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Abstract

Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and

estrogen-induced endometrial cancer. An additional endometrial cancer mouse model is generated

by ablation of Pten (either as heterozygotes or by conditional uterine ablation). To determine the

interplay between Mig-6 and the PTEN/PI3K signaling pathway during endometrial

tumorigenesis, we have generated mice with Mig-6 and Pten conditionally ablated in progesterone

receptor positive cells (PRcre/+Mig-6f/fPtenf/f ; Mig-6d/dPtend/d). The ablation of both Mig-6 and

Pten dramatically accelerated the development of endometrial cancer compared to single ablation

of either gene. The epithelium of Mig-6d/dPtend/d mice showed a significant decrease in the

number of apoptotic cells compared to Ptend/d mice. The expression of the estrogen-induced

apoptotic inhibitors Birc1 was significantly increased in the Mig-6d/dPtend/d mice. We identified

ERK2 as a MIG-6 interacting protein by co-immunoprecipitation and demonstrated that the level

of ERK2 phosphorylation was increased upon Mig-6 ablation either singly or in combination with

Pten ablation. These results suggest that Mig-6 exerts a tumor suppressor function in endometrial

cancer by promoting epithelial cell apoptosis through the down-regulation of the estrogen-induced

apoptosis inhibitors Birc1 and the inhibition of ERK2 phosphorylation.
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Introduction

Endometrial cancer is the most frequently diagnosed malignancy of the female genital tract.

According to the National Cancer Institute (NCI), endometrial cancer is the most common

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*To whom correspondence should be addressed: Jae-Wook Jeong, Ph.D. Department of Molecular and Cellular Biology Baylor
College of Medicine Houston, Texas 77030 Phone: (713) 798-8338 Fax: (713) 790-1275 jjeong@bcm.edu.

NIH Public Access
Author Manuscript
Oncogene. Author manuscript; available in PMC 2014 May 08.

Published in final edited form as:
Oncogene. 2010 July 1; 29(26): 3770–3780. doi:10.1038/onc.2010.126.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



type of gynecological cancer. In the United States, approximately 41,200 cases are

diagnosed and about 7,350 women die from the disease each year (Jemal et al., 2006). The

majority of endometrial cancers (~90%) are adenocarcinomas, which originate in uterine

epithelial cells. All endometrial cancers can be further delineated into two types (Deligdisch

and Holinka, 1987; Di Cristofano and Ellenson, 2007). Type I endometrial cancers are

estrogen (E2)-dependent and appear mostly in pre- and peri-menopausal women.

Frequently, these cancers show mutations in DNA-mismatch repair genes (MLH1, MSH2,

MSH6), PTEN, K-ras and β-catenin (Di Cristofano and Ellenson, 2007). In contrast, Type II

endometrial cancers are E2-independent and are diagnosed mostly in post-menopausal

women, thin and fertile women, or women with normal menstrual cycles.

PTEN (phosphatase and tensin homologue deleted from chromosome 10) is one of the most

frequently mutated tumor suppressor genes in human cancers (Steck et al., 1997). PTEN is

completely lost or mutated in >50% of primary endometrioid endometrial cancers (Sun et

al., 2001) and in at least 20% of endometrial hyperplasias, the precancerous lesions of the

endometrium (Levine et al., 1998; Sun et al., 2001). Thus, loss of PTEN is a very early

event in the multi-step process leading to endometrioid endometrial cancer. PTEN acts as a

negative regulator of phosphoinositide 3-kinases (PI3K) signaling which regulates a number

of cellular functions through the activation of Akt (Jiang and Liu, 2008). Previously, loss of

Pten (either as a heterozygote or by uterine specific ablation) has been shown to induce

endometrial cancer in mice highlighting its important role in endometrial cancer

development (Daikoku et al., 2008; Vilgelm et al., 2006). This mutation and subsequent Akt

activation resulted in the activation of ERα-dependent pathways which play an important

role in endometrial cancer tumorigenesis (Vilgelm et al., 2006). Interestingly, the PI3K

signaling pathway can also be activated by E2 suggesting a complex interaction exists

between these two signaling pathways (Chambliss et al., 2002).

Mig-6 is an immediate early response gene that can be induced by various mitogens and

commonly occurring chronic stress stimuli (Makkinje et al., 2000; Saarikoski et al., 2002).

It is an adaptor molecule containing a CRIB domain, a src homology 3 (SH3) binding

domain, a 14-3-3 binding domain and an EGFR binding domain, but no domain with

enzymatic activity (Burbelo et al., 1995; Makkinje et al., 2000). Previously, the interaction

between MIG-6 and the 14-3-3 proteins has been demonstrated (Makkinje et al., 2000).

Ablation of Mig-6 in mice leads to the development of animals with epithelial hyperplasia,

adenoma, and adenocarcinomas in organs, such as the uterus, lung, gallbladder, and bile

duct (Anastasi et al., 2005; Ferby et al., 2006; Jeong et al., 2009; Jin et al., 2007; Zhang et

al., 2006). Decreased expression of Mig-6 is observed in human breast carcinomas which

correlate with reduced overall survival of breast cancer patients (Amatschek et al., 2004;

Anastasi et al., 2005). These data point to Mig-6 as a tumor suppressor gene in both mice

and humans. Previously, we demonstrated that the absence of Mig-6 in mice results in the

inability of P4 to inhibit E2-induced uterine weight gain and expression of E2-responsive

target genes (Jeong et al., 2009). PRcre/+ Mig-6f/f (Mig-6d/d) mice develop hyperplasia and

endometrial cancer in a hormone-dependent manner. Additionally, the observation that

endometrial carcinomas from women have a significant reduction in MIG-6 expression

provides compelling support for an important growth regulatory role for Mig-6 in the uterus
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of both humans and mice (Jeong et al., 2009). This demonstrates that Mig-6 is a critical

regulator of the tumorigenesis of endometrial cancer. However, the mechanism of Mig-6

action in endometrial cancer remains unknown.

In this study, we utilized conditional Pten and Mig-6 ablation in the uteri of mice to

demonstrate a synergistic effect of dysregulation of the Pten and Mig-6 signaling pathways

during endometrial tumorigenesis. Ablation of both genes dramatically accelerated the

development of endometrial cancer compared to single mutation of either gene. Thus, these

results demonstrate the importance of Pten and Mig-6 regulation in the tumorigenesis of

endometrial cancer by promoting epithelial cell apoptosis.

Results

Generation of mice with Pten and Mig-6 ablation in the murine uterus

The most common genetic mutations in human endometrioid carcinoma are found in the

Pten gene (Di Cristofano and Ellenson, 2007; Podsypanina et al., 1999). Pten+/- and mice

with Pten conditionally ablated in the uterus (PRcre/+Ptenf/f; Ptend/d) develop endometrioid

endometrial adenocarcinoma (Daikoku et al., 2008; Lian et al., 2006). In order to investigate

the effects of the MIG-6 and the PTEN/PI3K/AKT signaling pathways on uterine

tumorigenesis, mice with Pten floxed (Ptenf/f) (Lesche et al., 2002) and Mig-6 floxed

(Mig-6f/f) (Jin et al., 2007) were bred to the PRCre mouse model (Soyal et al., 2005) to

generate ablation of Pten and Mig-6 in the uterus. Ablation of Pten and Mig-6

(Mig-6d/dPtend/d) was assayed by real-time RT-PCR, Western blot and

immunohistochemical analysis (n=3). Mig-6 mRNA expression was detected in the control

(WT, PRcre/+, Mig-6f/f, and Ptenf/f) uteri while not in the Mig-6d/d and Mig-6d/dPtend/d uteri

(Fig. 1A). There was no effect on Mig-6 expression by Pten ablation. The expression of Pten

mRNA was detected in the control, but not in the Ptend/d and Mig-6d/dPtend/d uteri (Fig.

1B). While there was a slight decrease in Pten expression in the Mig-6d/d uteri, it was not

significant. The decrease in Pten expression correlated with a decrease in protein expression

as observed both by western blot and immunohistochemical analysis (Fig. 1 C and D).

Ablation of Pten also resulted in increased activation of AKT as expected (Fig. 1C). These

results suggest that PRcre efficiently ablated Pten and Mig-6 in the mouse uterus.

Endometrial cancer development in mice with Pten and Mig-6 ablation in PR-expressing
cells

Previously, ablation of Pten in the uterus was shown to decrease survival due to the

development of endometrial cancer (Daikoku et al., 2008). Therefore, we first examined the

lifespan of control, Mig-6d/d, Ptend/d and Mig-6d/d Ptend/d mice. The survival time of

Mig-6d/d Ptend/d mice was significantly shorter compared with control, Mig-6d/d and Ptend/d

mice (p < 0.0001; Fig. 2A). To investigate the impact of Pten and Mig-6 ablation on

endometrial cancer development and progression, control, Mig-6d/d, Ptend/d and Mig-6d/d

Ptend/d mice were sacrificed at 2 and 4 weeks of age and uterine weight, gross and

histological morphology were examined (n=8 per genotype per age). Ptend/d and Mig-6d/d

Ptend/d mice showed a significant increase in uterine weight at 2 weeks of age compared to

control and Mig-6d/d mice (Fig. 2B). The uterine weight of Mig-6d/d Ptend/d mice was
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significantly increased compared to other mice including Ptend/d mice at 4 weeks of age

(Fig. 2B and C). Gross morphology at 4 weeks of age showed that the ablation of Mig-6 and

Pten dramatically accelerated the development of endometrial cancer compared to single

ablation of either gene (Fig. 2C). Histological analysis demonstrated that the uteri of Ptend/d

and Mig-6d/dPtend/d mice exhibit a similar endometrial hyperplastic phenotype at 2 weeks of

age (Fig. 2D). The Mig-6d/dPtend/d mice developed endometrial adenocarcinoma at 4 weeks

of age characterized by neoplastic endometrial glands invading through the myometrium

(Fig. 2F). However, the Ptend/d mice still exhibited endometrial hyperplasia at 4 weeks of

age (Fig. 2D). Endometrial adenocarcinoma with invasion into the myometrium was

observed in the Ptend/d mice at 2 months of age (Daikoku et al., 2008). While endometrial

hyperplasia and adenocarcinoma were observed, myometrial hyperplasia was not observed

in the uteri of Mig-6d/dPtend/d mice. The Mig-6d/dPtend/d mice displayed distant metastases

into the ovary (Fig. 2G), diaphragmatic skeletal muscle (Fig. 2H), lymph node, colon, and

pancreas. These results suggest that Mig-6 plays an important role as a suppressor of the

development of endometrial cancer caused by Pten ablation.

Mig-6 exerts a propaoptotic effect as an endometrial cancer tumor suppressor

In order to determine if the endometrial hyperplasia and cancer in the Ptend/d and

Mig-6d/d Ptend/d mice is caused by an alteration in cell proliferation and/or apoptosis, we

performed immunohistochemical staining for phospho-histone H3, a mitotic marker, and

cleaved caspase 3, an apoptotic marker, in mice at 2 weeks of age. Immunohistochemical

staining of phosphohistone H3 demonstrated that proliferation was significantly increased in

the epithelium of Ptend/d and Mig-6d/dPtend/d compared to control and Mig-6d/d mice (Fig. 3

A and B) . However, no significant difference was observed between the Ptend/d and

Mig-6d/dPtend/d mice. Immunohistochemical staining of cleaved caspase 3 showed a

significant decrease in the number of apoptotic cells in the epithelium of Mig-6d/dPtend/d

mice compared to Ptend/d mice (Fig. 3 C and D). There was also no difference in stromal

cell proliferation and apoptosis. These results suggest that Mig-6 acts as a tumor suppressor

to induce apoptosis when Pten is mutated.

Mig-6 represses Birc1 expression in the murine uterus

The decision as to whether or not a cell undergoes apoptosis is determined by the opposing

actions of pro- and anti-apoptotic effectors (Song and Santen, 2003). It is known that E2 can

tip this balance toward cell survival in uterine epithelial cells by inducing the expression of

baculoviral inhibitors of apoptosis repeat-containing 1 (Birc1), a family of anti-apoptotic

proteins (Yin et al., 2008). To determine if Mig-6 promotes uterine epithelial apoptosis by

suppressing Birc1 expression, the expression of Birc1a, Birc1b, and Birc1e was determined

in the Mig-6f/f and Mig-6d/d mice treated with E2 for 3 days by real-time RT-PCR (n=3).

Interestingly, the expression of Birc1 genes was significantly increased in the Mig-6d/d mice

treated with E2 compared to Mig-6f/f mice (Fig. 4A). These results suggest that Mig-6

induces uterine epithelial apoptosis via down-regulation of Birc1 expression. We also

examined the expression of Birc1a, Birc1b, and Birc1e in control, Mig-6d/d, Ptend/d, and

Mig-6d/dPtend/d mice at 2 weeks of age (n=3) (Fig. 4B). The expression of Birc1a and

Birc1b but not Birc1e was significantly increased in Mig-6d/dPtend/d mice compared to the
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other groups. While the expression of Birc1a, Birc1b, and Birc1e was slightly increased in

Ptend/d mice compare to control and Mig-6d/d mice, the increase was not significant. These

results suggest that Mig-6 exerts a tumor suppressor function by inducing uterine epithelial

apoptosis through the suppression of Birc1 expression in tumorigenic conditions such as

unopposed E2 action or Pten ablatxion.

The Interaction of MIG-6 with ERK2 and its regulation of ERK2 phosphorylation

Although these results have established Mig-6’s role in steroid hormone regulation and

tumorigenesis, the molecular mechanism of Mig-6 action is not clear. As MIG-6 is an

adaptor molecule, we have turned to a biochemical and proteomics approach to identify

MIG-6 associating proteins in order to gain insight into its mechanism of action. One of the

hallmarks of endometrial cancer is the loss of ovarian steroid hormone (E2 and P4) control

over uterine epithelial cell proliferation and apoptosis (Franco et al., 2008; Ito et al., 2007).

E2 promotes endometrial cancer by stimulating proliferation and inhibiting apoptosis while

P4 antagonizes these actions of E2 in the uterus. Our previous results showed that the

absence of Mig-6 in mice results in the inability of P4 to inhibit E2-induced uterine weight

gain and E2-responsive target genes expression (Jeong et al., 2009). These results suggest

that Mig-6 suppresses E2 signaling in the presence of P4. Therefore, we isolated endogenous

MIG-6 protein complexes using an anti-MIG-6 antibody (Sigma-Aldrich, St. Louis, MO)

from the uteri of Mig-6f/f and Mig-6d/d mice treated with E2+P4 for 3 days and identified

associated proteins using mass spectrometry. Proteins that were identified from lysates

prepared by immunoprecipitation in the Mig-6f/f mice but not in the Mig-6d/d mice were

considered true interacting proteins. The use of the Mig-6d/d tissue serves as the control for

non-specific and cross-reacting proteins. Using this criterion, the identified MIG-6

interacting proteins are listed in Table 1.

14-3-3 proteins are known MIG-6-associating proteins (Zhang and Vande Woude, 2007)

that regulate the phosphorylation of proteins involved in PTEN/PI3K/AKT signaling

(Kakinuma et al., 2008; Slaets et al., 2008). We also found novel MIG-6 associated

molecules such as signal transducer and activator of transcription 3 (STAT3), extracellular

signal-regulated kinase 2 (ERK2), and growth factor receptor bound protein 2 (GRB2).

ERK2 is a classical MAPK that is activated mainly by growth factors or mitogenic stimuli.

It is activated by phosphorylation which results in its translocation into the nucleus where it

phosphorylates transcription factors (Eldredge et al., 1994; Fukuda et al., 1997). It has been

reported that ERK affects apoptosis by promoting the expression of inhibitor of apoptosis

proteins (IAPs) (Erhardt et al., 1999; Tashker et al., 2002; Xia et al., 1995). To validate the

interaction between MIG-6 and ERK2 proteins, we performed coimmunoprecipitation

experiments using lysates from the uteri of Mig-6f/f and Mig- 6d/d mice treated with E2+P4

for 3 days. Co-immunoprecipiatation was performed with anti-IgG, anti-MIG-6 and anti-

ERK2 antibodies, and analyzed by Western blot analysis using anti-ERK2 antibodies to

detect ERK2. ERK2 protein could be detected from immunoprecipitates with the anti-

MIG-6 and anti-ERK2 antibodes confirming the interaction between MIG-6 and ERK2 (Fig.

5A). These results indicate that the interaction between MIG-6 and ERK2 may play an

important role in the regulation of the phosphorylation of ERK2 and subsequent regulation

of apoptosis.
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To determine if the hyperplasia phenotypes observed may be due to altered ERK2

phosphorylation in the Mig-6f/f uteri, we examined the expression of ERK2 by Western blot

analysis in the Mig-6f/f uteri at 5 months of age. The level of phospho-ERK2 but not total

ERK2 was increased in Mig-6d/d uteri compared to Mig-6f/f uteri (Fig. 5B). We also

observed an increased level of phospho-ERK2 but not total ERK2 in Mig-6d/d and Mig-6d/d

Ptend/d mice compared to control and Ptend/d mice (Fig. 5C).

In order to determine if the uteri of Mig-6d/d Ptend/d exhibited altered ERK2 signaling,

control, Mig-6d/d, Ptend/d and Mig-6d/d Ptend/d mice were sacrificed at 2 weeks of age (n =

6) and the expression of ERK2 target genes, Fos (FBJ osteosarcoma oncogene) (Kyriakis

and Avruch, 2001), Junb (Jun-B oncogene) (Gesty-Palmer et al., 2005), Ptgs2

(prostaglandin-endoperoxide synthase 2; Cox2) (Smith et al., 2000), Gdf15 (growth

differentiation factor 15) (Malathi et al., 2005), Vegfa (vascular endothelial growth factor A)

(Milanini-Mongiat et al., 2002), F3 (coagulation factor III) (Gesty-Palmer et al., 2005) and

Serpine1 (serine (or cysteine) peptidase inhibitor, clade E, member 1) (Gesty-Palmer et al.,

2005), was examined. The expression of these ERK2 target genes was not altered in

Mig-6d/d mice compared to control mice. Interestingly, Mig-6d/d Ptend/d uteri showed

significantly increased expression of these ERK2 target genes compared to Ptend/d uteri

(Fig. 5D). These results suggest that Mig-6 plays a tumor suppressor function in the context

of Pten ablation by promoting epithelial cell apoptosis and by inhibiting ERK2

phosphorylation.

Discussion

Endometrial cancer is the most common gynecological cancer and has been shown to be

associated with mutations in the tumor suppressor gene Pten among others (Di Cristofano

and Ellenson, 2007). Loss of PTEN is an early event in the multi-step process leading to

endometrioid endometrial cancer. Pten+/- and mice with Pten conditionally ablated in the

uterus (Ptend/d) develop endometrioid endometrial adenocarcinoma (Daikoku et al., 2008;

Lian et al., 2006). This mutation and subsequent Akt activation play an important role in the

tumorigenesis of endometrial cancer (Vilgelm et al., 2006). The expression of MIG-6 is

decreased in human endometrial cancer patients and Mig-6d/d mice develop invasive

endometrioid-type endometrial adenocarcinoma with unopposed estrogen treatment (Jeong

et al., 2009). Introduction of Mig-6 ablation into the Ptend/d mice accelerated the

tumorigenesis of endometrial cancer as compared to Pten ablation alone (Fig. 2). The

neoplastic endometrial glands in the double mutant mice invaded through the uterine muscle

wall and, with age, led to the development of distant metastases. These results suggest that

the tumor suppressor function of Mig-6 is important to prevent the development of

endometrial hyperplasia or endometrial cancer in the tumorigenic conditions of unopposed

estrogen or Pten loss.

It is well known that endometrioid endometrial cancer is an estrogen-dependent disease and

progestin hormone therapy has been used to slow the growth of endometrial cancer due to its

inhibitory effects on E2 action. The impact of unopposed E2 treatment on the development

of endometrial cancer in the context of Pten ablation remains unknown. However,

ovariectomized Ptend/d mice develop endometrial hyperplasia albeit at a slower rate than
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intact Ptend/d mice suggesting that the tumorigenesis of the Ptend/d mice is partially steroid

hormone dependent (unpublished data). Thus, further investigations into the impact of E2

and E2 plus P4 treatment on the development of endometrial cancer in the Ptend/d and

Mig-6d/d Ptend/d mice need to be performed in order to further elucidate the effect of steroid

hormone signaling on endometrial cancer development.

Most endometrial cancers are characterized by actively proliferating glands, increased Akt

signaling and decreased apoptosis (Ejskjaer et al., 2007; Khalifa et al., 1994; Sivridis and

Giatromanolaki, 2004). Loss of Pten in the uteri of mice and humans results in increased

epithelial proliferation (Fig. 3A and 3B), increased phosphorylation of Akt (Fig. 1C), and

altered E2 signaling (Daikoku et al., 2008; Lian et al., 2006; Vilgelm et al., 2006) as well as

the development of endometrioid endometrial cancer (Daikoku et al., 2008; Kanamori et al.,

2001). Mig-6d/d mice exhibit altered E2 signaling (Jeong et al., 2009) and a slight but not

significant increase in epithelial proliferation (Fig. 3A and 3B) with no effect on Akt

signaling or epithelial apoptosis. The double mutant mice also have comparable levels of

epithelial proliferation (Fig. 3A and 3B) when compared to the Ptend/d mice. However, in

contrast to the Ptend/d mice, these mice exhibit dramatically decreased epithelial apoptosis

(Fig. 3C and 3D). As these mice develop endometrial cancer earlier than the Ptend/d mice,

these data suggest that the decreased epithelial apoptosis may contribute to the accelerated

tumorigenesis.

As E2 signaling is altered by both Pten and Mig-6 ablation, it suggests that E2 signaling may

play a role in the enhanced tumorigenesis of the double mutant mice. Estrogen suppresses

uterine epithelial apoptosis by inducing BIRC1 expression (Yin et al., 2008). The Birc1

genes encode a family of antiapoptotic proteins which can physically interact with active

caspase-3 and -7 and with active caspase-9 in the presence of ATP (Davoodi et al., 2004;

Maier et al., 2002). The expression of Birc1a, Birc1b, and Birc1e is significantly increased

in Mig-6d/d mice treated with E2 (Fig. 4). Also, the expression of Birc1a and Birc1b was

significantly increased in the Mig-6d/d Ptend/d mice compared to controls (Fig. 4). As these

genes are well-known apoptosis inhibitors (Endrizzi et al., 2000; Roy et al., 1995), their

increased expression may contribute to the decreased apoptosis of the double mutant mice.

Thus, Mig-6 may act as a tumor suppressor in the context of Pten ablation by promoting

apoptosis through the expression of the Birc1 family of proteins.

The estrogen receptors (ERs) mediate the effect of E2 under physiological and pathological

conditions either by the activation of E2-target gene transcription (Acconcia and Kumar,

2006) or by nongenomic mechanisms which result in the rapid activation of several signal

transduction pathways to regulate different cellular processes, such as proliferation,

apoptosis, and differentiation. The nongenomic action of E2 has been linked to numerous

pathways (EGFR, IGF-IR, c-MET) resulting in the activation of two key signaling cascades,

the PTEN/PI3K/AKT and the MAPK pathways (Bhat-Nakshatri et al., 2008; Cheskis et al.,

2008; Freeman et al., 2006; Thomas et al., 2008; Vilgelm et al., 2006). One consequence of

this nongenomic E2 action is an inhibition of cellular apoptosis which has been observed in

various cell types, such as vascular endothelial, smooth and skeletal muscles, and breast

cancer cells (Bjornstrom and Sjoberg, 2005; Boland et al., 2008; Song and Santen, 2003;

Spyridopoulos et al., 1997). MAPK/ERK-kinases (MEKs) trigger the activation of ERKs by
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phosphorylating a threonine and a tyrosine in their activation loop. Specificity in the

signaling between these modules is achieved by protein-protein interactions and scaffolding

molecules (Kolch, 2005). Here, we have identified a novel interaction of MIG-6 with ERK2

and demonstrated that ablation of Mig-6 leads to increased phosphorylation of ERK2 and

expression of its target genes (Fig. 5). Abnormal or constitutive phosphorylation of ERK2

leads to tumorigenesis through inappropriate suppression of apoptosis (Evan and Vousden,

2001; Lowe et al., 2004). Thus, these data suggest the Mig-6 may also exert its tumor

suppressor function in the context of Pten ablation by regulating the phosphorylation status

of ERK2. This increase in phosphorylation may also contribute to the decreased apoptosis

observed either by regulating Birc1 expression or by an unknown mechanism. These results

suggest that Mig-6 may exert its tumor suppressor function in endometrial cancer by

inhibiting ERK2 phosphorylation. Further studies need to be conducted to determine the

precise mechanism by which these various pathways are integrated by Mig-6 to regulate

epithelial apoptosis during endometrial tumorigenesis which may lead to the development of

additional diagnostics or therapeutics for endometrial cancer.

In conclusion, our results demonstrate the synergistic effect of conditional Pten and Mig-6

loss on endometrial cancer development. This accelerated tumorigenesis is likely due to

decreased epithelial apoptosis partly through increased expression of the Birc1 family of

apoptotic inhibitors and increased phosphorylation of ERK2. This study has established an

endometrial cancer mouse model which replicates common characteristics of the human

disease providing a model system to further investigate the genetic and molecular events

involved in the transition from normal to hyperplastic/neoplastic endometrium. These and

future results will contribute to the understanding of the molecular mechanism of

tumorigenesis and to the development of therapeutic approaches for endometrial cancer.

Materials and methods

Animals and Tissue Collection

Mice were maintained in the designated animal care facility at Baylor College of Medicine

according to the institutional guidelines for the care and use of laboratory animals. PRCre/+

mice were previously generated (Soyal et al., 2005). The Ptenf/f were acquired from Dr.

Hong Wu (University of California, Los Angeles, Los Angeles, CA) (Lesche et al., 2002).

Mice of various genotypes were sacrificed at 2 and 4 weeks of age. At the time of dissection,

uterine tissues were placed in the appropriate fixative or flash frozen and stored at −80°C.

Statistical analysis for the survival curve was performed using the logrank test.

Western Blot Analysis

Samples containing 15 μg proteins were applied to SDS-PAGE. The separated proteins were

transferred onto a polyvinylidene difluoride membrane (Millipore Corp., Bedford, MA).

Membranes were blocked overnight with 0.5% casein (wt/vol) in PBS with 0.1% Tween 20

(vol/vol) (Sigma–Aldrich, St. Louis, MO) and probed with anti-MIG-6 (Sigma–Aldrich, St.

Louis, MO; PE-16 ), anti-PTEN (Cell Signaling Technology, Inc., Danvers, MA; #9559),

anti-ERK2 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA; SC-1647), anti-phospho-

ERK2 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA; SC-7883), anti-AKT (Santa Cruz
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Biotechnology, Inc., Santa Cruz, CA; SC-55523), or anti-phospho-AKT (Cell Signaling

Technology, Inc., Danvers, MA; #9275S) antibodies. Immunoreactivity was visualized by

incubation with a horseradish peroxidase-linked secondary antibody and treatment with ECL

reagents. To control for loading, the membrane was stripped and probed with anti-actin

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA; SC-1615) and developed again.

Immunohistochemistry

Uterine sections from paraffin-embedded tissue were preincubated with 10% normal serum

in PBS (pH 7.5) and then incubated with anti-PTEN (Cell Signaling Technology, Inc.,

Danvers, MA; #9559), anti-phospho-Histone H3 (Upstate Biotechnology, Lake Placid, NY;

06-570) or anti-cleaved caspase 3 (Cell Signaling Technology, Inc., Danvers, MA; #9661L)

antibody in 10% normal serum in PBS (pH 7.5). On the following day, sections were

washed in PBS and incubated with a secondary antibody (5 μl/ml; Vector Laboratories,

Burlingame, CA) for 1 hr. at room temperature. Immunoreacitivity was detected using the

Vectastain Elite ABC kit (Vector Laboratories, Burlingame, CA).

Quantitative real-time RT-PCR

Quantitative real-time RT-PCR analysis was conducted on isolated RNA. Expression levels

of Mig-6, Pten, Birc1a, Birc1b, and Birc1e were measured by Real-time RT-PCR TaqMan

analysis (Applied Biosystems, Foster City, CA). cDNA was made from 1 μg of total RNA

using random hexamers and M-MLV Reverse Transcriptase (Invitrogen Corp., Carlsbad,

CA). RTPCR was performed using RT-PCR Universal Master Mix reagent (Applied

Biosystems, Foster City, CA). All real-time RT-PCR results were normalized against 18S

RNA using ABI rRNA control reagents. Statistical analyses were performed using one-way

ANOVA followed by Tukey's post hoc multiple range test with the Instat package from

GraphPad (San Diego, CA, USA).

Immuno-affinity purification

We isolated endogenous MIG-6 protein complexes using an anti-MIG-6 antibody (Sigma-

Aldrich, St. Louis, MO) from lysate prepared from uteri of Mig-6f/f and Mig-6d/d mice

treated with E2+P4 for 3 days as previously reported (Jung et al., 2005). The

immunoprecipitates was washed 3 times with NETN (20 mM Tris-HCl [pH 8.0], 100 mM

NaCl, 1 mM EDTA, 0.5% NP- 40) and boiled with Laemmli buffer and subjected to SDS-

PAGE (4-20% Tris/Glycine NOVEX Gel, Invitrogen, Carlsbad, CA). The Coomassie

brilliant blue-stained protein bands were excised and in gel digested with trypsin.

Protein Identification

Nano-HPLC/MS/MS for peptide identification was carried out as described before (Jung et

al., 2008). An 50 mm × 75 um, C18 column (BioBasic C18, 5 μm, 300 Å pore diameter,

PicoFritTM, New objective) was used on-line with a LTQ mass spectrometer (Finnigan

LTQTM, ThermoFinnigan, San Jose, CA). The LTQ were operated in the data-dependant

mode acquiring fragmentation spectra of the top 20 strongest ions. Obtained MS/MS spectra

were analyzed against modified NCBI-ref protein sequence database using BioWorks

database search engine (BioWorksBrowser ver 3.2, Thermo Electron, San Jose, CA). All
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peptide identification with stringent BioWorksBrowser filtering criteria - peptide probability

> 1 X 10-6 and Xcorr score > 2.0 - was manually examined and all peptides have to be

identified by consecutive b- or y- ions so that false identifications were eliminated.

Acknowledgments

We thank Francesco J. DeMayo for fruitful discussion; Jinghua Li for technical assistance; Cory A. Rubel, M.S.
and Michael J. Large for manuscript preparation. We thank Dr. Hong Wu for the floxed Pten mice. This work was
supported by the Reproductive Biology Training Grant T32HD007165 and a scholarship from Baylor Research
Advocates for Student Scientists (to H.L.F.), NIH R01CA77530 (to J.P.L.), NIH P50CA098258 (to R.R.B.), and
NIH R01HD057873 (to J.W.J.). We thank the support of the pathway discovery core of the Dan Duncan Cancer
Center in Baylor College of Medicine for proteomic work.

References

Acconcia F, Kumar R. Signaling regulation of genomic and nongenomic functions of estrogen
receptors. Cancer Lett. 2006; 238:1–14. [PubMed: 16084012]

Amatschek S, Koenig U, Auer H, Steinlein P, Pacher M, Gruenfelder A, et al. Tissue-wide expression
profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res.
2004; 64:844–56. [PubMed: 14871811]

Anastasi S, Sala G, Huiping C, Caprini E, Russo G, Iacovelli S, et al. Loss of RALT/MIG-6 expression
in ERBB2-amplified breast carcinomas enhances ErbB-2 oncogenic potency and favors resistance
to Herceptin. Oncogene. 2005; 24:4540–8. [PubMed: 15856022]

Bhat-Nakshatri P, Wang G, Appaiah H, Luktuke N, Carroll JS, Geistlinger TR, et al. AKT alters
genome-wide estrogen receptor alpha binding and impacts estrogen signaling in breast cancer. Mol
Cell Biol. 2008; 28:7487–503. [PubMed: 18838536]

Bjornstrom L, Sjoberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and
nongenomic actions on target genes. Mol Endocrinol. 2005; 19:833–42. [PubMed: 15695368]

Boland R, Vasconsuelo A, Milanesi L, Ronda AC, de Boland AR. 17beta-estradiol signaling in
skeletal muscle cells and its relationship to apoptosis. Steroids. 2008; 73:859–63. [PubMed:
18272190]

Burbelo PD, Drechsel D, Hall A. A conserved binding motif defines numerous candidate target
proteins for both Cdc42 and Rac GTPases. J Biol Chem. 1995; 270:29071–4. [PubMed: 7493928]

Chambliss KL, Yuhanna IS, Anderson RG, Mendelsohn ME, Shaul PW. ERbeta has nongenomic
action in caveolae. Mol Endocrinol. 2002; 16:938–46. [PubMed: 11981029]

Cheskis BJ, Greger J, Cooch N, McNally C, McLarney S, Lam HS, et al. MNAR plays an important
role in ERa activation of Src/MAPK and PI3K/Akt signaling pathways. Steroids. 2008; 73:901–5.
[PubMed: 18261753]

Daikoku T, Hirota Y, Tranguch S, Joshi AR, DeMayo FJ, Lydon JP, et al. Conditional loss of uterine
Pten unfailingly and rapidly induces endometrial cancer in mice. Cancer Res. 2008; 68:5619–27.
[PubMed: 18632614]

Davoodi J, Lin L, Kelly J, Liston P, MacKenzie AE. Neuronal apoptosis-inhibitory protein does not
interact with Smac and requires ATP to bind caspase-9. J Biol Chem. 2004; 279:40622–8.
[PubMed: 15280366]

Deligdisch L, Holinka CF. Endometrial carcinoma: two diseases? Cancer Detect Prev. 1987; 10:237–
46. [PubMed: 3568022]

Di Cristofano A, Ellenson LH. Endometrial Carcinoma. Annu Rev Pathol. 2007; 2:57–85. [PubMed:
18039093]

Ejskjaer K, Sorensen BS, Poulsen SS, Forman A, Nexo E, Mogensen O. Expression of the epidermal
growth factor system in endometrioid endometrial cancer. Gynecol Oncol. 2007; 104:158–67.
[PubMed: 16962163]

Eldredge ER, Korf GM, Christensen TA, Connolly DC, Getz MJ, Maihle NJ. Activation of c-fos gene
expression by a kinase-deficient epidermal growth factor receptor. Mol Cell Biol. 1994; 14:7527–
34. [PubMed: 7935468]

Kim et al. Page 10

Oncogene. Author manuscript; available in PMC 2014 May 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Endrizzi MG, Hadinoto V, Growney JD, Miller W, Dietrich WF. Genomic sequence analysis of the
mouse Naip gene array. Genome Res. 2000; 10:1095–102. [PubMed: 10958627]

Erhardt P, Schremser EJ, Cooper GM. B-Raf inhibits programmed cell death downstream of
cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol.
1999; 19:5308–15. [PubMed: 10409722]

Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001; 411:342–8.
[PubMed: 11357141]

Ferby I, Reschke M, Kudlacek O, Knyazev P, Pante G, Amann K, et al. Mig6 is a negative regulator of
EGF receptor-mediated skin morphogenesis and tumor formation. Nat Med. 2006; 12:568–73.
[PubMed: 16648858]

Franco HL, Jeong JW, Tsai SY, Lydon JP, DeMayo FJ. In vivo analysis of progesterone receptor
action in the uterus during embryo implantation. Semin Cell Dev Biol. 2008; 19:178–86.
[PubMed: 18280760]

Freeman D, Lesche R, Kertesz N, Wang S, Li G, Gao J, et al. Genetic background controls tumor
development in PTEN-deficient mice. Cancer Res. 2006; 66:6492–6. [PubMed: 16818619]

Fukuda M, Gotoh I, Adachi M, Gotoh Y, Nishida E. A novel regulatory mechanism in the mitogen-
activated protein (MAP) kinase cascade. Role of nuclear export signal of MAP kinase kinase. J
Biol Chem. 1997; 272:32642–8. [PubMed: 9405481]

Gesty-Palmer D, El Shewy H, Kohout TA, Luttrell LM. beta-Arrestin 2 expression determines the
transcriptional response to lysophosphatidic acid stimulation in murine embryo fibroblasts. J Biol
Chem. 2005; 280:32157–67. [PubMed: 16027114]

Ito K, Utsunomiya H, Yaegashi N, Sasano H. Biological roles of estrogen and progesterone in human
endometrial carcinoma--new developments in potential endocrine therapy for endometrial cancer.
Endocr J. 2007; 54:667–79. [PubMed: 17785917]

Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin.
2006; 56:106–30. [PubMed: 16514137]

Jeong JW, Lee HS, Lee KY, White LD, Broaddus RR, Zhang YW, et al. Mig-6 modulates uterine
steroid hormone responsiveness and exhibits altered expression in endometrial disease. Proc Natl
Acad Sci U S A. 2009; 106:8677–82. [PubMed: 19439667]

Jiang BH, Liu LZ. PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta.
2008; 1784:150–8. [PubMed: 17964232]

Jin N, Gilbert JL, Broaddus RR, Demayo FJ, Jeong JW. Generation of a Mig-6 conditional null allele.
Genesis. 2007; 45:716–21. [PubMed: 17987665]

Jung SY, Li Y, Wang Y, Chen Y, Zhao Y, Qin J. Complications in the assignment of 14 and 28 Da
mass shift detected by mass spectrometry as in vivo methylation from endogenous proteins. Anal
Chem. 2008; 80:1721–9. [PubMed: 18247584]

Jung SY, Malovannaya A, Wei J, O'Malley BW, Qin J. Proteomic analysis of steady-state nuclear
hormone receptor coactivator complexes. Mol Endocrinol. 2005; 19:2451–65. [PubMed:
16051665]

Kakinuma N, Roy BC, Zhu Y, Wang Y, Kiyama R. Kank regulates RhoA-dependent formation of
actin stress fibers and cell migration via 14-3-3 in PI3K-Akt signaling. J Cell Biol. 2008; 181:537–
49. [PubMed: 18458160]

Kanamori Y, Kigawa J, Itamochi H, Shimada M, Takahashi M, Kamazawa S, et al. Correlation
between loss of PTEN expression and Akt phosphorylation in endometrial carcinoma. Clin Cancer
Res. 2001; 7:892–5. [PubMed: 11309338]

Khalifa MA, Mannel RS, Haraway SD, Walker J, Min KW. Expression of EGFR, HER-2/neu, P53,
and PCNA in endometrioid, serous papillary, and clear cell endometrial adenocarcinomas.
Gynecol Oncol. 1994; 53:84–92. [PubMed: 7909788]

Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell
Biol. 2005; 6:827–37. [PubMed: 16227978]

Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways
activated by stress and inflammation. Physiol Rev. 2001; 81:807–69. [PubMed: 11274345]

Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H, et al. Cre/loxP-mediated inactivation of the
murine Pten tumor suppressor gene. Genesis. 2002; 32:148–9. [PubMed: 11857804]

Kim et al. Page 11

Oncogene. Author manuscript; available in PMC 2014 May 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Levine RL, Cargile CB, Blazes MS, van Rees B, Kurman RJ, Ellenson LH. PTEN mutations and
microsatellite instability in complex atypical hyperplasia, a precursor lesion to uterine
endometrioid carcinoma. Cancer Res. 1998; 58:3254–8. [PubMed: 9699651]

Lian Z, De Luca P, Di Cristofano A. Gene expression analysis reveals a signature of estrogen receptor
activation upon loss of Pten in a mouse model of endometrial cancer. J Cell Physiol. 2006;
208:255–66. [PubMed: 16688764]

Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004; 432:307–15. [PubMed:
15549092]

Maier JK, Lahoua Z, Gendron NH, Fetni R, Johnston A, Davoodi J, et al. The neuronal apoptosis
inhibitory protein is a direct inhibitor of caspases 3 and 7. J Neurosci. 2002; 22:2035–43.
[PubMed: 11896143]

Makkinje A, Quinn DA, Chen A, Cadilla CL, Force T, Bonventre JV, et al. Gene 33/Mig-6, a
transcriptionally inducible adapter protein that binds GTP-Cdc42 and activates SAPK/JNK. A
potential marker transcript for chronic pathologic conditions, such as diabetic nephropathy.
Possible role in the response to persistent stress. J Biol Chem. 2000; 275:17838–47.

Malathi K, Paranjape JM, Bulanova E, Shim M, Guenther-Johnson JM, Faber PW, et al. A
transcriptional signaling pathway in the IFN system mediated by 2′-5′-oligoadenylate activation
of RNase L. Proc Natl Acad Sci U S A. 2005; 102:14533–8. [PubMed: 16203993]

Milanini-Mongiat J, Pouyssegur J, Pages G. Identification of two Sp1 phosphorylation sites for
p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor
gene transcription. J Biol Chem. 2002; 277:20631–9. [PubMed: 11904305]

Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, et al. Mutation of Pten/
Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A. 1999;
96:1563–8. [PubMed: 9990064]

Roy N, Mahadevan MS, McLean M, Shutler G, Yaraghi Z, Farahani R, et al. The gene for neuronal
apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell.
1995; 80:167–78. [PubMed: 7813013]

Saarikoski ST, Rivera SP, Hankinson O. Mitogen-inducible gene 6 (MIG-6), adipophilin and tuftelin
are inducible by hypoxia. FEBS Lett. 2002; 530:186–90. [PubMed: 12387890]

Sivridis E, Giatromanolaki A. Endometrial adenocarcinoma: beliefs and scepticism. Int J Surg Pathol.
2004; 12:99–105. [PubMed: 15173914]

Slaets H, Dumont D, Vanderlocht J, Noben JP, Leprince P, Robben J, et al. Leukemia inhibitory factor
induces an antiapoptotic response in oligodendrocytes through Akt-phosphorylation and up-
regulation of 14-3-3. Proteomics. 2008; 8:1237–47. [PubMed: 18338825]

Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology.
Annu Rev Biochem. 2000; 69:145–82. [PubMed: 10966456]

Song RX, Santen RJ. Apoptotic action of estrogen. Apoptosis. 2003; 8:55–60. [PubMed: 12510152]

Soyal SM, Mukherjee A, Lee KY, Li J, Li H, DeMayo FJ, et al. Cre-mediated recombination in cell
lineages that express the progesterone receptor. Genesis. 2005; 41:58–66. [PubMed: 15682389]

Spyridopoulos I, Sullivan AB, Kearney M, Isner JM, Losordo DW. Estrogen-receptor-mediated
inhibition of human endothelial cell apoptosis. Estradiol as a survival factor. Circulation. 1997;
95:1505–14. [PubMed: 9118519]

Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, et al. Identification of a candidate
tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced
cancers. Nat Genet. 1997; 15:356–62. [PubMed: 9090379]

Sun H, Enomoto T, Fujita M, Wada H, Yoshino K, Ozaki K, et al. Mutational analysis of the PTEN
gene in endometrial carcinoma and hyperplasia. Am J Clin Pathol. 2001; 115:32–8. [PubMed:
11190805]

Tashker JS, Olson M, Kornbluth S. Post-cytochrome C protection from apoptosis conferred by a
MAPK pathway in Xenopus egg extracts. Mol Biol Cell. 2002; 13:393–401. [PubMed: 11854398]

Thomas RS, Sarwar N, Phoenix F, Coombes RC, Ali S. Phosphorylation at serines 104 and 106 by
Erk1/2 MAPK is important for estrogen receptor-alpha activity. J Mol Endocrinol. 2008; 40:173–
84. [PubMed: 18372406]

Kim et al. Page 12

Oncogene. Author manuscript; available in PMC 2014 May 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



van Hemert MJ, Steensma HY, van Heusden GP. 14-3-3 proteins: key regulators of cell division,
signalling and apoptosis. Bioessays. 2001; 23:936–46. [PubMed: 11598960]

Vilgelm A, Lian Z, Wang H, Beauparlant SL, Klein-Szanto A, Ellenson LH, et al. Akt-mediated
phosphorylation and activation of estrogen receptor alpha is required for endometrial neoplastic
transformation in Pten+/− mice. Cancer Res. 2006; 66:3375–80. [PubMed: 16585156]

Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38
MAP kinases on apoptosis. Science. 1995; 270:1326–31. [PubMed: 7481820]

Yin Y, Huang WW, Lin C, Chen H, MacKenzie A, Ma L. Estrogen suppresses uterine epithelial
apoptosis by inducing birc1 expression. Mol Endocrinol. 2008; 22:113–25. [PubMed: 17901126]

Zhang YW, Staal B, Su Y, Swiatek P, Zhao P, Cao B, et al. Evidence that MIG-6 is a tumor-
suppressor gene. Oncogene. 2006

Zhang YW, Vande Woude GF. Mig-6, signal transduction, stress response and cancer. Cell Cycle.
2007; 6:507–13. [PubMed: 17351343]

Kim et al. Page 13

Oncogene. Author manuscript; available in PMC 2014 May 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Analysis of conditionally ablated Pten and Mig-6 in the murine uterus. (A and B) Real-time RT-PCR analysis of Mig-6 (A) and

Pten (B) in whole uterine extracts from control, Mig-6d/d, Ptend/d and Mig-6d/d Ptend/d 2 week old mice. **, p<0.01; ***,

p<0.001 (C and D) Western blot analysis (C) and Immunohistochemical analysis (D) for PTEN in control, Mig-6d/d, Ptend/d and

Mig-6d/d Ptend/d 2 week old mice.
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Figure 2.
Development of endometrial cancer in Mig-6d/dPtend/d mice. (A) Survival curve in control (PRcre/+, Mig-6f/f, Ptenf/f, and

Mig-6f/fPtenf/f), Mig-6d/d, Ptend/d, and Mig-6d/dPtend/d mice. p < 0.0001, logrank test. (B and C) The ratio of uterine weight to

body weight in control, Mig-6d/d, Ptend/d, and Mig-6d/dPtend/d mice at 2 (B) and 4 (C) weeks of age. ***, p < 0.001, one-way

ANOVA followed by Tukey's post hoc multiple range test. (D) Gross anatomy of control, Mig-6d/d, Ptend/d, and Mig-6d/dPtend/d

mice at 4 weeks of age. (E) Histology of uteri from mice with Pten and Mig-6 ablation. H&E staining of control, Mig-6d/d,

Ptend/d, and Mig-6d/dPtend/d mice at 2 and 4 weeks of age. (F) Endometrial cancer that has invaded through the myometrium. (G

and H) Endometrial cancer that has metastasized into the ovary (G) and skeletal muscle (H).
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Figure 3.
The regulation of proliferation and apoptosis by Mig-6. (A) Immunohistochemical analysis of phospho-histone H3 as a

proliferation marker in uteri of control, Mig-6d/d, Ptend/d, and Mig-6d/d Ptend/d mice at 2 weeks of age. (B) Quantification of

phospho-histone H3 positive cells in epithelial and stromal cells (C) Immunohistochemical analysis of cleaved caspase 3 as an

apoptotic cell marker. Small arrows indicate apoptotic cells. (D) Quantification of cleaved caspase 3 positive cells in epithelial

and stromal cells. *, p<0.05; ***, p<0.001
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Figure 4.
The regulation of Birc1 genes in the uteri of Mig-6 ablation. (A) Real-time RT-PCR analysis of Birc1a, Birc1b, and Birc1e was

performed on uteri of Mig-6d/d and Mig-6f/f mice treated with E2 for 3 days. (B) Real-time RT-PCR analysis of Birc1a, Birc1b,

and Birc1e was performed on uteri of control, Mig-6d/d, Ptend/d, and Mig-6d/d Ptend/d mice at 2 weeks of age. *, p < 0.05
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Figure 5.
Interaction between MIG-6 and ERK2 in the murine uterus. (A) Validation of the MIG-6 interaction with ERK2 by co-

immunoprecipitation and Western blot analysis. (B) Western blot analysis of ERK2 and phospho-ERK2 in the uteri of 5 month

old Mig-6f/f and Mig- 6d/d mice. (C) Western blot analysis of ERK2 and phospho-ERK2 in the uteri of 2 weeks old control,

Mig-6d/d, Ptend/d, and Mig-6d/d Ptend/d mice. (D) The expression of ERK2 target genes. Real-time RT-PCR analysis of Fos,

Junb, Ptgs2, Gdf15, Vegfa, F3, and Serpin1 was performed on uteri of control, Mig-6d/d, Ptend/d, and Mig-6d/d Ptend/d mice. **,

p<0.01; ***, p<0.001
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