ASYMPTOTIC ML DETECTION FOR THE PHOTON COUNTING CHANNEL

Josep Sala (Member IEEE)

Dpt. of Signal Theory and Communications, Technical University of Catalonia
c/Jordi Girona 1-3, Campus Nord UPC, D5-114b, 08034 Barcelona, SPAIN
E-mail: alvarez@gps.tsc.upc.edu, WWW: http://gps-tsc.upc.es/comm

ABSTRACT

Recent technological advances in single photon detectors have paved the way for laser-based interplanetary communications, targeting data rates higher than those achievable in the radio part of the spectrum. The development of photon counting receiver algorithms specific to this channel is required. In particular, Maximum Likelihood (ML) Detection must incorporate the typical Bose-Einstein distribution of background noise photons. We overcome the unwieldy expression of the ML detection metric by deriving an asymptotically tight approximation, converging in variance, which is linear in the data and whose coefficients can be explicitly calculated.

Index Terms— photon counting channel, quantum communication, laser, photon, maximum likelihood

1. INTRODUCTION

Optical channels can be classified as: (i) optical (high) intensity channels [1], where the receiver is sensitive to the amplitude of the optical field; and, in the low-intensity regime, (ii) photon counting channels, where the receiver records the times-of-arrival (TOAs) of single photons. The recent development of a nano-technology superconducting single-photon detector (SSPD) [2] with a 2 GHz counting rate, in contrast to the few KHz range of to-date APD detectors, is paving the way for photon-based high-rate communications. SSPDs are constituted by a nano-wire, cooled down to exhibit superconductivity. When a photon is absorbed, its energy heats the nano-wire so that superconductivity is lost and a photon is detected. Interplanetary communications, traditionally dominated by radio technology, constitute a possible application field. In Mars exploration, the extremely low link budget resulting from the combination of power-constrained spacecraft and solar system scale distances, requires large radio telescopes to achieve reasonable data rates. In the last few years, space agencies have conducted studies on the feasibility of optical space communications as a promising candidate for high-rate interplanetary communications. We address here the derivation of a detection metric for photon counting receivers.

2. SIGNAL MODEL AND ASYMPTOTIC ML

In the photon counting channel, the signal is modeled by the TOAs of single photons, which conform to an inhomogeneous Poisson distribution, with each event a photon arrival. The simpler stationary (homogeneous) Poisson point process is characterized by its mean event density (ideally, each event has zero duration) as \(\lambda = \lim_{T \to \infty} \frac{1}{T} \sum_i \delta(T_i - T) \) with \(T_i \) the observation time and \(n(T_i) \) the number of events in \(T_i \). The detector evaluates the absence/presence of photons in a time bin of duration \(T_i \), such that if more than one photon arrives within the interval \([qT_i, (q + 1)T_i]\), it is detected as a single photon (with \(\Pr(k) = \binom{\lambda T_i}{k} / k! \cdot \exp[-\lambda T_i] \) the probability that \(k \) Poisson points occur in an interval of duration \(T_i \)). For single-photon detectors, we consider the following complementary events: (0-event) no photon has arrived in a time-bin of duration \(T_i \), which occurs with probability \(P_0 = \exp[-\lambda T_i] \); (1-event) more than one photon has arrived in the given time-bin, which occurs with probability \(P_1 = 1 - \exp[-\lambda T_i] \). In nature, \(\lambda \) is time-dependent and the received signal must be modeled as an inhomogeneous Poisson process: let \(n(t, t + T_i) \) be the number of photons detected in \([t, t + T_i]\). Then, the corresponding probability generating function is given by,

\[
G_{t, t+T_i}(z) = \sum_{k=0}^{\infty} \Pr(n(t, t+T_i) = k) \cdot z^k = \exp \left((z-1) \int_t^{t+T_i} \lambda(\tau)d\tau \right)
\]

We now link this to the usual formulation: let the received (noisy) pass-band signal at central frequency \(\nu_c \) be expressed as,

\[
\mathbf{s}(t) = \text{Re} \left[b_0(t) \cdot e^{2\pi i \nu_c t} \right]
\]

with \(b_0(t) = I_s(t) + jQ_s(t) \) the complex equivalent baseband signal, such that the instantaneous signal power is \(|b_0(t)|^2 \). For \(B_0 << \nu_c \) the effective signal bandwidth, the average number of photons detected in an interval \([t, t + T]\) is determined by the expression,

\[
\mathbf{\pi}(t, t + T) = \eta \cdot \frac{1}{h \nu_c} \int_t^{t+T} |b_0(\tau)|^2 d\tau = \int_t^{t+T} \lambda(\tau)d\tau
\]

with \(h \) Planck’s constant, \(\eta \) the efficiency of the detector and the integral term the signal energy within the specified interval. Therefore, for \(T \to 0 \), we may establish the useful relationship,

\[
\lambda(t) = \frac{\eta}{h \nu_c} |b_0(t)|^2
\]

The total equivalent baseband signal is the addition of a noise term \(b_n(t) \) plus the useful signal \(b_0(t) \). The laser is a monochromatic source that modulates the amplitude of \(b_0(t) \). Therefore, we define \(b_0(t) \) to be real (random phases are translated to the noise, an approach equivalent to [3], but simplified) so that,

\[
|b_0(t)|^2 = (I_s(t) + b_0(t))^2 + Q_s(t)
\]

This work has been financed by the Spanish/Catalan Science and Technology Commissions and FEDER funds from the European Commission: TEC2004-04526, TIC2003-05482, and 2005SGR-00639.
and \(I_s(t) \), \(Q_s(t) \) the thermal Gaussian in-phase and in-quadrature noise components, such that \(I_s(t) + jQ_s(t) = \sqrt{2 \nu_s \lambda_0(t)} / T \exp[j \phi_s(t) \lambda_0(t)] \), with \(\lambda_0(t) \) and \(\theta_0(t) \) independent exponentially and uniformly distributed random processes, respectively, with \(\theta_0(t) \) the relative phase difference between signal and noise. The total mean arrival density \(\lambda(t) \) takes the form:

\[
\lambda(t) = \frac{\eta_{\nu_s}}{\nu_s} \left(\lambda_0(t) + j Q_0(t) \right)^2 + 2 \Re \left[\lambda_0(t) Q_0(t) \right] + 2 \Re \left[\lambda_0(t) Q_0(t) \right]^2 \cos \theta_0(t)
\]

We assume an SSPD of timing resolution \(T_0 \). Hence, for given realizations \(b_0(t) \) and \(b_0(t) \), the 0- and 1-event probabilities in the \(q \)-th bin are calculated from (1) by setting \(z = 0 \),

\[
P_0[\{q \}, b_0(t)] = \exp \left[- \int_{qT_0}^{(q+1)T_0} \lambda(t) dt \right]
\]

where we assume that \(\langle a_n(q), b_n(q') \rangle \), \(\langle b_0(q), b_1(q') \rangle \) and \(\langle b_0(q), b_n(q') \rangle \) are pairs of independent random variables for \(q \neq q' \) as they depend on independent values of \(b_0(t) \). Otherwise, the stochastic convergence result is also true but the proof is omitted for extension reasons. Therefore, \(\sigma^2 = \text{E}_n \left[\sum_{q=1}^{N} \left(1 - x_q \right) x_q \right] = \sigma^2_{\nu_s} / \nu_s \) so that the cross term becomes \(\sum_{q=1}^{N} \left(1 - x_q \right) x_q \) and

\[
\sigma^2 = \text{E}_n \left[\sum_{q=1}^{N} \left(1 - x_q \right) x_q \right] = \text{E}_n \left[\sum_{q=1}^{N} \left(1 - x_q \right) \lambda_0(t) \cos \theta_0(t) \right]
\]

so that the true 0- and 1-event probabilities for a given \(b_0(t) \) are expressed in terms of the expectation with respect to \(b_0(t) \) as:

\[
P_0[\{q \}, b_0(t)] = \text{E}_n \left[\sum_{q=1}^{N} \left(1 - x_q \right) \lambda_0(t) \cos \theta_0(t) \right]
\]

The following two sections address the evaluation of \(\Delta_i \) in terms of:

(i) the mean arrival densities of noise and of the useful signal; and

(ii) the 0-event probabilities under active/inactive signal/CQ

\[
P_0[\{q \}, b_0(t)] = \text{E}_n \left[\sum_{q=1}^{N} \left(1 - x_q \right) \lambda_0(t) \cos \theta_0(t) \right]
\]

so that the cross term becomes \(\sum_{q=1}^{N} \left(1 - x_q \right) x_q \) and \(\sigma^2_{\nu_s} / \nu_s \) is linear in \(\nu_s \). As \(\sigma^2_{\nu_s} \) can be shown to grow in the order of \(\nu_s^2 \) (it is not zero-mean), the proposition is proved.

2.2. Asymptotic Value of \(\text{E}_n \left[J_{bn} \right] \) and Signal Modulation

We evaluate \(\text{E}_n \left[a_n(q) \right] \) and \(\text{E}_n \left[b_n(q) \right] \) in \(\text{E}_n \left[J_{bn} \right] \), which defines a return of the signal format. We assume that the laser is either

\[
\alpha_n(q) = \text{E}_n \left[\alpha_n(q) \right] = \alpha_n(q) + j \alpha_n(q)
\]

and

\[
\beta_n(q) = \text{E}_n \left[\beta_n(q) \right] = \beta_n(q) + j \beta_n(q)
\]

where

\[
\sigma^2 = \text{E}_n \left[\sum_{q=1}^{N} \left(1 - x_q \right) x_q \right] = \text{E}_n \left[\sum_{q=1}^{N} \left(1 - x_q \right) \lambda_0(t) \cos \theta_0(t) \right]
\]

with \(\nu_s \) and \(\nu_1 \) the 0- and 1-event probabilities in the \(q \)-th bin, independent of \(q \). Hence, \(\sigma^2 \) is linear in \(\nu_s \) so that \(J_{bn} \) can be shown to grow in the order of \(\nu_s^2 \) (it is not zero-mean). The proposition is proved.

2.1. Stochastic Convergence Analysis

We provide only an outline for the convergence in variance of \(J_{bn} \), where \(\sigma^2 = \text{E}_n \left[J_{bn} - \text{E}_n \left[J_{bn} \right] \right]^2 \) is compared with \(\text{E}_n \left[J_{bn}^2 \right] \) for \(N_0 \rightarrow \infty \). We define the zero-mean variables \(a_n(q) = \alpha_n(q) - \text{E}_n \left[\alpha_n(q) \right] \) and \(b_n(q) = b_n(q) - \text{E}_n \left[b_n(q) \right] \), so that

\[
\sigma^2 = \text{E}_n \left[J_{bn} - \text{E}_n \left[J_{bn} \right] \right]^2 = \sum_{q=1}^{N} \left(1 - x_q \right) \alpha_n(q) + x_q b_n(q) + 2 \Re \left[\alpha_n(q) b_n(q) \right] + 2 \Re \left[\alpha_n(q) b_n(q) \right] \cos \theta_n(q)
\]

The following two sections address the evaluation of \(\Delta_i \) in terms of:

(i) the mean arrival densities of noise and of the useful signal; and

(ii) the 0-event probabilities under active/inactive signal \(b_0(t) \).
2.3. Evaluation of α_0

In computing Λ_2, we need to consider the 0-event probabilities under active ($a_2 = 1$) or inactive ($a_2 = 0$) signal. We assume a typical approximation where $\lambda_0(t) = \lambda_0 = \lambda_0 T_0$ constitutes the average photon count of noise and signal within each time bin, respectively, and θ is independent uniformly distributed over $[0, 2\pi]$. We saw that $\lambda_0(t) = (q/h\nu)((T_2(t) + Q_0^2(t)), with $I_s(t)$ and $Q_s(t)$ independent Gaussian distributed. Therefore, λ_0 is χ^2-distributed with two degrees of freedom (exponentially distributed), and so is n. Hence, $n = v_1^2 + v_2^2$, with v_1 and v_2 independent Gaussian random variables of variance σ^2 and $\pi = E_0[n] = 2a^2$, with the pdf of n given by

$$p_n(n) = \frac{1}{n} e^{-n/\pi} \cdot u(n)$$

From (7) and (15), we have $\alpha_{0,0} = -\pi (average number of photons in T_0 in the absence of the useful signal), where π is to be derived from the 0-event probabilities when the signal is inactive: $a_2 = 0 \Rightarrow n_0 = 0$. Hence, the probability of not detecting a photon becomes

$$P_0 = E_0[e^{-n}] = \int_0^{\infty} \frac{1}{n} e^{-n/(\pi+1)}dn = (\pi + 1)^{-1}$$

Therefore, $\alpha_{0,0} = -\pi = 1 - P_0^{-1}$ and $\pi = P_0^{-1} - 1$. Note that if a training sequence is used, this expression also serves as an estimator of π in terms of the measured P_0. Otherwise, the formulation of the ML estimator of π and n_0 leads to a non-linear equation system.

2.4. Evaluation of $\Lambda_{1,0}$ and $\Lambda_{1,1}$

$\Lambda_{1,0}$ is calculated as $\Lambda_{1,1}\langle n_0 \rangle = 0$. We will first compute $P_{0,1}$, the 0-event probability under an active signal: $a_1 = 1 \Rightarrow n_0 = \lambda_0 T_0$. Hence, $P_{0,1} = E_0[e^{\lambda_0}\exp(-((n + n_0 + 2\sqrt{n_0}n\cos \theta))]$ becomes

$$P_{0,1} = E_0[e^{\lambda_0}\exp(-((n + n_0 + 2\sqrt{n_0}n\cos \theta))]$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2\pi n^2} e^{-n^2/2\sigma^2} e^{-(v_1^2 + v_2^2)} dv_1dv_2$$

with $n_0 = v_0^2$ and using $n = v_1^2 + v_2^2$ and $\theta = v_2/v_1$ as mentioned before (22). Defining $1/2\sigma^2 = 1 + 1/2\sigma^2$,

$$P_{0,1} = \frac{1}{2\pi \sigma^2} \int_{-\infty}^{\infty} e^{-v_1^2/2\sigma^2} dv_1 \int_{-\infty}^{\infty} e^{-v_2^2/2\sigma^2} dv_2$$

Hence,

$$P_{0,1} = \frac{\sigma^2}{\sqrt{2\pi \sigma^2}} \int_{-\infty}^{\infty} e^{-(v_1^2 + v_2^2)} dv_1$$

$$= \frac{\sigma^2}{\sqrt{2\pi \sigma^2}} \int_{-\infty}^{\infty} e^{-(v_1^2 + v_2^2)/2\sigma^2} dv_1$$

But it follows that, as $\sigma = 2\pi$, we get $\sigma^2 = \frac{1}{\pi}$, with $1 - 2\sigma^2 = (\pi + 1)^{-1}$. Hence,

$$P_{0,1} = (\pi + 1)^{-1} = -n_0/(\pi + 1)$$

which, combined with (23), yields $n_0 = P_0^{-1}\ln P_0(1/P_0, 1)$. From (7), (15) and (21), we have $\Lambda_{1,0} = -\pi = n_0$, and hence,

$$\Lambda_{1,0} = 1 - \frac{1}{P_0} + \frac{1}{P_0} \ln \frac{P_{0,1}}{P_0} \Rightarrow \Delta_0 = -n_0 = \frac{1}{P_0} \ln \frac{P_{0,1}}{P_0}$$

(28)

The computation of $\Lambda_{1,1}$ is, by far, the most difficult. We have,

$$\Lambda_{1,1} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{2\pi \sigma^2} e^{-(v_1^2 + v_2^2)/2\sigma^2}$$

$$\cdot \ln(1 - e^{-(v_1^2 + v_2^2)/2\sigma^2}) dv_1dv_2$$

(29)

Now: $n = v_1^2 + v_2^2$, $\theta = \arctan(v_2/v_1)$. Therefore, $v_1 = \sqrt{\pi \cos \theta}$ and $dv_1dv_2 = \sqrt{\pi}(dv_1)$. Hence, $v_1 = \sqrt{\pi \cos \theta}$ and $\ln(1 - e^{-(v_1^2 + v_2^2)/2\sigma^2})$. Hence, $v_1 = \sqrt{\pi \cos \theta}$ and $\ln(1 - e^{-(v_1^2 + v_2^2)/2\sigma^2})$.

$$\Lambda_{1,1} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{2\pi \sigma^2} e^{-(v_1^2 + v_2^2)/2\sigma^2}$$

$$\cdot \ln(1 - e^{-(v_1^2 + v_2^2)/2\sigma^2}) dv_1dv_2$$

(30)

Changing variables: $r^2(k + 1/\pi) = t^2/2$, we get,

$$\Lambda_{1,1} = \int_{0}^{\infty} \frac{1}{k(1 + nk)} \int_{0}^{t} t^{2n_0/k} \ln \left(1 - e^{-t^2/k}
ight) dt$$

$$\int_{0}^{\infty} \frac{1}{k(1 + nk)} \ln \left(1 - e^{-t^2/k}
ight)$$

(32)

which yields,

$$\Delta_1 = \sum_{k=1}^{\infty} \frac{1}{k(1 + nk)} \left(1 - \exp \left[-\frac{nk}{1 + nk}
ight] \right)$$

(33)

Hence, combining (23), (28) and (33), we have established that P_0 and $P_{0,1}$ can be used to determine both π, n_0 and (Δ_0, Δ_1).

III - 655
3. DETECTION PROBABILITIES AND RESULTS

In this section, we compute and experimentally verify the detection probability of the signal versus noise hypothesis. In the large sample regime, $E_{\text{sn}}[|h_n|]$ becomes asymptotically Gaussian, so that only the first- and second-order statistics of x_q are needed for establishing the detection probabilities. We define $x_q = E_{\text{sn}}[x_q] + v_q$, with $v_q \in \{E_{\text{sn}}[x_q], 1 - E_{\text{sn}}[x_q]\}$ an equivalent uncorrelated zero-mean noise sequence. The power of v_q becomes,

$$\sigma^2_v = E_{\text{sn}}[(x_q - E_{\text{sn}}[x_q])^2] = E_{\text{sn}}[x_q^2] - E_{\text{sn}}[x_q]^2$$

where $E_{\text{sn}}[x_q] = \frac{1}{2} [1 + \varphi] = \frac{1}{2} [1 + 0] = \frac{1}{2}$, and

$$E_{\text{sn}}[x_q] = \text{Pr}[x_q = 1] = \frac{1}{2} [1 + |a_q|] = \frac{1}{2} [1 + 0] = \frac{1}{2}$$

From (34) and (35), and using $a_q \in \{0, 1\}$, the covariance becomes,

$$\sigma^2_{x} = (1 - a_q) \mu_0 + a_q \mu_1 + \sigma_0^2$$

where $\sigma_0^2 = \frac{1}{2} [1 + \varphi] = \frac{1}{2} [1 + 0] = \frac{1}{2}$.

Defining $\mu_1 = E_{\text{sn}}[x_q = 1]a_q = i$ for $i \in \{0, 1\}$, we have,

$$E_{\text{sn}}[x_q] = \text{Pr}[x_q = 1]a_q = (1 - a_q)\mu_0 + a_q \mu_1$$

where from (23) and (27), we establish that,

$$\mu_1 = 1 - (\pi + 1)^{-1} e^{-\pi \sigma_0^2/(\pi + 1)}$$

From (34) and (35), and using $a_q \in \{0, 1\}$, the covariance becomes,

$$\sigma^2_v = (1 - a_q) \mu_0 + a_q \mu_1 + \sigma_0^2$$

and

$$\mu_1 = \frac{1}{2} [1 + \varphi] = \frac{1}{2} [1 + 0] = \frac{1}{2}$$

with $\sigma_0^2 = \frac{1}{2} [1 + \varphi] = \frac{1}{2} [1 + 0] = \frac{1}{2}$.

To test the signal versus noise hypothesis, we set $a_q = 0$. Hence, for $N_a = \sum_{q=1}^{N_q} a_q$ the number of active signal bins in the sequence,

$$J_{H_1/H_0} = \Delta_0 \left(N_a (1 + \mu_1) \zeta + \sum_{q=1}^{N_q} a_q v_q \right)$$

where $J_{H_1/H_0} = \Delta_0 N_a (1 + \mu_1) + \zeta$, with ζ an asymptotically (for large N_a, N_q) zero-mean Gaussian noise term, of power $\sigma_0^2 = \Delta_0^2 / N_a \sigma_0^2$. The probability of not detection is calculated in terms of the complementary error function $\text{erfc}(x) = \sqrt{\frac{1}{\pi}} \int_x^\infty e^{-t^2} \, dt$.

$$P_e = \frac{1}{2} \text{erfc} \left(\frac{1 + \mu_1 \zeta}{\zeta \sigma_1} \sqrt{\frac{N_a}{2}} \right)$$

It is important to note that this expression is only valid in those ranges where the cumulative probability distribution of θ can be approximated to that of a Gaussian (which excludes the extreme values of θ). In fact, ζ cannot be an arbitrary value. Generally, when testing a_q versus a_q' using (38), it can be shown after lengthy calculations that the probability of error is $P_e = Pr[a_q \neq a_q'] = \frac{1}{2} \text{erfc} \left(\frac{N_a - N_{a'}}{\zeta \sqrt{2}} \frac{(N_{a'} - N_{a'}) \mu_1 - (N_a - N_{a'}) \mu_0 \zeta}{\sigma_0^2} \right)$

where $N_{a'} = \sum_{q=1}^{N_q} a_q'$ and $N_{a''} = \sum_{q=1}^{N_q} a_q a_q'$ the number of common active signal bins. When each sequence has the same number of active bins: $N_a = N_{a''}$, it reduces to the simpler expression,

$$P_e = \frac{1}{2} \text{erfc} \left(\frac{\mu_1 - \mu_0}{\sqrt{\frac{\sigma_0^2}{2}} \sqrt{\frac{N_a - N_{a''}}{2}}} \right)$$

with associated metric $J_{H_1/H_0} = \Delta_0 \zeta \sum_{q=1}^{N_q} (a_q - a_q') x_q$ such that knowledge of ζ becomes irrelevant. In conclusion, for a sequence set whose members share the same Hamming weight, the previous LLR is equivalent to applying the sequence matched filter to the detector outputs x_q for all members in the set, and this is asymptotically ML.

When the dependence on π and n_0 is made explicit in (40-41), the error rates do not solely depend on the signal to noise ratio n_0/n as is usual in radio communications, but the relationship is more complex. Equation (41) sets the basis for computing the achievable rates (i.e., the log2-size of the set of sequences a_q) under a given P_e. Finally, [4] is and interesting reference for photon detector arrays.

4. REFERENCES

