nowcasting applications. To overcome the latency issue, IGS initiated the real-time pilot project with the infrastructure of real-time GNSS data streams on a global basis in 2007. After six years of experimental tests, IGS officially announced the real-time service (RTS) on April 1, 2013, which provides GPS real-time orbit and clock corrections to support real-time PPP at a global scale [25].

Most real-time PPP efforts so far are made with respect to positioning applications [26]–[31]. Limited work has been
reported on the use of real-time PPP for troposphere parameter estimation, particularly for weather forecasting applications. Liu and Li reported a PWV accuracy value of 2.2 mm using the predicted IGU orbits and the real-time clocks calculated by Wuhan University [32]. Pacione and Soehne compared zenith total delay (ZTD) estimates using IGS combined and individual orbit and clock corrections, respectively, and the ZTD consistency was identified [33]. Li et al. adopted the Helmholtz Centre Potsdam GeoForschungsZentrum’s (GFZ) real-time orbit and clock corrections to conduct ambiguity-resolved PPP water vapor estimation with an accuracy value of 1.0–2.0 mm [34]. However, no efforts have been made to study the correlation between real-time GPS PPP-derived PWV values and the rainfall event. This becomes the focus of this paper, which investigates the potential of real-time GPS PPP-based PWV estimation using real-time orbit and clock products for rainfall monitoring. This paper will be organized as follows. Section II describes the mathematics for the real-time GPS PPP-based PWV estimation. Section III first carries out the accuracy assessment between real-time GPS PPP-derived PWV values and the rainfall event. This becomes the focus of this paper, which investigates the potential of real-time GPS PPP-based PWV estimation using real-time orbit and clock corrections to conduct ambiguity-resolved PPP water vapor estimation with an accuracy value of 1.0–2.0 mm [34].

II. PWV RETRIEVAL

The troposphere delay effect on GPS signals can be divided into a hydrostatic part and a wet part by

\[ZTD = ZHD + ZWD \]

where ZTD is the zenith total delay, ZHD is the zenith hydrostatic delay, and ZWD is the zenith wet delay.

The ZHD can be calculated as a function of the surface pressure \(P_0 \), the geodetic latitude \(\phi \), and the geodetic height \(H \) by the Saastamoinen model as [35]

\[ZHD = \frac{(0.0022768 \pm 0.0000005) P_0}{1 - 0.00266 \cos(2\phi) - 0.00000028H}. \]

With the precise pressure data \(P_0 \) at the user location, the ZHD can be precisely calculated with up to 0.2-mm accuracy [36]. The necessary meteorological instruments, however, are not always installed at the user location. Thus, the global pressure and temperature (GPT) model is recommended to calculate the ZHD [37], [38].

On the contrary, there is no simple way to precisely model the ZWD. The usual approach is to estimate the ZWD in the PPP function model together with other parameters. In this paper, we use the PPP model developed by the University of Calgary (UofC), which consists of three ionosphere-free observation combinations [39]

\[
\begin{align*}
(P_1 + L_1) &= \rho + c(dt^r - dt^x) + mf * ZWD - \frac{\lambda_1}{2} N_1 + \varepsilon (\frac{P_1 + L_1}{2}) \\
(P_2 + L_2) &= \rho + c(dt^r - dt^x) + mf * ZWD - \frac{\lambda_2}{2} N_2 + \varepsilon (\frac{P_2 + L_2}{2})
\end{align*}
\]

where \(i = 1, 2; P_i \) is the raw code measurement; \(L_i \) is the raw phase measurement; \(f_1 = 154.0 \) f0 and \(f_2 = -154.0 \) f0 with \(f_0 = 10.23 \) MHz; \(\rho \) is the geometric distance as a function of the receiver and satellite coordinates; \(c \) is the speed of light in vacuum; \(dt^r \) is the common receiver clock; \(dt^x \) is the common satellite clock; \(mf \) is the elevation-dependent mapping function of the ZWD; \(\lambda_i \) is the wavelength of carrier phase on frequency \(L_i \); \(N_i \) is the phase ambiguity on frequency \(L_i \); and \(\varepsilon \) contains residual errors, including multipath and noises.

PWV is related to ZWD via a conversion factor by

\[PWV = \Pi * ZWD \]

\[\Pi = \frac{10^6}{\rho_w R_v} \left(\frac{k_4}{T_m} + k_5 \right) \]

where \(\Pi \) is the conversion factor; \(\rho_w \) is the density constant of liquid water; \(R_v \) is the gas constant for water vapor; \(k_4 \) and \(k_5 \) are the atmospheric refractivity constants [2]; and \(T_m \) is the weighted mean temperature of the atmosphere.

\[T_m = \int (e/T) dz \]

where \(e \) is the vapor pressure, \(T \) is the absolute temperature, and \(dz \) is the integral path.

III. EXPERIMENT AND DISCUSSION

A. Real-Time Satellite Orbit and Clock Corrections

Currently, the IGS RTS provides combined orbit and clock corrections estimated in both single-epoch and Kalman filter approaches [40]. Moreover, several participating IGS agencies are also disseminating their own orbit and clock corrections for
representative (SSR) messages [42] are then applied by Radio Technical Commission for Maritime Services space-state cast ephemeris. The real-time orbit corrections encoded as the dt where δC is the clock correction messages; and C_{radial}, C_{along}, and C_{cross} are three clock correction coefficients in the SSR clock correction messages.

As for the precise satellite orbits, coordinate vector r and velocity vector \dot{r} should be first calculated based on the broad-cast ephemeris. The real-time orbit corrections encoded as the Radio Technical Commission for Maritime Services space-state representative (SSR) messages [42] are then applied by

$$r_{\text{SSR}} = r - [e_{\text{radial}} \ e_{\text{along}} \ e_{\text{cross}}]\delta C$$ \hspace{1cm} (9)

where r_{SSR} is the corrected coordinate vector; $e_{\text{radial}} = \dot{r}/|\dot{r}|$; $e_{\text{along}} = (r \times \dot{r})/(|r| \times |\dot{r}|)$; $e_{\text{cross}} = e_{\text{radial}} \times e_{\text{along}}$; and δC is the SSR orbit correction vector in radial, along-track, and cross-track components.

As for the precise satellite clock error, the real-time clock correction equation is

$$dt_{\text{SSR}} = dt^* + \frac{\delta C}{c}$$ \hspace{1cm} (10)

where dt_{SSR} is the corrected satellite clock error; $\delta C = C_0 + \frac{C_1 (t - t_0)}{2} + C_2 (t - t_0)^2$ is the clock correction; t is the broadcast clock time; t_0 is the reference time obtained from SSR clock correction messages; and C_0, C_1, and C_2 are three clock correction coefficients in the SSR clock correction messages.

The accuracy assessment of IGS CLK90 real-time orbit and clock products is conducted based on one-week consecutive corrections from July 4 to 10, 2013. IGS final orbit and clock products with nominal accuracy values of 2.5 cm and 0.075 ns, respectively, are selected as the reference. The orbit accuracy for each satellite is calculated as the RMS error of the differences between the real-time satellite coordinates and the reference coordinates. As to the clock accuracy, one reference satellite should be selected to make a single difference with the other satellites in order to remove the clock datum inconsistency between the real-time and final clock products. In this paper, the GPS satellite with pseudorandom noise (PRN) #1 is chosen as the reference satellite. The satellite clock accuracy is calculated as the RMS error of the differences between the real-time single-differenced clock errors and the reference clock errors.

Figs. 1 and 2 depict the accuracy values of the IGS CLK90 real-time orbits and clocks with respect to the IGS final products from July 4 to 10, 2013. A 3-D accuracy value of 4.82 cm is obtained for the real-time satellite orbits with accuracy values of 2.87/2.88/2.59 cm in X,Y,Z directions, respectively. On the other hand, an overall accuracy value of 0.6 ns for the real-time satellite clock errors indicates that the IGS CLK90 real-time clock product can provide much better corrections than the IGS-predicted ultra-rapid clock product with a nominal accuracy value of \sim3 ns (http://igscb.jpl.nasa.gov/components/prods.html).

B. Comparison Between the Real-Time and Post-Processed GPS PPP-Derived PWV Time Series

In this section, the real-time GPS PPP-derived PWV time series are analyzed with respect to the PPP-derived PWV time series using the IGS final products. One-week GPS observations of IGS station WUHN collected at a sampling rate of 30 s from July 4 to 10, 2013, are processed. The PPP software package used is P3 developed by the UofC [43]. The elevation angle mask is set as 10°. The absolute phase center correction model is utilized to correct the antenna phase center offset and variation [44]. The pressure and temperature data are computed by the GPT model, and the ZHD is calculated using the Saastamoinen model. The troposphere mapping function is the global mapping function [45]. The ZWD is estimated in a random walk pattern with an initial standard deviation of 10^{-2} m and a spectral density of 10^{-6} m2/s. The factor for converting ZWD to PWV is calculated based on (7) with the mean weight temperature determined in [46].
The scatter plot of the PPP-derived PWV time series using real-time and final products is shown in Fig. 3. The PPP-derived PWV time series are resampled at the interval of 1 h, thus generating 168 PWV pairs during seven consecutive days. The average value and the RMS error are calculated for the PWV differences between the two PWV time series. The rule is applied to exclude PWV pairs with the difference larger than three-time RMS errors, which results in 160 PWV pairs for comparison. With respect to the PPP-derived PWV time series using IGS final products, the real-time PPP-derived PWV time series show an average value of -1.5 mm and an RMS error of 2.4 mm. On the other hand, the correlation coefficient of 0.99 is identified, which demonstrates that the real-time PPP-derived PWV time series have good consistency with the postprocessed PPP-derived PWV series. Therefore, it is possible to use the real-time GPS PPP-derived PWV series for rainfall monitoring and forecasting.

C. Real-Time GPS PPP-Based PWV Estimation for Rainfall Monitoring and Forecasting: Case Studies

A severe rainfall event occurred in Wuhan, China, from July 5 to 7, 2013, which was regarded as the biggest rainfall event of this city in 2013. This rainfall event damaged 447.2 km² agricultural areas, and the economic loss was reported up to 250 million Chinese yuan [47]. It is therefore of great value to exploit the potential of real-time GPS PPP-based PWV estimation for rainfall monitoring and forecasting. A network consisting of 13 GPS stations around the city shown in Fig. 4 is employed in this paper. Five green rectangles represent GPS stations colocated with rainfall record instruments. The other nine stations without colocated rainfall records are marked as red triangles. The ground rainfall records are used to serve as the indicator of the rainfall forecasting by the real-time GPS PPP-based PWV estimation.

Figs. 5–9 depict the real-time PPP-derived PWV time series at the five GPS stations and the colocated ground rainfall records. The PPP-derived PWV time series demonstrate five stages corresponding to the different rainfall processes. First, the PPP-derived PWV time series fluctuate below 50 mm during the morning of July 4, one day before the rainfall. Second, the PPP-derived PWV estimates keep increasing from the noon of July 4 to the afternoon of July 5 during which period, the PPP-derived PWV values accumulate to ~ 60 mm. Third, the PPP-derived PWV series show an active variation pattern within the scope of 60–90 mm until the noon of July 7, whereas the rainfall amounts are observed by the ground record instruments. Fourth, the PPP-derived PWV time series dramatically decrease after the noon of July 7 while the rainfall stops. Fifth, the PPP-derived PWV time series fluctuate below the level of 50 mm after the noon of July 8 while no rainfall is recorded. Overall, the variations of the real-time GPS PPP-derived PWV time series are pretty consistent with the ground rainfall records.

Two facts should be noted for the comparison between the real-time GPS PPP-derived PWV series and the ground rainfall records. First, the threshold used in Figs. 5–9 is empirically set as 50 mm. As indicated in [12], the average PWV amount varies in different seasons; thus, it is improper to define a constant threshold for rainfall forecasting throughout the year. Instead, the threshold could be set as the average PWV amount of the clear days in the same period of past years. Second, the
high PPP-derived PWV amount does not always indicate the occurrence of rainfall events. All the PPP-derived PWV time series in Figs. 5–9 show a high PWV level above 60 mm around the midnight of July 8, but no rainfall amount is recorded during this period. This phenomenon can be also detected around the noon of July 9 at GPS station WHHP. In fact, the high PWV level is only one of the prerequisites of a rainfall event. Some external dynamic factors are also necessary to trigger a rainfall event. If the condition of external dynamic factors were not satisfied, the rainfall event might not happen even when the PPP-derived PWV estimates are at a high level.

GPS Continuously Operating Reference Station networks established worldwide and the IGS RTS have provided the infrastructure and necessary corrections for real-time GPS PPP, which enables real-time GPS PPP-based PWV estimation at global or regional scales. The analysis of the rainfall event in July 2013 has demonstrated the consistency between the real-time GPS PPP-derived PWV series and ground rainfall records. Furthermore, the continuously station-based PPP-derived PWV series can be also used to generate PWV maps to monitor PWV variation in real-time. A series of real-time PPP-derived PWV maps are depicted in Fig. 10 at the local time 00:00 during the pre-rain, the raining, and the post-rain periods, respectively. For better understanding, the animated PPP PWV maps at the interval of 1 h are available upon readers’ request. Based on the network of 13 GPS stations, the real-time GPS PPP-derived PWV map can well reflect the PWV variation above the city of Wuhan.

A second case study concerns a series of moderate rainfall events at the same city during the period of April 15–21, 2014. Unlike the continuous rainfalls within two days in the first case, moderate rainfall events occurred every single day in the second case. We use a threshold of 40 mm to illustrate the consistency between real-time PPP-derived PWV series and ground rainfall records shown in Figs. 11–15. The ascending and descending patterns of real-time PPP-derived PWV series can be identified before and after each rainfall event. Meanwhile, the PWV fluctuation at a relatively stable level has been also detected during the raining stage. Overall, the real-time GPS PPP-derived PWV series match the ground rainfall records very well.

IV. CONCLUSION AND FUTURE WORK

This paper has investigated the performance of real-time GPS PPP-based PWV estimation and its potential for rainfall monitoring and forecasting with IGS CLK90 real-time orbit and clock. As regard the period of July 4–10, 2013, the orbit accuracy of < 5 cm and the clock accuracy of 0.6 ns have been identified for the IGS CLK90 real-time products. The corresponding real-time GPS PPP-derived PWV time series show an RMS error of 2.4 mm and a bias of −1.5 mm with respect to the post-processed GPS PPP-derived PWV time series using the IGS final products. Furthermore, a correlation coefficient of 0.99 is identified between the real-time and post-processed PPP-derived PWV time series based on one-week observations at IGS station WUHN.

The real-time GPS PPP-based PWV estimation has been applied to analyze a severe rainfall event in July 2013 and a series of moderate rainfall events in April 2014 at the city of Wuhan in China. The consistency between the real-time GPS PPP-derived PWV time series and the ground rainfall
Fig. 10. Four real-time GPS PPP PWV maps at local time 00:00 in (top left, pre-rain) July 5, (top right, raining) July 6, (bottom left, raining) July 7, and (bottom right, post-rain) July 8, 2013.

Fig. 11. Real-time GPS PPP-derived PWV time series at WHHP and the rainfall record at Huangpi during a series of moderate rainfall events in Wuhan from April 15 to 21, 2014.

Fig. 12. Real-time GPS PPP-derived PWV time series at WHCD and the rainfall record at Caidian during a series of moderate rainfall events in Wuhan from April 15 to 21, 2014.

Fig. 13. Real-time GPS PPP-derived PWV time series at WUHN and the rainfall record at Jiedaokou during a series of moderate rainfall events in Wuhan from April 15 to 21, 2014.

Fig. 14. Real-time GPS PPP-derived PWV time series at WHHN and the rainfall record at Hannan during a series of moderate rainfall events in Wuhan from April 15 to 21, 2014.

records verifies the feasibility of real-time PPP for rainfall monitoring and the potential for rainfall forecasting. Moreover, the real-time PPP-derived PWV map could be also utilized to better understand the temporal variations of water vapor content during severe weather conditions.

It should be noted that real-time GPS PPP cannot serve as a standalone system to forecast the occurrence of rainfall events. Some other dynamic factors that trigger the start of a rainfall event are also necessary. By introducing the real-time GPS PPP-derived PWV values into the existing assimilation and
forecasting system, it is expected that the forecasting capability would be improved, particularly for short-term rainstorm warning.

ACKNOWLEDGMENT

The authors would like to thank IGS and CNES for providing the post-mission and real-time satellite precise orbit and clock products. They would also like to acknowledge the anonymous reviewers and the editor for their valuable comments on this manuscript.

REFERENCES

Junbo Shi received the B.Sc. degree in geodesy and geomatics from Wuhan University, Wuhan, China, in 2005 and the Ph.D. degree in geomatics engineering from the University of Calgary, Calgary, AB, Canada, in 2012. In 2010, he was a Research Engineer with Nexteq Navigation Corporation. He is currently a Lecturer with Wuhan University. He is also with the Key Laboratory of Precise Engineering and Industry Surveying, National Administration of Surveying, Mapping and Geoinformation, Wuhan. He has been the author of more than 30 publications since 2007. His research interests include geomatics data processing, high-precision Global Navigation Satellite System (GNSS) positioning, GNSS-based tropospheric/ionospheric modeling, and GNSS metrology. Dr. Shi was a member of The Institute of Navigation, the Canadian Geophysical Union, and the Chinese Professionals in Global Positioning Systems.

Yang Gao received the B.Sc. and M.Sc. degrees in surveying engineering from Wuhan University, Wuhan, China, in 1982 and 1985, respectively, and the Ph.D. degree in geodesy and geomatics from the University of Calgary, Calgary, AB, Canada, in 1992. He is currently a Professor with the University of Calgary. Prior to joining the University of Calgary in 1998, he held positions as a Research Scientist, a Manager of GPS Research & Development, and a Manager of Asia-Pacific in the private sector. He has published more than 250 papers and has received a number of awards for his contributions to the field. His research interests focus on high-precision Global Navigation Satellite System (GNSS) and multisensor navigation systems.

Dr. Gao is a Fellow of the International Association of Geodesy (IAG), the Chairman of the IAG Sub-Commission 4.5 “High Precision GNSS Algorithms and Applications,” and an Editor of several journals.

Chaoqian Xu received the B.Sc. and M.Sc. degrees in geodesy and geomatics from Wuhan University, Wuhan, China, in 2011 and 2013, respectively, where he is currently working toward the Ph.D. degree in geodesy and surveying engineering in the School of Geodesy and Geomatics.

Currently, he is also with the Key Laboratory of Precise Engineering and Industry Surveying, National Administration of Surveying, Mapping and Geoinformation, Wuhan. His main research interests include Global Navigation Satellite System (GNSS) data processing, high-precision Global Navigation Satellite System positioning technique, and applications.

Jiming Guo received the B.Sc. and M.Sc. degrees in engineering surveying from Wuhan Technical University of Surveying and Mapping, Wuhan, China, in 1985 and 1989, respectively, and the Ph.D. degree in geodesy and geomatics from Wuhan University, Wuhan, in 2001. He is currently a Professor with Wuhan University. He is also with the Key Laboratory of Precise Engineering and Industry Surveying, National Administration of Surveying, Mapping and Geoinformation, Wuhan. His research interests include geodetic data processing, high-precision Global Navigation Satellite System positioning technique, and applications.

Yao Gao is a Fellow of the International Association of Geodesy (IAG), the Chairman of the IAG Sub-Commission 4.5 “High Precision GNSS Algorithms and Applications,” and an Editor of several journals.