Radiometric Calibration of LIDAR Intensity With Commercially Available Reference Targets

Sanna Kaasalainen, Hannu Hyypää, Antero Kukko, Paula Litkey, Eero Ahokas, Juha Hyypää, Hubert Lehner, Anttoni Jaakkola, Juha Suomalainen, Altti Akujärvi, Mikko Kaasalainen, and Ulla Pyysalo

Abstract—We present a new approach for radiometric calibration of light detection and ranging (LIDAR) intensity data and demonstrate an application of this method to natural targets. The method is based on 1) using commercially available sand and gravel as reference targets and 2) the calibration of these reference targets in the laboratory conditions to know their backscatter properties. We have investigated the target properties crucial for accurate and consistent reflectance calibration and present a set of ideal targets easily available for calibration purposes. The first results from LIDAR-based brightness measurement of grass and sand show that the gravel-based calibration approach works in practice, is cost effective, and produces statistically meaningful results: Comparison of results from two separate airborne laser scanning campaigns shows that the relative calibration produces repeatable reflectance values.

Index Terms—Calibration, laser measurements, laser radar, laser radiation effects, remote sensing.

I. INTRODUCTION

RANGE measurements with airborne laser scanners have been developed and studied for two decades [1] with an increasing number of applications to environmental sciences [2]–[4]. Recently, environmental applications of terrestrial laser scanning have also been introduced [5]. Among the latest advances in laser scanning study is the calibration and more effective usage of the intensity information recorded by most laser scanners [6]–[8]. Thus far, the uncalibrated airborne laser scanning (ALS) intensity data have mainly been used for target classification purposes of, e.g., trees and vegetation [9], [10] or snow in glaciers [11] but practical demonstrations of radiometric (brightness) calibration are still scarce, and the intensity has often been investigated rather by integration to other sensors, such as aerial imagery [12], [13]. There is also a growing interest in light detection and ranging (LIDAR) range data combined with hyperspectral reflectance for faster and more accurate classification of, e.g., forest parameters [14]. The availability of calibrated laser-based reflectance values would be significant with respect to automatic classification and data processing, and it would also solve some practical problems related to the combination of separate ALS data sets. There are also applications where separate aerial imaging flights would not be needed if calibrated intensity values from laser scanning were available, which would reduce the costs of airborne campaigns. Since ALS is increasingly being applied in countrywide data collection, calibrated intensity would provide another data set to be used in the future studies of global change.

In this paper, we investigate the calibration of intensity as the ratio of received power from the target to that received from a reference sample measured similarly to the target. The radar equation defines the power entering the receiver as [3]

$$P_r = \frac{P_t D_r^2}{4\pi R^4} \beta_s \rho \sigma$$

(1)

where P_t is the transmitted power, D_r is the receiver aperture, R is the range, and β_s is the transmitter beamwidth. The backscatter coefficient σ depends on the scattering solid angle Ω, the receiving area of the scatterer A_s, and the reflectivity ρ

$$\sigma = \frac{4\pi}{\Omega} \rho A_s$$

(2)

There are some variations in the definition and usage of the terms “intensity,” “reflectance,” and “brightness,” particularly between different fields of environmental study that apply the physics of radiation in the interpretation of data. In laser scanning, the term intensity often represents the momentarily received power of the backscattered pulse. In this paper, the term reflectance is used as the laser power calibrated with that of a similarly measured reflectance standard and most closely represents the reflectance factor, which is defined as the ratio of the reflectance of the surface to that of a perfectly diffuse (Lambert) surface measured in similar conditions of illumination and geometry [15]. Although it is practically impossible to find a perfect Lambert reference for ALS applications (because of both the limitations set by the measurement geometry [7], [16] and the requirements of the field use of these targets), it is

Manuscript received March 3, 2008; revised June 26, 2008. First published November 25, 2008; current version published January 28, 2009. This work was supported by the Academy of Finland under Projects “Improving the Applicability of Intensity Information in Laser Scanning” and “Processing and Application of 3-D/4-D Information for Road and Environmental Engineering.”

S. Kaasalainen, A. Kukko, P. Litkey, E. Ahokas, A. Jaakkola, and J. Suomalainen are with the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, 02431 Masala, Finland (e-mail: Sanna.Kaasalainen@fgi.fi).

H. Hyypää is with the Research Institute of Measuring and Modelling for the Built Environment, Department of Surveying, Helsinki University of Technology, 02150 Espoo, Finland (e-mail: Hannu.Hyypaa@ttk.fi).

J. Hyypää is with the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, 02431 Masala, Finland.

H. Lehner is with the Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, 1040 Vienna, Austria.

A. Akujärvi is with the Department of Physics, University of Helsinki, 00141 Helsinki, Finland.

M. Kaasalainen is with the Department of Mathematics and Statistics, University of Helsinki, 00141 Helsinki, Finland.

U. Pyysalo is with Finnish Geodetic Institute, 02431 Masala, Finland.

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2008.2003351
possible to normalize the reflectances of the field standards in a laboratory using a practically Lambertian standard. The recent international effort and projects related to the ALS intensity calibration concept are likely to bring many new insights into the technology and physics of LIDAR intensity measurement in the near future.

The development of the ALS intensity calibration concept demonstrated in this paper started in 2005 with the use of custom made brightness tarps, which could be used as reference targets in the flight area. This kind of approach has been first applied in the radiometric calibration of digital aerial images (e.g., [17]), and the first results of their usage in laser scanning were presented in [18] and [19]. The major drawbacks in using tarps as references are the high cost and limitations in availability if replacement is needed because of changes in the surface (caused by, e.g., surface impurity and weathering effects) [19], which lead to the search and investigation of low-cost, easily available, and transportable targets, allowing the use of the calibration method more widely. In this paper, we introduce a new approach for using reference targets based on commercially available sand and gravel instead of custom-made tarps. We concentrate on calibrating flat surfaces using non-waveform ALS data, whereas for distributed targets, such as forests, and for exact laser calibration, the full waveform capability may be needed in the future. The basic hypothesis of the study is that the received intensity after radiometric calibration describes target backscattering properties at least for flat surfaces. We also present the first practical demonstration and test of the reference target-based calibration method for natural ALS land targets and evaluate the reliability of these results. This paper is arranged as follows. The details of the ALS campaigns and laboratory measurements are presented in Section II including a description of samples and land targets. Section III presents the results from the initial test measurements and campaigns to find the most suitable samples for calibration and the results from the ALS flight campaigns where these samples were further investigated and applied in the calibration of land targets. The conclusion is in Section IV.

II. MEASUREMENT CAMPAIGNS AND EXPERIMENTS

A. ALS Campaigns

Airborne laser scanner data from three different flight campaigns and instruments are studied in this paper. The flight parameters and targets are summarized in Table I.

<table>
<thead>
<tr>
<th>Location & Date</th>
<th>Scanner</th>
<th>Altitude (m)</th>
<th>Targets (Approx. no. of points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuukso, May 2006</td>
<td>Optech ALTM 3100</td>
<td>1000</td>
<td>Greens (500-3000), Bunkers (50-400)</td>
</tr>
<tr>
<td>Espoon, Dec 2006</td>
<td>TopEye Mk-II</td>
<td>300</td>
<td>Gravels (test set) (20-40)</td>
</tr>
<tr>
<td>Nuukso, Jul 2007</td>
<td>Leica ALS50</td>
<td>450</td>
<td>Gravels (20), Greens (800-1600), Bunkers (400-800)</td>
</tr>
</tbody>
</table>

The laser wavelength was 1064nm in all campaigns. The TopEye instrument recorded the entire waveform.

The first test campaign with a preliminary set of gravel and natural test targets occurred in the Espoonlahti December 2006 campaign with a TopEye MK-II 1064-nm laser scanner. The flight altitude was 300 m, and the test area consisted of the Espoonlahti boat harbor and beach (see [7] and [19] for more details on the target site and campaign).

Another set of gravel was measured during the Nuukso July 2007 flights with Leica ALS50-II at a 450-m flight altitude. The location of the gravel targets in the premises of the Lakisto golf course provided us with an ideal opportunity for testing the calibration method with simple natural targets chosen from the golf course: putting greens and sand bunkers, which should be relatively homogeneous in quality and surface properties. The location of the reference targets as well as the measured greens and bunkers are seen in the aerial image of the test site, taken simultaneously with the laser flights (Fig. 1).

The first test campaign with a preliminary set of gravel and natural test targets occurred in the Espoonlahti December 2006 campaign with a TopEye MK-II 1064-nm laser scanner. The flight altitude was 300 m, and the test area consisted of the Espoonlahti boat harbor and beach (see [7] and [19] for more details on the target site and campaign).

For comparison, data from greens and bunkers (from Master Golf course located in the area) are also included from the Nuukso flight campaign on May 14–15, 2006. The data were acquired at an altitude of 1000 m with the Optech ALTM 3100 laser scanner. In this campaign, portable tarps were used for intensity calibration and provided a reference for usage and comparison of the brightness data [19].

Fig. 1. Nuukso July 2007 flight line over the Lakisto golf course (marked with a straight white line). The calibration gravel targets were placed inside the white circle, and the white squares denote the greens and bunkers, for which the intensity was measured and calibrated.
use beam splitter-based techniques to produce the 0◦ beam geometry achieved with the beam splitter.

The effect of the range of each ALS survey was compensated to reference height assuming an R^2 relationship with the received power and the range to guarantee that measurements taken from different ranges were comparable, i.e., the laser beam was assumed to cover a number of individual scatterers.

B. Terrestrial Laser Scanner

To provide controlled laboratory reference measurements and investigate the problems and challenges related to the reflectance measurement carried out with a scanning (range) instrument, we measured the intensities of all targets with the 785-nm FARO LS 880HE80 terrestrial laser scanner (TLS). The scanner uses a phase modulation technique for the distance measurement with the accuracy of 3–5 mm and 360° × 320° field of view. Additional corrections to the intensity values had to be applied because of the nonlinearity of the detector brightness scale (see [20] and references therein). Since the detector of the scanner is not optimized for intensity measurement. To produce a consistent intensity calibration, all laboratory measurements were carried out from a 1-m distance.

C. Laboratory Reference Measurements

The laboratory reference measurements were carried out to provide calibrated reference values for the reflectance of commercial and natural targets and to compare the consistency of the reflectances measured with different techniques, which is important for a calibration target to produce reliable results. The instruments used in the optical studies of backscatter commonly use beam splitter-based techniques to produce the 0◦ viewing geometry, where the light paths of the source and detector coincide (see [20] and references therein). Airborne laser scanners operate at backscatter geometry, because the long distance of the target (relative to that between the source and detector) causes the source–target–detector angle to be practically 0◦. The laboratory experiment in this study (see Fig. 2 for an illustration) was based on the standard technique for backscatter measurements and has been described in detail in many of our previous articles (e.g., [7] and [16]). The instrument consists of a 10-mW 1064-nm Nd:YAG (neodymium yttrium aluminum garnet) laser, a 16-b monochrome digital camera (Sbgu ST-7 CCD), and a near-infrared beam splitter to work out the backscatter geometry, i.e., the laser beam is first reflected into the sample by the beam splitter, and the retroreflected intensity is observed through the beam splitter with the charge-coupled device (CCD) detector placed above the beam splitter and sample. To decrease the effect of laser speckle and allow a larger area of the sample to be illuminated (and hence reduce the deviation in data), the samples were placed on a rotator allowing the laser spot to move around the sample surface during the camera exposures. The high output power of the laser source required a neutral density filter in front of the source to avoid saturation in the CCD images. The linear polarization of the Nd:YAG was scrambled with a quarter-wave ($\lambda/4$) plate placed in front of the source.

To compare the backscatter intensities to those at nonzero viewing angles, the source–target–detector angle around the 0◦ backscatter angle was changed by rotating the beam splitter to change the angle of incidence to the sample and, hence, the viewing geometry.

D. Samples

As the study started with a search of most suitable targets to be used in the ALS campaigns, a large set of different sand and gravel was investigated in the laboratory and during different phases of the study. This is a short description of each sample (the abbreviations used for each sample hereafter have also been included in parentheses).

A set of industrial samples was obtained from Lohja Rudus Ltd. and included sand used in children’s playgrounds for sandboxes (Play) and producing safe grounds, e.g., under swings (Safety). The play sand has a structure suitable for dense packing, whereas the safety sand does not compress easily. There are also sand used in construction, such as concrete (Concrete) and fine structured filling (Filler), and golf courses (Golf). The grain size range of these sand samples varied between less than 1 and 8 mm (concrete sand having the largest grain sizes, whereas all others were less than 5 mm).

Another set of samples consisted sand and gravel available in standard hardware stores and commonly used in construction and gardening. The samples included black diabase (Diabase) and yellow quartz (Quartz), crushed light expanded clay aggregate (LECA), which consists of lightweight particles of burnt clay (LECA), and a sample of coarse gravel used for sanding the roads (Gravel). To complement the sample variety, another set was acquired, including black gabbro (Gabbro), crushed redbrick (C Brick), and two samples of sandblasting sand with grain sizes of 0.1–0.6 mm (Sand01) and 0.5–1.2 mm (Sand05). Some miscellaneous targets were also included in the study, such as a piece of polystyrene (Polystyrene) and some natural targets that appeared in the ALS flight campaign sites: beach sand (Beach) and gravel from Espoonlathi boat harbor (Harbor) and a sample of bunker sand (Bunker) from the Lakisto golf course in the Nuuksio target area.

A photograph of all samples is shown in Fig. 3. The size of each container in the image is 11 × 11 cm.

The ALS calibration was tested for golf greens and bunkers measured at the Nuuksio 2006 Optech and Nuuksio 2007 Leica ALS campaigns. The greens are mostly flat (or slightly sloped), and the grass is uniform and short. The bunker sand is usually carefully raked to produce an even surface. This means that
there is little variation from target to target, which makes them ideal targets for testing and evaluating the calibration procedure.

III. Results and Discussion

A. Relative Reflectance Variations Between Laboratory and Terrestrial Laser Scanner

To investigate the consistency of results between different instruments and the further corrections needed to compare the results, we present the calibrated reflectances of all samples measured at the laboratory with the FARO terrestrial laser scanner and the Nd:YAG 1064-nm laser and CCD camera in Table II. For Nd:YAG/CCD data, each data point is an average of five images of 20-s CCD exposure. All reflectances in Table II are relative to the 99% Spectralon (Labsphere Inc.) reference target measured similarly to the samples. The Spectralon standard is widely used in spectroscopic applications to represent a Lambertian surface.

There is some disagreement between the reflectance values in Table II, which results from several factors that require further correction or must at least be taken into account when comparing results from different instruments. To summarize, the most important factors that may cause variation in the results are the following:

1) the aperture size of the light source and detector;
2) the wavelength differences;
3) measurement geometry: the angle of incidence;
4) the wetness of the targets;
5) the uncertainty of the backscatter measurement;
6) the polarization effects;
7) the scale difference between laboratory and airborne measurement;
8) the effects of the echo detection algorithm and possible gain control of an laser scanner.

In this study, the correction with respect to the aperture size was carried out for laboratory (Nd:YAG and FARO) data, as well as a wavelength normalization for the FARO results. The rest of the effects were either negligible in these measurements or could not be taken into account because of the lack of information (such as the echo detection). In what follows, we discuss each of these factors and their effects in more detail.

1) The aperture widths of the light source and detector typically cause a significant flattening of the measured intensity curve at small source–sample–detector angles (backscatter, see Fig. 4 for an intensity versus angle curve), particularly at angles corresponding to the angular aperture widths θ_i of the source and the detector as seen from the sample, i.e., the sum of

$$\theta_i = 2 \arctan \frac{d/2}{R}$$ (3)

TABLE II

<table>
<thead>
<tr>
<th>Sample</th>
<th>FARO 785 nm</th>
<th>Nd:YAG + CCD 1064 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play</td>
<td>0.26</td>
<td>0.33</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>Golf</td>
<td>0.17</td>
<td>0.23</td>
</tr>
<tr>
<td>Safety</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>Filler</td>
<td>0.32</td>
<td>0.42</td>
</tr>
<tr>
<td>Diabase</td>
<td>0.16</td>
<td>0.36</td>
</tr>
<tr>
<td>Quartz</td>
<td>0.41</td>
<td>0.34</td>
</tr>
<tr>
<td>Gravel</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>LECA</td>
<td>0.11</td>
<td>0.13</td>
</tr>
<tr>
<td>Gabbro</td>
<td>0.09</td>
<td>0.14</td>
</tr>
<tr>
<td>C Brick</td>
<td>0.26</td>
<td>0.61</td>
</tr>
<tr>
<td>Sand05</td>
<td>0.26</td>
<td>0.23</td>
</tr>
<tr>
<td>Sand01</td>
<td>0.26</td>
<td>0.32</td>
</tr>
<tr>
<td>Beach</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>Harbor</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>0.91</td>
<td>0.59</td>
</tr>
<tr>
<td>Bunker</td>
<td>0.25</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Reflectances relative to 99% Spectralon®. No aperture or wavelength corrections have been applied (see Sect. IIIA).
where \(d \) is the source/target aperture diameter and \(R \) is the distance to the target (see [16] and [21] for a more detailed discussion of the aperture effect). The relative decrease \(D \) in measured intensity has been shown to be approximately [21]

\[
D = \frac{s\alpha}{4\omega}
\]

(4)

where \(s \) is the relative enhancement in the backscatter intensity of the target, \(\alpha \) is the combined angular aperture size of the source and detector, and \(\omega \) is the width of the nonlinear backscatter intensity peak (such as that in Fig. 4). Because of the distances of the airborne instruments, the angular aperture of an airborne laser scanner is almost negligible, and typically produces a drop of the order of 0.5% in the measured intensity [21].

As the terrestrial (TLS) and laboratory instruments have significantly greater angular apertures, we have applied the correction [\(s \)] into the Nd:YAG and FARO TLS measurements. For this, the intensity enhancement \(s \) and its angular width \(\omega \) for each target have been taken from a large database of backscatter measurements presented in our previous studies ([22] and references therein): \(s \) is computed from these measurements to be approximately \((I(0^\circ) - I(5^\circ))/I(0^\circ)\) (where the \(5^\circ \) viewing angle is assumed to be outside the angular range where the target intensity is peaked due to backscatter effects), and since \(\omega \) is typically within \(1^\circ \) for the sand and gravel type of targets [22], we have approximated \(\omega = 1^\circ \) for all targets. The backscatter effects have been measured for all targets except for Diabase, Quartz, and Bunker, for which \(s \) was approximated with the aid of similar types of targets (e.g., Gabbro and sand).

2) As there is a wavelength difference between FARO (785 nm) and the other (laboratory and airborne) experiments (1064 nm), we normalized the FARO reflectances of the targets used in the Nuuksio July 2007 Leica campaign to 1064 nm using their reflectance spectra, measured with a system consisting of flashlight illumination placed right on top of each sample (i.e., the zenith) and the fiber detector of the ASD FieldSpec Pro spectrometer placed at about 30° from the zenith. The reflectances at both wavelengths, calibrated with Spectralon reference plate, are shown in Fig. 5. Slight wavelength differences occur, particularly for the C Brick sample, which has a strong increase in brightness toward the near-infrared wavelengths. Even though the best practice in the future calibration procedures would be to carry out the reference measurements at the same wavelength as the airborne experiments, we used this \(a d h o c \) correction of FARO wavelengths to be able to compare the airborne laser scanner and TLS (and laboratory laser) results. These comparisons give important information of the target properties and the performance of the instruments at this point of the study. It also turns out that the wavelength differences for this type of targets (namely sand and gravel) are almost negligible for most targets (as it can be seen in Fig. 5).

3) The angle of incidence on the sample has a significant effect on the measurements, particularly at large (> 20°) angles of incidence [23] and when range effects are not compensated. As all the laboratory measurements were made at normal (0°) incidence and the incidence angle range for the Leica and Optech measurements were below 5° and 10°, respectively, no corrections were necessary to the results presented in this paper (see [23] for more details).

4) The wetness of the target becomes an issue in outdoor experiments. We have investigated the brightness effects for the industrial sand samples obtained from Lohja Rudus and the Gabbro and C Brick samples, and found an evident effect of moisture (Fig. 6), which typically varied from a 30% to 50% drop in reflectance, when the samples were thoroughly soaked. In the experiments and campaigns presented in this paper, the laboratory samples were dry, and as the airborne campaigns were carried out mostly in fair weather conditions, moisture does not play a major role in the present results. However, wetness is an important object of future study, which should include a
measurement of the amount of water in the target and the corresponding effect on its intensity.

5) Because of the peaked nature of the intensity in the backscatter measurement geometry (see Fig. 4 for a typical intensity versus measurement geometry), uncertainty and random errors in the measurement are likely. Therefore, strong conclusions should only be made on the basis of a large bulk of results rather than a single observation.

6) Polarization effects play a strong role in the backscatter intensity effects (e.g., [24] and [25] and references therein). They are an important object of extensive future studies, which would also provide significant prospects of using the polarization information of the laser scanner intensity data for target classification and characterization (which is being done in, e.g., radar remote sensing of vegetation [26]). In this study, the linear polarization of the Nd:YAG laser was scrambled using a λ/4 plate in front of the source. The laser sources in airborne and FARO scanners are typically nonpolarized; therefore, the polarization effects were not an issue of this study.

7) The scale difference between laboratory and ALS are large, ranging from a few centimeters (laboratory) to some 50-cm footprint (ALS). Even though the laboratory laser footprint size was increased by sample rotation during long (up to 20 s) exposures, more information is needed about the scale variations (with respect to the scale variation in target surface structure), particularly in the airborne laser measurement (see also [23]). The upcoming future flight campaigns will increase the airborne intensity database and provide a larger sampling to investigate these effects, as well as other effects arising from differences in instrumentation and measurement technique.

8) One of the factors in an exact range measurement is the echo detection algorithm. Since the length of the laser pulse is longer than the accuracy needed, a specific timing in the return pulse needs to be defined. In a non-waveform ranging system, analog detectors are used to derive discrete time-stamped trigger pulses from the received signal in real time during the acquisition process, whereas a software-based solution can be applied in the postprocessing stage of waveform data using, e.g., leading edge discriminator/threshold, center of gravity, maximum, zero crossing of the second derivative, and constant fraction. Unfortunately, most commercial ALS systems do not provide detailed information on the analog detection method, even though different detection methods may cause some changes into the range and intensity estimates [27], [28]. In practice, strong intensity causes the widening of the echo and, thus, the change of the obtained timing and range measurement. Therefore, some of the ALS systems (e.g., the Leica ALS-50II) use automatic gain control (AGC) to keep the returned power within a certain limit. This helps in keeping the high accuracy in range, but it also distorts the intensity value. By the AGC value, the accurate intensity should be decrypted, preferably with the information given by the system provider. In this paper, there were differences in the AGC values between the scanner sweep directions, which resulted in differences up to 10% in the intensity values in the Leica ALS data. The AGC was not used in the Optech ALTM scanner.

B. Choice of Gravel Practical for Calibration

Comparison of the measurements made with terrestrial instruments (i.e., the TLS and the laboratory laser instrument) and the results from the first airborne test campaign in Espoonlahti (December 2006) gave us some valuable practical information about the properties that are crucial for the calibration samples to be reliable. The targets for the Nuukso July 2007 flight campaign were chosen according to the experience from these experiments. Here, we discuss the most important criteria.

Consistency between laboratory and laser scanner measurement, i.e., the deviation in data from different experiments should be as small as possible, even though systematic and random errors would always cause inaccuracy and the calibration would therefore be best to perform with the same instrument as the measurements. However, consistency between different instruments seems to be a good measure of the stability of the target and the performance of the instruments; therefore, the laboratory reflectance calibration is essential for the selection and use of the gravel samples, and it is important that the results are consistent even in the laboratory scale. The footprint of an airborne laser scanner might allow larger scale variations in the target structure and surface brightness, but reproducing such results with a collimated laser source [which is needed to reproduce the backscatter measurement geometry of laser scanners (e.g., [7] and [19])] proves a challenge if the targets are not uniformly structured. Preliminary tests have shown that grains with matte surfaces and uniform color range (and surface structure) with respect to the dimensions of the measurement (laser spot/footprint size) produce most stable results, whereas, e.g., glossy and crystalline grains cause specular reflections, which may lead to different results at different measurement scales and cause strong deviation in data (cf. [23]). This can be seen in Tables III and IV, where the results for, e.g., Diabase and Quartz (Table III) show large differences, whereas the reflectance levels for, e.g., LECA (Tables III and IV) and Sand01 (Fig. 7) are better reproduced. The differences are also seen in the aperture corrected reflectance plot (Fig. 7).

Easy (commercial) availability of the targets in standard hardware stores was one of the starting points of this study.
TABLE IV
REFLECTANCES FROM NUUKSIO JULY 2007 FLIGHT CAMPAIGN, COMPARED WITH APERTURE CORRECTED REFLECTANCES FROM LABORATORY (FARO TLS AND Nd:Y AG) MEASUREMENTS. ALL MEASUREMENTS ARE RELATIVE TO THE SAND01 SAMPLE

<table>
<thead>
<tr>
<th>Sample</th>
<th>Nuukso Jul 07, Leica</th>
<th>FARO</th>
<th>Nd:Y AG (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leca</td>
<td>0.36</td>
<td>0.47</td>
<td>0.40</td>
</tr>
<tr>
<td>Gabbro</td>
<td>0.30</td>
<td>0.38</td>
<td>0.45</td>
</tr>
<tr>
<td>C Brick</td>
<td>2.16</td>
<td>1.12</td>
<td>1.91</td>
</tr>
<tr>
<td>Sand05</td>
<td>0.75</td>
<td>1.02</td>
<td>0.70</td>
</tr>
<tr>
<td>Sand01</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Bunker</td>
<td>0.93</td>
<td>0.99</td>
<td>0.74</td>
</tr>
</tbody>
</table>

N.B. The wavelength difference between FARO and other instruments has not been corrected in this table, which causes differences between FARO and other measurements.

This would be practical for the calibration of airborne laser data taken at different campaigns in varying locations. The sand and gravel tested in this study are commonly used in sandblasting (Sand01 and Sand05), construction (e.g., LECA, Play, and Safety sand) and gardening (e.g., C brick, Quartz, Diabase, and Gabbro). They are available in small quantities in hardware stores or in bulk from the manufacturer. This also provides an easy replacement when dirt accumulates and causes a change in the target optical properties, and when there are damages that might occur because of weather effects (e.g., in case of flight delays) or during transportation, setup, or between consecutive flights.

It was also important that the targets were easy to transport. This is why we also included some lightweight targets into the study (LECA and Polystyrene) and made some preliminary tests with some natural sand targets that were available on site without transportation (Beach, Harbor, and Bunker sand). In particular, if a grayscale is needed, a large set of gravel has to be transported, and the total weight easily sums up to several thousands of kilograms. However, it turns out that, at this point, the stability of the target between measurements is a more important criterion than transportability. For example, the Harbor and Bunker targets showed a great variation and were not ideal choices for calibration purposes.

Distinctly different reflectances within a set of targets would provide the best grayscale, particularly if the performance of the instrument (particularly the linearity of the detector) at different brightness scales must be evaluated. The preliminary test measurements for a large set of gravel showed that it is difficult to find a gravel target of high reflectance suitable for calibration. Therefore, to extend the brightness scale toward higher reflectances, we included a sample of Quartz and Polystyrene into the investigation but these targets were not the most stable ones either.

We also wanted to investigate the role of surface roughness by the choice of samples with different roughness scales (from 0.1 mm to the centimeter scale). The first results suggest that the color and brightness variations within the target would play a stronger role than the differences in grain size, but more results, particularly from ALS, would be crucial for further investigation on the effect of surface properties.

Little variation with the measurement geometry: A strong enhancement in intensity toward backscatter has been detected for all the samples and is evident because of the ubiquitous nature of the effect [20] (see Fig. 4 for a typical intensity versus backscatter angle function). Therefore, the backscatter intensity enhancement cannot be a criterion for selecting the targets, but should be taken into account when comparing the laser scanner-based intensities to those obtained with passive instruments (e.g., aerial images), which mostly operate at different measurement geometry than backscatter. The incidence angle dependence was relatively low for the chosen samples in the angular range of the airborne campaigns (see Section III-A and [23]).

The first set of gravel was measured in the Espoonlahti December 2006 flight campaign (TopEye MKII, see Table I for details). The results plotted in Table III show that all gravel in the set (except for LECA) showed poor repeatability between measurements. This is most likely due to the inaccuracy in laboratory (laser and FARO) experiments caused by, e.g., strong specular reflections, particularly for Quartz and Diabase, as discussed previously.

An improved (with respect to the aforementioned criteria) set of gravel was chosen for the Nuukso July 2007 campaign (Leica ALS50). The results in Table IV show somewhat better agreement, particularly between the 1064-nm Nd:Y AG and Leica ALS results, and enabled a further test and analysis of the calibration properties.

C. Nuukso July 2007 Airborne Campaign

Fig. 8 shows the gravel setups at both Nuukso 2007 and Espoonlahti 2006 campaigns. Fig. 9 shows the intensity plot (raw data) of the entire set of gravel set up at the Lakisto golf course during the Nuukso 2007 flight campaign. The
raw data intensity levels imply that the targets had produced distinguishable intensities. The intensity points corresponding to each target were averaged and scaled at a 500-m altitude. The scaling was done by means of multiplying the original intensity by the ratio of the squared distance and the squared reference distance (500 m). The result was then divided by the squared atmospheric transmittance calculated with the MODTRAN software (using the midlatitude summer model parameters with rural aerosols and 23-km visibility, see [18] for details).

The calibrated reflectances are shown in Fig. 10. The calibration included the correction of returned intensity as a function of range and atmospheric attenuation described previously [18]. Comparison with laboratory (Nd:YAG and FARO) data (uncorrected with respect to the aperture and wavelength differences) is also presented. The error bars shown in Fig. 10 are the standard deviations of the relative reflectances. The standard deviations for these targets in the Leica, Faro, and Nd:YAG measurements are on the order of 0.05–0.2, 0.01, and 0.01–0.09, respectively. In Fig. 11, the Nd:YAG and FARO reflectance values were corrected with respect to aperture size [(3) and (4)] and the FARO reflectances were normalized to a 1064-nm wavelength (cf. Fig. 5 where the wavelength differences are plotted for all samples). It must be noted from Figs. 10 and 11, however, that the aperture size effect does not seem to be the greatest error source in these results.

The agreement in the results is mostly better between the airborne laser scanner (Leica) and laboratory (Nd:YAG/CCD) measurement than that with the FARO terrestrial scanner. In spite of the random errors and inaccuracy because of the measurement geometry, it can be observed that the agreement with those samples with most uniform surface color, i.e., LECA, Gabbro, C Brick, and Sand01, is better. Sand01, the sandblasting sand with the finest grain size, is normalized to 1.0 in Figs. 10 and 11, but the original reflectance values are
shown in the aperture corrected plot of Nd:YAG and FARO measurements in Fig. 7, showing a reasonable agreement. For this reason and the fact that Sand01 represented the brighter end of the reflectance scale of this set of gravel, it was chosen as the reference for the calibration of the green and bunker intensities.

It must be noted that, in spite of all the corrections, differences in the reflectance values between different instruments still exist. More experiments are needed to find the error sources and possible correction of the remaining uncertainties, and to find out the range where the measurements between different instruments are repeatable. Because relative calibration is mostly carried out with calibration targets measured with the same instrument (and during the same experiment), these uncertainties may not prevent the calibration, even though agreement between different instruments also means a better stability within results from the same instrument (cf. the discussion on target stability in Section III-B) and is therefore necessary in the search and further development of reliable and stable calibration targets. The stability of the calibration target is important to reduce the systematic error in calibrated reflectances caused by possible inaccuracies in the reference target reflectance.

D. Application: Calibration of Grass and Bunker Sand

The airborne test results of the calibration of golf greens and bunkers, measured at the Nuukso May 2006 Optech and Nuukso July 2007 Leica ALS campaigns, are shown in Fig. 12. The data from the May 2006 campaign were corrected for distance and atmospheric transmittance similarly to those in the July 2007 campaign (see Section III-C). Since the aim of the May 2006 campaign was originally to test the use of portable tarps [19], no gravel was available, but the results are calibrated with the test tarp of 45% nominal reflectance. To put the July 2007 results into the same scale, we normalized the reflectance of Sand01 with the 45% target (as Nd:YAG reflectance data exist for both of these, this normalization was possible).

The average reflectance of the greens and bunkers measured in May 2006 (Master Golf) were 1.74 and 0.67, respectively. The corresponding reflectances for July 2007 (Lakisto) greens and bunkers were 1.75 and 0.65, respectively, which indicates a reasonable agreement for a similar type of targets even though there is deviation in data.

Although the number of samples is somewhat low for standard statistical tests, we can apply Student’s t-test and the F-test (e.g., [29]) to estimate with what probability the two sample sets (Lakisto and Master Golf) are drawn from distributions that have the same mean. The variances of the sets are essentially the same, and we find that the green samples have the same mean with about 90% probability, while for the bunker samples this probability is about 80%. Thus, we can estimate that the Lakisto and Master Golf samples have similar properties with a statistically significant probability.

These results also point out the feasibility of indirect laboratory calibration in cases where different calibration targets have been used at different campaigns. This means that radiometric calibration of ALS intensity is equally possible with gravel targets as with custom made tarps used thus far.

Further test flights are needed to assess and improve the accuracy of these methods, but since the intensity calibration most often has to be carried out using a limited set of data from a single flight at minimum, it seems clear that a careful planning of the setup of reference targets and the choice of flight lines is required to obtain as many data points as possible, to improve the accuracy of the measurement. A more detailed evaluation of the number of points related to the accuracy of the calibration is also an important object of future study and becomes possible as more data from the future flight campaigns become available.

IV. CONCLUSION

A. Calibration Concept

We have presented a method for airborne laser scanner intensity measurement and calibration using commercially available or in situ reference targets. Mass-produced or naturally available sand and gravel can be used in laser scanner intensity calibration, but control over the target properties is essential (particularly in case of natural targets) for the laboratory validation to be feasible and meaningful. Detailed information on, e.g., target and footprint size and point density are also important.

A large bulk of results (particularly from airborne campaigns) will help further to develop this method and validate the presented calibration targets (particularly if a grayscale is desired). A systematic (laboratory) study on wetness effects will also help the situations where the targets have been exposed to weather effects. There is also a need for a more detailed investigation of laser power level variations because of, e.g., the AGC and other technical issues. The radiometric calibration of distributed targets such as forests requires a more detailed study.

B. Application

To our knowledge, this is the first practical demonstration of using reference targets in the calibration of laser scanning intensity data from land targets. The results from the green and bunker experiments show that the relative calibration method is possible in the comparison of reflectance values measured during different campaigns. This study has shown that, even when different calibration targets have been used at separate
flight campaigns, this method is capable of producing meaningful results, i.e., the concept of indirect calibration is feasible for ALS intensity calibration. All these require a systematic laboratory calibration of the reference targets.

As the ALS data interpretation algorithms based on calibrated reflectance combined with point cloud data will be developed, the combined information obtained from laser scanning will provide an effective change detection tool, which has not been available thus far. A wide field of environmental monitoring applications (e.g., in glaciology, agriculture, and forestry) will benefit from the one-shot brightness and topographic information provided by this method.

ACKNOWLEDGMENT

The authors would like to thank T. Mielonen at FM International Oy FINNMAP SURVEYS, J. Gittinger at FARO Europe for the information, Suur-Helsingin Golf and Master Golf Club for lending some space for the targets, their colleagues at the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, for helping out in the hard fieldwork in the ALS campaigns, and Lojha Rudus Ltd. for providing some laboratory samples.

REFERENCES

Hannu Hyyppä received the M.Sc., Lic.Tech., and D.Tech. degrees from Helsinki University of Technology, Espoo, Finland, in 1986, 1989, and 2000, respectively.

Dr. Hyyppä is the Academy of Finland Research Fellow with the Research Institute of Measuring and Modelling for the Built Environment, Department of Surveying, Helsinki University of Technology. His research interests include laser scanning, photogrammetry, geoinformatics, and remote sensing applications to computer-aided civil engineering.

Juha Hyyppä was born in 1964. He received the M.Sc. and Lic.Tech. degrees from Helsinki University of Technology, Espoo, Finland, in 1987, 1990, and 1994, respectively.

He is currently the Head of the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, Masala, Finland. His current research interests include 3D modeling and laser scanning.

Antero Kukko received the M.Sc.Tech. degree in photogrammetry in 2002 from the Helsinki University of Technology, Espoo, Finland.

He is currently a Special Research Scientist with the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, Masala, Finland. His current research interests are in the development of scanner data and their applications for full-waveform data.

Paula Litkey received the M.Sc.Tech. and Lic.Tech. degrees in electrical engineering from the Helsinki University of Technology, Espoo, Finland, in 1998 and 2004, respectively.

She is currently a Senior Research Scientist with the Department of Remote Sensing and Photogrammetry, Helsinki University of Technology. Her research interests are in the computational methods and algorithms for laser scanner data and their applications for full-waveform data.

Eero Ahokas received the M.Sc. and Lic.Tech. degrees in surveying (photogrammetry and geodesy) from Helsinki University of Technology, Espoo, Finland.

He is currently a Special Research Scientist with the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, Masala, Finland. His current research interests include image quality, calibration, and airborne laser scanning.

Juha Hyyppä was born in 1964. He received the M.Sc., Lic.Tech., and D.Tech. degrees from Helsinki University of Technology, Espoo, Finland, in 1987, 1990, and 1994, respectively.

He is currently the Head of the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, Masala, Finland. He has authored more than 100 refereed scientific papers on remote sensing and applied geoinformatics.

Hubert Lehner is currently working toward the M.Sc. degree in the Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Vienna, Austria.

In 2007, he was a Research Assistant with Finnish Geodetic Institute, Masala, Finland. His research interests include laser scanning radiometric calibration and reference measurements.

Anttoni Jaakkola received the M.Sc. degree (with distinction) in automation and systems technology from Helsinki University of Technology, Helsinki, Finland, in 2008.

He is currently a Research Scientist with the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, Masala, Finland. His current research interests include the development of laser-based mobile mapping methods and modeling methods for built environment.

Eero Ahokas received the M.Sc.Tech. degree in photogrammetry and geodesy from Helsinki University of Technology, Espoo, Finland.

He is currently a Special Research Scientist with the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, Masala, Finland.

His current research interests are in the computational methods and algorithms for laser-based mapping methods, laser reflectance measurements, simulation of laser scanning, automatic image registration systems, and mobile mapping.

Antti Kujari received the M.Sc. degree from the University of Helsinki, Helsinki, Finland, in 2006. He is currently working toward the Ph.D. degree in the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, Masala, Finland.

He is currently a Research Scientist with the same department. His research interests include multidirectional reflectance measurements and analysis, light scattering, polarization effects, and the physics of remote sensing.

Mikko Kaasalainen received the M.Sc. degree from the University of Helsinki, Helsinki, Finland, in 1990 and the D.Phil. degree from the University of Oxford, Oxford, U.K., in 1994, both in theoretical physics.

After a series of positions in Europe, he is currently a Academy of Finland Research Fellow with the Department of Mathematics and Statistics, University of Helsinki. He leads a research group in the Finnish Centre of Excellence in Inverse Problems Research.

Juha Suomalainen received the M.Sc. degree from the University of Helsinki, Helsinki, Finland, in 2000 and the D.Phil. degree from the University of Oxford, Oxford, U.K., in 1994, both in theoretical physics.

He is currently a Research Scientist with the Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, Masala, Finland.

Mikko Kaasalainen received the M.Sc. degree from the University of Helsinki, Helsinki, Finland, in 2000 and 2006, respectively. Her Masters thesis was entitled "Determination of elevation models in wooded areas with three dimensional point cloud measured with laser scanner." His licentiate thesis was entitled “Single tree feature extraction from airborne laser scanner data applying vector models.”

He is currently with Finnish Geodetic Institute, Masala, Finland, as a Senior Research Scientist. Previously, she was with the Department of Photogrammetry and Remote Sensing, Helsinki University of Technology, as a Senior Research Scientist, and the State Map Centre, where she worked on digital map production. His research interests include 3D modeling and laser scanning.