Automatic Reasoner Selection using Machine Learning

International Conference on Web Intelligence, Mining and Semantics (WIMS '12)

Jürgen Bock, Uta Lösch, Hai Wang

June 13, 2012
Motivation

• Added value in the *Semantic Web*
 • Ability to automatically infer implicit knowledge from explicitly given axioms and facts
 → *Reasoning*
• Required: **ontologies** with logical underpinning
• Reasoning is complex
• Different reasoning scenarios (ontologies, queries)
• Plethora of reasoning systems with different strengths and weaknesses
• Selecting most suitable reasoner is difficult
• **Machine learning** classifiers can help
Ontology Reasoning

Reasoning:
Obtain implicit knowledge from explicitly given axioms and facts.

- Web Ontology Language (OWL) based on Description Logics
 - Entities
 (classes, individuals, object properties, data properties)
 - Axioms (statements about entity expressions)
 (subsumption, assertion, domain / range, ...)
- Reasoning tasks:
 class satisfiability, subsumption checking, instance retrieval, ...
- Reasoning algorithms:
 tableau, hypertableau, automata-based, resolution, ...
- Plethora of reasoning systems
- Different strengths and weaknesses
Ontology Reasoning
Reasoning Brokerage

Ontology Reasoning: Reasoning Brokerage

Diagram:
- HERAKLES
 - OWL API
 - Load Strategy
 - Execution Strategy
 - OWLLink
 - Semantic Application
 - OWLLink
 - Reasoner 1
 - Reasoner 2
 - Reasoner ...
 - Reasoner n
Classification Methods

Classification task:

Find function f based on a set of training data X consisting of instances x for which the class $C_i \in \{C_1, \ldots, C_m\}$ is known, such that $f(x) = C_i$ for most training examples.

Reasoning request: (Ontology + Query)

Reasoners to select from

- Naïve Bayes (NB)
- K-Nearest Neighbour (KNN)
- Decision Tree (DT)
- Support Vector Machine (SVM)
Feature Definition
Ontology and Query Features

• Ontology Features
 • Description Logic expressiveness
 • Entity counts (different types)
 • Axiom counts (different types)

• Query features
 • Name (OWL API)
 • Return type
 • Parameter count
 • Parameter types
 • Axiom / class expression type
Implementation
HERAKLES Broker Strategy

MachLrnLStrategy
- Ontology feature analysis

MachLrnSPStrategy
- Query feature analysis
- Reasoner prediction using Weka
Evaluation
Setup / Training Data

• Data Set
 • 499 ontologies found on the Web
 • 36 query / ontology
 → 3175 reasoning requests (training instances) processable

• Reasoners
 • FaCT++: (2142 instances)
 • HermiT: (473 instances)
 • Pellet: (478 instances)
 • none: (82 instances)
Evaluation

Results

- 10-fold cross validation
- 3 of 4 classification methods outperform base line
- Best performance: DT (KNN and SVM competitive)
- NB: requires independent features (not guaranteed here, prior feature selection could improve results)
- Feature importance:
 - Query features more important than ontology features (esp. axiom type, class expression type, query name)
 - Annotation property count relevant
 - Description Logic expressiveness less relevant

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base line (all FaCT++)</td>
<td>0.615</td>
<td>0.763</td>
<td>0.615</td>
<td>0.681</td>
</tr>
<tr>
<td>Naive Bayes</td>
<td>0.548</td>
<td>0.628</td>
<td>0.548</td>
<td>0.545</td>
</tr>
<tr>
<td>k-nearest neighbours ($k=20$, weight by $1 - distance$)</td>
<td>0.728</td>
<td>0.709</td>
<td>0.728</td>
<td>0.710</td>
</tr>
<tr>
<td>Decision Trees ($J48$, $minNumObj = 10$, $confidenceFactor = 0.5$)</td>
<td>0.774</td>
<td>0.756</td>
<td>0.774</td>
<td>0.760</td>
</tr>
<tr>
<td>Support Vector Machine ($\gamma = 0.5$)</td>
<td>0.708</td>
<td>0.686</td>
<td>0.708</td>
<td>0.665</td>
</tr>
</tbody>
</table>

13/06/2012
Summary / Outlook

- Automatic reasoning as added value of using Semantic Technologies
- Available reasoning systems demonstrate different performance for different reasoning requests
- Machine learning applied to select most suitable reasoner for any given request
- Implementation as HERAKLES broker strategy
- Prediction accuracy of up to 77% (decision tree) → 16% increase compared to base line

- Future work
 - Dynamic model adjustment
 - OWL 2 profile reasoners
 - Fine-grained feature definitions (combinations of ontology language features)
Thanks for your attention!

http://herakles.sourceforge.net
Feature Definition
Ontology Features

- **Description Logic expressiveness**
 - Nominal values (ALC, SHIQ, SHOIQ, SROIQ, ...)

- **Counts**
 - **Referenced entities**
 (classes, object properties, data properties, individuals)
 - **Class axioms**
 (subsumption, equivalence, disjointness, GCIs)
 - **Object property axioms**
 (subsumption, equivalence, disjointness, functional, inverse, transitive, ..., domain, range, subproperty chain)
 - **Data property axioms**
 (subsumption, equivalence, disjointness, functional, domain, range)
 - **Individual axioms**
 (class / (neg.) object property / (neg.) data property assertion, same, different)
 - **Annotation axioms**
 (assertion, domain, range)
 - **Others**
 (declaration axioms)
Feature Definition
Query Features

- Typical reasoning tasks (subsumption checking, class satisfiability, instance retrieval, ...)
 - Can all be reduced to satisfiability checking

- Reasoner optimisations on a higher level
 - OWL API reasoning (convenience) methods
 - Get unsatisfiable classes
 - Get object property values
 - ...

- Query features
 - Name (OWL API)
 - Return type
 - Parameter count
 - 1st parameter type
 - 2nd parameter type
 - Axiom type
 - Class expression type
 - Depth of class expression
 - Atomic class count in class expression
Implementation
Training Data Generator

Ontologies → Ontology Loader → Query Generator → Reasoner Tester → Weka

Ontology Feature Extractor → Query Feature Extractor → Query Data Aggregator
Class Expression Example

ObjectUnionOf

ObjectSomeValuesFrom

ObjectProperty

Class

DataSomeValuesFrom

int

DataRange

Class

Class