Abstract

We consider the complexity of determining whether two sets of probability distributions result in different plans or significantly different plan success for Bayes nets.

Subarea: belief networks.

Keywords: Bayes nets, information integration, complexity, stochastic planning.

1 Introduction

Bayes nets model stochastic processes such as medical systems, military scenarios, academic advising, and a variety of industrial systems including nuclear power plant management and robotics applications. However, the process of modeling such a system often leads to interesting dilemmas, such as which differing expert opinion to believe, or how to reconcile the difference between expert opinion and knowledge extracted via automated means. The approach of assuming that everyone is right is shown here to be computationally difficult to verify.

In order to model a system as a Bayes net, the system states must be factored into nodes (a.k.a. parameters or variables), so that each node depends on some, preferably small, subset of other nodes. These dependencies are described by a directed, acyclic graph with conditional probability tables associated with each node having non-zero in-degree. (The probability tables may be represented by other data structures for ease of computation.)

Bayes nets can be used for probabilistic inference or decision-theoretic planning. Probabilistic inference is the means of determining the probable causes of observed effects. Decision-theoretic planning is the process of choosing actions in order to maximize the probability of the system achieving a desirable state. The set of desirable states must be defined and distinct actions must be specified. Each action determines its
own conditional probability tables for the system. Thus, the choice of an action at each time step determines the probabilistic evolution of the system for that step.

A plan is a mapping from system states to actions; if the system states are not completely observable, then it is a mapping from beliefs about the current state of the system (probability distributions over the states) to actions. Plans are designed to maximize the probability of (eventually or quickly) reaching some prespecified goal states. A planning algorithm is a function that, given a Bayes net, produces a plan.

One difficulty in building Bayes net models of a system is that information may be hard to obtain. Two different basic approaches to building a Bayes net are frequently employed: automated learning from data or knowledge engineering from human experts. In some cases, fusing the information gleaned from both types of sources seems attractive. Unfortunately, it is not unusual that the probabilities gleaned from different methods or even different experts disagree. In fact, estimates from different experts not only often differ significantly from one another, but can vary even from day to day from the same expert. In some situations, such as medical applications, there may be a plethora of data, though different data sets may yield different models. In others, such as military modeling, there are situations that should not be tested. In those cases, the modelers must depend on expert opinions — which are likely to differ.

When a number of potentially conflicting probability estimates for the same Bayes net graph structure exists, it is the duty of Bayes net designers to combine this information in some way that produces a consistent and reasonable probability distribution. The first question is, whether there is an actual conflict when probabilities disagree or whether the distributions are in some sense equivalent. Thus, the problem of data fusion or reconciliation becomes a central one for modeling these systems. One solution is to determine whether or not the differences are too minor to matter. In the case of a few scattered differences, one can use methods like sensitivity analysis [12, 4] (see also Section 7) to determine whether or not variations affect the consequent variables significantly. However, if the entire set of conditional probability tables differs from one source to another, we suggest other notions of equivalence.

In many applications where Bayes nets are employed, the process of building the actual Bayes net is often a two step process:

First, the structure of the Bayes net is established: the set of random variables in the application domain is built and the relationships between individual random variables are considered.

Next, given the prepared Bayes net structure, the probability distributions associated with each of the nodes or random variables of the net are determined. In a typical scenario, Bayes net designers use human experts to elicit probability estimates for the random variables in the network. When estimates differ, the data must be fused (integrated) by somehow resolving conflicts.

The methodology of this “data fusion” or “conflict resolution” process for uncertain data is not very well studied. The largest body of work on the subject is multisensor fusion used in vision, robotics and speech recognition [1, 7, 15, 13]. Typically the approaches described there, as well as in other research on fusing probabilities [6, 5, 16] work when applied to a particular problem or a narrow set of problems, and do not translate immediately to other problems or to the general case.

We want to determine whether the differences in the probability distributions affect the outcomes of particular planning algorithms. When the differences do not change the outcome, then we will say that they are not in conflict. Our main idea is that if we can determine that the resulting plans for Bayes nets are sufficiently similar, then we will not need to go through the complex process of integrating the probabilistic

1Kentucky law now allows us to use this word instead of “change over time”.
data. Thus, the problem we address is the following:

Given two sets of probability distributions for a Bayes net, when can we simplify the fusion problem?

In order to answer this question, we need to formalize the notion of equivalence of Bayes nets. In what follows, we describe two such notions with respect to planning algorithms.

We ask when two sets of conditional probability tables for the same Bayes net structure are equivalent relative to a planning algorithm, under the following notions of equivalence: does the algorithm produce the same plan for each version of the Bayes net, and does the algorithm plan have the same probability of success for each version of the Bayes net? We show that the first problem is coNP-complete, and the second is coNPPP-hard. We also give restrictions on either the type of plan considered or the structure of the Bayes net that make both problems easy.

The rest of the paper is organized as follows. Section 2 gives formal definitions, and Section 3 illustrates some of these definitions with a small example. In Sections 4 and 5 we consider the two different notions of Bayes net equivalence mentioned above and provide the complexity results for the problem of determining whether two Bayes Nets are equivalent with respect to those notions. In Section 6 we note that simpler solutions may be developed for some restricted versions of our problems. More detailed study of these problems is the subject of our future research. Section 7 summarizes related work.

2 Definitions

In this section, we formally define Bayes nets for the purpose of planning and planning algorithms.

Definition 1 Let $V = \{v_1, \ldots, v_n\}$ be a set of random variables with domains $\text{dom}(v_1), \ldots, \text{dom}(v_n)$ respectively, all finite.

A Bayes net B consists of a directed acyclic graph (DAG) $G = (V, E)$, and a set of conditional probability distribution functions $P_v : \text{dom}(\text{parents}(v)) \times \text{dom}(v) \rightarrow [0, 1]$, for each $v \in V$, such that for each set of values of $\text{parents}(v)$, P_v defines a probability distribution over $\text{dom}(v)$.

A total state s of B is a total function $s : V \rightarrow \bigcup_{i=1}^{n} \text{dom}(v_i)$ such that $s(v_i) \in \text{dom}(v_i)$, for all $1 \leq i \leq n$. Let \mathcal{S} be the set of all possible states of the system.

A partial state s' of B is a partial function $s' : V \rightarrow \bigcup_{i=1}^{n} \text{dom}(v_i)$ such that $s'(v_i) \in \text{dom}(v_i)$, for all $1 \leq i \leq n$.

We often abuse terminology by referring to both total and partial states as simply states. Note that $|\mathcal{S}|$ is generally exponentially larger than the number of random variables $|V|$.

We can interpret a function P_v as a probabilistic function from the values of $\text{parents}(v)$ to the values of v. In this interpretation, the collection of P_vs models the probabilistic evolution of states of the Bayes net.

The most common use of Bayes nets is for inference: given a set of values of some nodes compute the most likely values of other nodes (either parents or children). However, we are interested in the use of Bayes Nets for planning.
We consider the extension of Bayes net models that allows us not only model the probabilistic evolution of the system, but also to model an outside controller that can affect that evolution. As the means of modelling possible effects of an outside controller on the system, we employ actions, defined formally below.

Definition 2 Let $G = (V, E)$ be a directed acyclic graph. An action a on G is a set of conditional probability distribution functions $P_{a,v} : \text{dom}(\text{parents}(v)) \times \text{dom}(v) \to [0,1]$ for each $v \in V$.

A Bayes net for planning purposes B is a tuple $(G = (V, E), A, \mathcal{F})$, where G is a DAG, A is a set of actions on G and \mathcal{F} is a set of states called goal states.

While simple Bayes nets are useful in modelling situations for which we have no control, Bayes nets for the purpose of planning are useful when there is an opportunity to affect the outcome of a process. For the rest of this paper, we will use “Bayes net” to refer to a Bayes net for planning purposes. Note that the initial definition of a Bayes net corresponds to a Bayes net in the extended definition with only one action, where \mathcal{F} is the set of all states.

We describe the set of choices a controller makes as a plan. For the purposes of this paper, we consider the simplest form of plans, namely mappings from states to actions. This imposes consistency on the controller’s choices.

Definition 3 Given a Bayes net B, a plan for B is a mapping $\pi : S \to A$.

Other definitions of plans exist in the literature, including time-dependent and history-dependent plans. The hardness proofs in this paper can be easily modified to give the same complexity results for time-dependent plans.

The task of a controller is to maximize the probability of reaching a goal state. We assume that the controllers, or to be more formal, the planning algorithms, are tractable.

Definition 4 A planning algorithm A is a function that maps Bayes nets to plans for those Bayes nets.

We only consider tractable planning algorithms A, those such that, for any Bayes net B and state s of B, computing the action $A(B)(s)$ can be done in time polynomial in $|B|$ and $|A|$.

Note that we are explicitly ignoring the complexity issues associated with coming up with a good planning algorithm.

3 Example

Consider the following example which features a small (fictitious) horseback riding summer resort. The resort consists of a number of trails and a stable compound which attract horse owners for recreational purposes. The owners of the resort are interested in maximizing their profit which is determined by the rates they charge the riders for the use of their stables and trails as well as by the number of riders that visit the resort over a period of time. The profit is also adversely affected by the expenses that the owners incur. In this simple example, we assume that the number of riders visiting the resort is influenced by the weather conditions, state of the trails, and by the current trail and stable rates.
Figure 1: Sample Bayes net: Horseback Riding Resort

Table 1: Conditional Probability Distributions for Horseback Riding Resort Bayes Nets.
Table 2: Implications of Actions.

<table>
<thead>
<tr>
<th>Action</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge high rates</td>
<td>rates node is deterministically set to high; probability of high number of riders decreases by 5-20% (depending on weather/trail conditions).</td>
</tr>
<tr>
<td>Charge low rates</td>
<td>rates node is deterministically set to low;</td>
</tr>
<tr>
<td>Groom trails</td>
<td>The probability of fair condition for trails rises to 0.9 during rain and to 1.0 when there is no rain. The probability of incurring high expenses rises by 15-20% depending on ridership.</td>
</tr>
<tr>
<td>Advertise</td>
<td>The probability of incurring high expenses rises by 25-35% (depending on ridership). The probability of having high number of riders rises by 15-25% (depending on weather and trail conditions).</td>
</tr>
<tr>
<td>Default</td>
<td>Use CPTs from Table 3.</td>
</tr>
</tbody>
</table>

This situation can formally be represented as a Bayes net depicted in Figure 1. The variables considered in this example are:

- **rain**: the presence or absence of rain or other inclement weather;
- **trails**: fair or poor condition of trails;
- **rates**: high or low rates for the use of the stable and trails;
- **riders**: high or low ridership on trails;
- **expenses**: high or low expenses to support the resort operation;
- **profit**: at the end of the period, the resort can turn in low or high profit.

All variables are binary for simplicity. For our purposes, we consider three different sets of conditional probabilities associated with this Bayes net. These sets are described in Table 3. The only difference in these three sets comes in the conditional probability table for the riders node. In Table 3, we show the complete Set 1 of conditional probability tables (CPTs) and show where the probability tables for riders differ for Sets 2 and 3. Notice that because all our variables are binary, we need only to specify one probability for each set of conditions (e.g., the probability of high expenses given low ridership is 0.3, hence the probability of low expenses given low ridership is 1-0.3 = 0.7, etc…).

The owners of the resort can take certain actions in order to affect the situation with the goal of maximizing the probability of turning high profit. These actions cause conditional probability distributions associated with certain nodes of the Bayes net to change. The actions are:

- **Groom trails**: condition of the trails improves but the expenses increase;
- **Charge high rates**: results in high rates being set;

2The SPUDD planning algorithm that we have used for our example works only with binary variables.
- Charge low rates: results in low rates being set;
- Advertise: helps attract more riders, but expenses increase.
- Default action: restores the behavior of the system to that guided by the probability distributions described in Table 3.

The exact implications of each action on the variables and conditional probability tables are described in Table 3.

For our planning algorithm we have used the on-line system for planning under uncertainty SPUDD/APPRICODD developed by Hoey, St.-Aubin, Hu and Boutilier [10, 9] to come up with the optimal plans for maximizing profit in our Horseback Riding Resort domain under each of the three sets of conditional probability tables.

The results of running SPUDD on our three Bayes nets for the Horseback Riding Resort show that:

- The optimal SPUDD plans for the Bayes net equipped with Set 1 probabilities and for the Bayes net equipped with Set 2 probabilities are the same.
- The optimal SPUDD plans for the Bayes net equipped with Set 1 probabilities and for the Bayes net equipped with Set 3 probabilities are different. In particular, the plan for the Bayes net with Set 1 CPTs suggests the same actions to be taken whenever the trail conditions are poor, regardless of whether rain is present or not. The optimal plan for the Bayes net with Set 3 CPTs distinguishes between the states when the rain is present/absent while the trail condition is poor.

We notice that both CPTs of all three sets differ in very minor ways. Yet, Sets 1 and 2 lead to the same plan, while Set 3 leads to a different plan.

Suppose the owners of the resort asked two experts to build a Bayes net for their operation. If first expert came up with CPTs of Set 1 and second expert came up with CPTs of Set 2, then despite the fact that the Bayes nets constructed by them are different, the same optimal plan of action will work for either, so from the point of view of the owners, either Bayes net will work. However, if instead of Set 2, the second expert came up with the CPTs of Set 3, the two resulting Bayes nets would induce different optimal plans, and hence, would be in conflict. In this case the owners are facing conflicting information about the operation of their resort and before proceeding, they must decide on a way to resolve such a conflict.

This suggests, that being able to detect equivalence of plans induced by different Bayes nets may help alleviate the problem of having to undertake conflict resolution.

4 Detecting Identical Plans

We first consider detecting identical plans.

SPUDD/APPRICODD web page is http://www.cs.ubc.ca/spider/staubin/Spudd/index.html. SPUDD/APPRICODD can be run interactively on-line from http://www.cs.ubc.ca/spider/staubin/Spudd/form.html. We have used default SPUDD/APPRICODD settings except for setting approximation mode to error with the value 0.05. The data files describing our Horseback Riding Resort example, that we used to run SPUDD/APPRICODD can be obtained from http://www.cs.uky.edu/~dekhtyar/dblab/fusion.html. The optimal plans returned by SPUDD can also be found there.
Definition 5 Let $B_1 = \langle G, P_1 \rangle$ and $B_2 = \langle G, P_2 \rangle$ be two Bayes nets over the same graph G. Let A be some planning algorithm. The triple $\langle B_1, B_2, A \rangle$ is in $BNPlan$ iff for every state s of B_1 and B_2,4

$$A(B_1, s) = A(B_2, s).$$

Intuitively, two Bayes nets over the same structure belong to the class $BNPlan$ together with the planning algorithm A if the algorithm does not distinguish between the Bayes nets.

When the planning algorithm is fixed, we will denote as $BNPlan^A$ the set of pairs of Bayes nets $\langle B_1, B_2 \rangle$ such that for all states s, $A(B_1, s) = A(B_2, s)$.

Also, given the graph structure G of a family of Bayes nets BN_G, we can consider the sets $BNPlan_G \subset BNPlan$ and $BNPlan^A_G \subset BNPlan^A$ such that both Bayes nets come from BN_G.

First, we study the problem of the complexity of determining that a triple $\langle B_1, B_2, A \rangle$ belongs to class $BNPlan$. The following results combined together show that this problem is coNP-complete.

Theorem 1 The $BNPlan$ problem is coNP-hard.

Proof (sketch) We consider the dual problem of determining $\langle B_1, B_2, A \rangle \not\in BNPlan$ and will show that this problem is NP-hard.

Let φ be a propositional boolean formula over variables x_1, \ldots, x_n. Without loss of generality we can consider φ to be in 3CNF.

Given φ, we will construct a pair of Bayes nets B_1^φ and B_2^φ (we will omit the superscripts where this does not generate ambiguity) and a planning algorithm A such that $\varphi \in SAT$ iff $\langle B_1^\varphi, B_2^\varphi, A \rangle \not\in BNPlan$.

\footnote{Since both B_1 and B_2 are Bayes nets over the same graph, their sets of nodes, and thus of states, coincide.}
The Bayes net graph structure G underlying both B_1 and B_2 is shown in Figure 2. The net will consist of three levels of nodes which take on the values of 0 and 1 (false and true). At the lowest or initial level, a node will be associated with each of the variables x_1, \ldots, x_n of φ. At the second or middle level, the nodes represent the clauses of φ. Each node c_i from the second level is connected to exactly three nodes representing boolean variables.

The third level of the network consists of one node, which we will label as Yes. Its parents will be all second level nodes c_1, \ldots, c_k.

The probability distribution P_1 of the Bayes net B_1 will faithfully simulate the computation of the truth value of φ. Each node x_1, \ldots, x_n will have the same uniform distribution $P_1(x = 1) = P_1(x = 0) = 0.5$.

For each second level node c with parents x, x', and x'', the conditional probability table will simulate the truth table for the conjunct represented by c. E.g., if $c = x \lor \neg x' \lor x''$ the conditional probability table will be:

$P_1(c = 0 | x = 0, x' = 1, x'' = 0) = 1; P_1(c = 1 | x = 0, x' = 1, x'' = 0) = 0$ (this is the only combination that makes c false) and $P_1(c = 0 | x = a, x' = a', x'' = a'') = 0; P_1(c = 1 | x = a, x' = a', x'' = a'') = 0$ for any other combination of truth values for x, x', and x''.

Finally, the probability distribution for the node Yes is defined as $P_1(\text{Yes} = 1 | c_1 = 1, \ldots, c_k = 1) = 1; P_1(\text{Yes} = 0 | c_1 = 1, \ldots, c_k = 1) = 0$ and $P_1(\text{Yes} = 1 | c_1 = a_1, \ldots, c_k = a_k) = 0; P_1(\text{Yes} = 0 | c_1 = a_1, \ldots, c_k = a_k) = 1$ for all other combinations of values of c_1, \ldots, c_k.

The probability distribution tables P_2 for the Bayes net B_2 are designed to mimic the probability distributions P_1 on the lower and middle layer of the nodes. For the node Yes, P_2 specifies that the probability of it becoming true is always 0.

The actions associated with these two Bayes nets correspond to setting the values of the lower level nodes (which represent the boolean variables). The goal states are those with the Yes node set to 1.

We can now specify the planning algorithm \mathcal{A}. Let state s of B_1 and B_2 be a sequence (a_1, \ldots, a_n) of binary digits representing the truth values of variables x_1, \ldots, x_n. As $\text{succ}(s)$ we will denote the state of B_1 and B_2 which is a lexicographic successor of the binary string $a_1a_2\ldots a_n$.\footnote{We assume $\text{succ}(1^n) = 0^n$.}

Algorithm \mathcal{A} will leave the state s unchanged if s induces $\text{Yes} = 1$. Otherwise, it returns the set of actions that change current state of the BN B_1 or B_2 to the state $\text{succ}(s)$.

In order to see why this construction works we need to make the following statements:

1. The Yes node of B_1 is set to 1 iff the initial state s of B_1 corresponds to a satisfying assignment to the variables x_1, \ldots, x_n of the formula φ.

2. The Yes node of B_2 will never be set 1.

3. The plans constructed by \mathcal{A} for B_1 and B_2 will be identical on all states s unless there is a state s with $\text{Yes} = 1$.

From items 1 and 3 from the above we conclude that $(B_1^\varphi, B_2^\varphi, \mathcal{A}) \notin BNPlan$ iff $\varphi \in SAT$. \hfill \Box

Theorem 2 The $BNPlan \in \text{coNP}$.

5We assume $\text{succ}(1^n) = 0^n$.\hfill 9
Proof (sketch) Notice that, for Bayes net B, $A(B, s)$ is an action, and therefore $|A(B, s)| \leq |B|$. To show that $\langle B_1, B_2, A \rangle \notin BN\text{Plan}$, we need only guess state s such that $A(B_1, s) \neq A(B_2, s)$. This check is in polynomial time, and the guess is polynomial sized. Thus, $BN\text{Plan} \in \text{NP}$, so $BN\text{Plan} \in \text{coNP}$.

5 Detecting Identical Probabilities of Plan Success

In the previous section, we considered two Bayes nets to be equivalent, relative to a planning algorithm, if the algorithm produced the same plan. One can relax this definition and ask, does this planning algorithm or plan produce the same outcome, namely, the same probability of success?

We assume here that the specification of the Bayes net and/or the planning algorithm includes the specification of a set of goal states for each Bayes net. In what follows, we implicitly assume that the sets of goal states for the two Bayes nets in question are the same.

Definition 6 Let $B = \langle G, P \rangle$ be a Bayes net with a given set of goal states. Let A be a planning algorithm, and s a state of B. Then $\text{Succ}(A, B, s, h)$ is defined to be the probability that the plan calculated by A, when applied to state s of B, and iterated for h steps, will reach a goal state.

Rather than requiring that the success probabilities are identical for the two Bayes nets, we allow an extra parameter to specify how close they must be.

Definition 7 Let $B_1 = \langle G, P_1 \rangle$ and $B_2 = \langle G, P_2 \rangle$ be two Bayes nets over the same graph G. Let A be some planning algorithm. The tuple $\langle B_1, B_2, A, h, \theta \rangle$ is in $SBN\text{Plan}$ iff for every state s of B_1 and B_2, $|\text{Succ}(A, B_1, s, h) - \text{Succ}(A, B_2, s, h)| \leq \theta$.

Alternatively, one could further quantify $SBN\text{Plan}$ over all plans; depending on the complexity of plans descriptions allowed, this might easily increase the complexity of the problem.

Before stating the next theorem, we remind the reader of some facts about the class NP^{PP}.

$P \subseteq \text{NP} \subseteq \text{PH} \subseteq \text{PP} \subseteq \text{NP}^{\text{PP}} \subseteq \text{PSPACE} \subseteq \text{EXP}$.

The set $\text{EMAI\text{SAT}}$ is \leq^P_m-complete for NP^{PP}. A Boolean formula, natural number pair $\langle \varphi, k \rangle \in \text{NP}^{\text{PP}}$ iff there is a truth assignment to the first k variables of φ such that at least half of its completions satisfy φ.

Theorem 3 The $SBN\text{Plan}$ problem is coNP^{PP}-hard.

Proof (sketch) To show this, we give a reduction from $\text{EMAI\text{SAT}}$. As in Theorem 1, we consider the dual problem of determining $\langle B_1, B_2, A, h, \theta \rangle \notin SBN\text{Plan}$ and will show that this problem is NP^{PP}-hard.

Given a pair $\langle \varphi, k \rangle$, we construct an initial Bayes net B_1 as in the proof of Theorem 1, with nodes representing each variable, each clause, and a node labeled Yes. The conditional probability tables for each clause node depends on the the nodes representing the member literals in the usual way, dependent on φ.

Each action in either Bayes net corresponds to a setting of the first k variables. The remaining nodes representing variables are set to 1 with probability $\frac{1}{2}$ by all of the actions. A clause node is set to 1 if and
only if at least one of its corresponding literals is set to 1. The Yes node in \(B_1 \) is set to 1 if and only if all the clause nodes are set to 1. The goal states for \(B_1 \) are all states with Yes set to 1.

Now \(\langle \varphi, k \rangle \in EMajSAT \) if and only if there is some planning algorithm \(A \) and initial state \(s \) that sets Yes to 1 after one step with probability at least \(\frac{1}{2} \).

Let \(B_2 \) have the same structure as \(B_1 \), but let Yes always be set to 0. Thus, \(Succ(A, B_2, s, h) = 0 \) for any planning algorithm \(A \).

Notice that any state of the system determines a truth assignment for the formula \(\varphi \). Consider the plan \(\pi \) which in the first step simply increments the given truth assignment for \(x_1, \ldots, x_n \) in a lexicographic order on truth assignments, and maps the all-1 assignment to the all-0 assignment. After the first step, \(\pi \) does nothing. (Technically, that describes a time-dependent plan. One can add one additional node, \(t \), to \(B_1 \) and \(B_2 \), and have any initial state of the system set \(t = 0 \), and any action set \(t = 1 \). Then plan \(\pi \) chooses a first action based on the initial setting of the variable nodes, but once \(t = 1 \), all further actions are an additional “no-op” action.)

If there is a “successful” assignment for \(x_1, \ldots, x_n \), then for its lexicographic predecessor \(s, \pi \) succeeds with probability at least \(\frac{1}{2} \). Let \(A \) compute \(\pi \).

Thus, \(\langle \varphi, k \rangle \in EMajSAT \) iff for some \(s, Succ(A, B_1, s, h) > \frac{1}{2} \) iff \(\langle B_1, B_2, A, h, \frac{1}{2} \rangle \not\in SBNPlan \) for any \(h \geq 1 \).

To show \(coNP^{PP} \)-completeness, we would need that \(SBNPlan \in coNP^{PP} \). This requires that plan evaluation be in PP. Given that assumption, the theorem follows immediately from the appropriate characterization of the class \(coNP^{PP} \).

In his dissertation, Jacobo Toran [17] considers the closure of the class \(P \) under polynomially length-bounded existential and universal quantifiers and under the counting quantifier \(C \). If \(K \) is a language class, then a language \(L \) is in \(CK \) if there is a \(B \in K \), an \(f \in FP \), and a polynomial \(p \) such that

\[
x \in L \iff \{|y : |y| \leq p(|x|) \text{ and } B(x, y)| \geq f(|x|)\}.
\]

In particular, for \(f(x) = 1/2 \), \(PP = CK \).

One can define the Counting Hierarchy over \(P \) analogously to the Polynomial Hierarchy: it is the closure of \(P \) under polynomially length bounded existential, universal, and counting quantifiers. Toran showed that, for any \(K \) in the counting hierarchy, \(NP^K = \exists^P K \). In particular,

\[
NP^{PP} = \exists^P PP = \exists^P CP \text{ and } coNP^{PP} = \forall^P CP.
\]

This characterization gives us another method for showing membership in \(NP^{PP} \) and \(coNP^{PP} \), in terms of these quantifiers. Theorem 4 follows immediately from this.

Theorem 4 If \(Succ(A, B, s, 1) \in PP \), then \(SBNPlan \in coNP^{PP} \).

6 Easier Cases

Although we have shown that, in the general case, it is computationally complex to decide whether two sets of conditional probability tables are equivalent for a Bayes net structure, there are some cases where these
worst-case analyses do not apply. It is an open question to characterize other useful categories of Bayes nets and plans, but we give some preliminary thoughts on this.

For our analysis, let \(n \) be the number of nodes in the Bayes net in question. We consider Bayes nets where the number of actions available is \(O(n) \). We refer to any number \(k = O(\log n) \) as a small number.

Suppose for some network structure \(G \), \(\mathcal{A} \) generates a plan where each action is chosen based on a fixed, small set of nodes. Then for Bayes nets \(B_1 \) and \(B_2 \) over structure \(G \), it is easy to determine whether \(\langle B_1, B_2, A \rangle \in \text{BNPlan} \): one merely enumerates all possible values of those few nodes and asks whether the plans are equivalent for those values.

For instance, if a plan in our Horseback Riding Resort example (see Section 3 is based solely on the number of riders then this case applies. This is perhaps too trivial an example. Imagine, instead, that plans are based on the number of riders and the rates charged by the resort. Then one need not consider the expenses incurred by the resort.

Suppose, instead, that we have a network structure \(G \) consisting of a number of disjoint subnetworks, each consisting of a small number of nodes. Suppose, in addition, that the function that determines the goal state can be expressed simply, for instance as the conjunction of certain independent node values. In this case, the probability of the conjunction is the minimum of the probabilities of achieving each given node value. Thus, \(\text{Succ}(A, B, s, h) \geq \theta \) if and only if the probability of “success” for each goal variable is at least \(\theta \). To determine this for all \(s \), one need only consider the subnetworks containing goal variables, and evaluate the probability of success for each of the \(O(n) \) many states of that subnetwork.

Given two Bayes nets \(B_1 \) and \(B_2 \) over such a “factored” structure \(G \), and given respective plans \(\pi_1 \) and \(\pi_2 \) generated by planning algorithm \(\mathcal{A} \), it is not much harder to compute

\[
\max_s |\text{Succ}(A_1, B_1, s, h) - \text{Succ}(A_2, B_2, s, h)|
\]

than to compute \(\text{Succ}(A_i, B_i, s, h) \) for any particular \(s \). We need only compute, for individual subnetwork \(C_i^j \) (\(i \in \{1, 2\} \)) over structure \(G^j \), \(\max_s |\text{Succ}(A_1, C_i^j, s, h) - \text{Succ}(A_2, C_i^j, s, h)| \). If any of these values is greater than a given \(\theta \), then \(\max_s |\text{Succ}(A_1, B_1, s, h) - \text{Succ}(A_2, B_2, s, h)| > \theta \), and \(\langle A, B_1, B_2, h \rangle \notin \text{SBPlan} \).

7 Related Work

Sensitivity Analysis

The most common notion of robustness is an insensitivity to variation of one or more parameters in a network. One technique for gaining insight into this notion of robustness is sensitivity analysis. The basic idea is to systematically vary one or more of the conditional probability values of the Bayes net and to study the resultant effects on the output [12]. One recent development, SAMIAM [2], is an implemented tool for actually computing the sensitivity of one parameter to another. Varying each probability in the network individually while studying each of the individual effects on the output is called one-way sensitivity analysis. In an \(n \)-way sensitivity analysis, \(n \) of the probability assessments are varied simultaneously, which demonstrates each of the individual effects of varying each of the \(n \) probabilities and also reveals joint or synergistic effects.
Unfortunately, the brute-force approach to one-way sensitivity analysis of a Bayes net is computationally time consuming, since for each probability value under study, a number of propagations must be investigated where each propagation requires computing the output from the network. Thus, using this approach, the computational burden for even a one-way sensitivity analysis can be prohibitive even for a small Bayes net [3].

Laskey was the first to address the computational complexity of sensitivity analysis of Bayes nets. She introduced a method for using the partial derivative to yield a first-order approximation of the effect of varying a single probability parameter. While her method requires considerably less computation than the brute-force approach, it provides insight only in the effect of a small variation of a probability; a larger variation will rapidly break the technique down [12].

Because of the computational difficulty inherent in undertaking a complete one-way sensitivity analysis, attention has been directed to using the graphical structure of the network to determine independences of each probability to the output and to then to use this information to eliminate the varying of probabilities that will not change the output [3]. Some recent progress has also been made in developing a methodology for n-way sensitivity analysis which requires fewer outward propagations of the network to determine upper and lower bounds on the probabilities [11].

However, Henrion et al. have found that diagnostic performance with Bayesian belief networks is often surprisingly insensitive to imprecision in the numerical probabilities [8]. Therefore it makes sense to consider how the probability data is obtained in a given application in choosing a technique for evaluating the robustness of the output. In the case when two or more experts are consulted to determine probabilities, their estimates of each of the probabilities in the Bayes net may differ, giving two different Bayes nets on the same graph. This leads us to the problem considered in this paper: determining when two Bayes nets on the same graph are equivalent relative to a given planning algorithm.

The notion of robustness in the sensitivity analysis literature that is closest to ours is that of Pradhan, et al., who consider the experimental effects of varying all of the parameters at once [14]. This is called uncertainty analysis by Kjærluff and van der Gaag [11] and is also considered by Henrion, et al. [8]. Our work differs from theirs in three key aspects: we consider planning, rather than inference and introduce planning into the problem explicitly; we consider the algorithmic complexity of determining robustness, and we compare two explicit sets of probabilities, rather than varying the parameters of one.

Integration of Probabilistic Information

The problem of integrating probabilistic information that served as a starting point for this work has been looked at by researchers in a variety of different fields of computer science and statistics. As mentioned in Section 1, the largest body of work on the fusion of uncertain data comes from the area of multisensor fusion (see [1, 7] for early summaries). The basic problem addressed in this field is similar to ours: a number of sensors provides the user/reasoning agent with a set of data streams carrying uncertain data which need to be combined together. For example, Rehg, Murphy, and Fieguth [15] study the problem of detecting whether a human, watched by four independent sensors, is speaking. Each sensor watches for particular features on the human face (face detection, skin color detection, skin texture, mouth motion) and the output of each sensor is a Bayes net. The reasoning agent then combines (fuses) the nets into one that allows it to detect whether a human is speaking. This work has been extended recently by Pavlovic et al. [13].

Different methods of fusion of probabilistic information have been proposed. Most of them fall into
one of the two categories: (i) integration techniques for specific problems and (ii) so called “toolbox” approaches. The multisensor fusion work mentioned above belongs to the first category: the solutions proposed in [15, 13] are specific to the particular problem being investigated and to the particular sensors being used. Other examples of this approach include the work of Drudzel and Diez [6] and Thurston and Ibrahim [16]. In [6] the problem of combining the knowledge from different sources when building Bayes nets is considered. This problem mirrors ours most closely. Drudzel and Diez gave a detailed analysis of the integration problem for a particular Bayesian model. On the other hand, our work here looks at the problem of determining under which conditions there is no need to apply complex data integration methods.

An example of a “toolbox” approach is the work of Dekhtyar, Ross, and Subrahmanian on combining probabilities in Temporal Probabilistic databases [5]. They introduce a special *compaction* operation whose purpose is to combine together the probabilities from different probability distributions. This operation is parameterized by the actual combination function that dictates how the probability integration should proceed. Users are allowed to define their own combination functions to be used in the system. While more flexible, this approach factors the problem of developing the actual integration methods out of the Temporal Probabilistic database framework.

8 Discussion

The question of whether two sets of probability distributions for a Bayes net structure are equivalent (in any sense) is a natural one, and one that anyone building Bayes nets must address at some point. We have considered equivalence of Bayes nets with respect to planning. Although this question has been addressed in terms of sensitivity analysis, we are not familiar with any work that compares entire sets of conditional probability tables at once in the context of planning. This might be explained by our results, namely, that it is computationally infeasible (in the general case) to do so. However, Section 6 offers the first glimmerings of hope that this problem might in fact be tractable for some cases that occur in real life.

Because a growing number of heuristics for NP- and coNP-complete problems exists, as well as some heuristics for \(\text{NP}^{\text{PP}} \)-complete problems, there is an additional hope that the equivalence problems described here might be approachable heuristically. Future work could include an extension of the results in Section 6, heuristics for these equivalence problems, and further consideration of the notion of equivalence with respect to planning for Bayes nets.

9 Acknowledgements

The authors would like to thank the anonymous reviewers for suggesting ways to improve the paper. We are also grateful to Jesse Hoey for providing us with useful information about SPUDD.

References

