Publications

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction MAPT encodes for tau, the predominant component of neurofibrillary tangles that are neuropathological hallmarks of Alzheimer's disease (AD). Genetic association of MAPT variants with late-onset AD (LOAD) risk has been inconsistent, although insufficient power and incomplete assessment of MAPT haplotypes may account for this. Methods We examined the association of MAPT haplotypes with LOAD risk in more than 20,000 subjects (n-cases = 9,814, n-controls = 11,550) from Mayo Clinic (n-cases = 2,052, n-controls = 3,406) and the Alzheimer's Disease Genetics Consortium (ADGC, n-cases = 7,762, n-controls = 8,144). We also assessed associations with brain MAPT gene expression levels measured in the cerebellum (n = 197) and temporal cortex (n = 202) of LOAD subjects. Six single nucleotide polymorphisms (SNPs) which tag MAPT haplotypes with frequencies greater than 1% were evaluated. Results H2-haplotype tagging rs8070723-G allele associated with reduced risk of LOAD (odds ratio, OR = 0.90, 95% confidence interval, CI = 0.85-0.95, p = 5.2E-05) with consistent results in the Mayo (OR = 0.81, p = 7.0E-04) and ADGC (OR = 0.89, p = 1.26E-04) cohorts. rs3785883-A allele was also nominally significantly associated with LOAD risk (OR = 1.06, 95% CI = 1.01-1.13, p = 0.034). Haplotype analysis revealed significant global association with LOAD risk in the combined cohort (p = 0.033), with significant association of the H2 haplotype with reduced risk of LOAD as expected (p = 1.53E-04) and suggestive association with additional haplotypes. MAPT SNPs and haplotypes also associated with brain MAPT levels in the cerebellum and temporal cortex of AD subjects with the strongest associations observed for the H2 haplotype and reduced brain MAPT levels (beta = -0.16 to -0.20, p = 1.0E-03 to 3.0E-03). Conclusions These results confirm the previously reported MAPT H2 associations with LOAD risk in two large series, that this haplotype has the strongest effect on brain MAPT expression amongst those tested and identify additional haplotypes with suggestive associations, which require replication in independent series. These biologically congruent results provide compelling evidence to screen the MAPT region for regulatory variants which confer LOAD risk by influencing its brain gene expression.
    07/2014;
  • Carlos Cruchaga, Mark T W Ebbert, John S K Kauwe
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of cerebrospinal fluid levels of Aβ42 and pTau181 as endophenotypes for genetic studies of Alzheimer's disease (AD) has led to successful identification of both rare and common AD risk variants. In addition, this approach has provided meaningful hypotheses for the biological mechanisms by which known AD risk variants modulate the disease process. In this article we discuss these successes and outline challenges to effective and continued applications of this approach. We contrast the statistical power of this approach with traditional case-control designs and discuss solutions to address challenges in quality control and data analysis for these phenotypes. Finally, we discuss the potential for the use of this approach with larger samples as well as the incorporation of next generation sequencing and for future work with other endophenotypes for AD.
    Current genetic medicine reports. 03/2014; 2(1):23-29.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
    Nature 01/2014; 505(7484):550-554. · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Identification of the physiological changes that occur during the early stages of Alzheimer’s disease (AD) may provide critical insights for the diagnosis, prognosis and treatment of disease. Cerebrospinal fluid (CSF) biomarkers are a rich source of information that reflect the brain proteome. Methods We applied a novel approach to screen a panel of ~190 CSF analytes quantified by multiplex immunoassay and detected common associations in the Knight- Alzheimer’s Disease Research Center (ADRC;N=311) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI;N=293) cohorts. CSF ptau181-Aβ42 ratio was used as a continuous trait, rather than case control status in these analyses. Results We demonstrate the ptau181-Aβ42 ratio has more statistical power than traditional modeling approaches and that the levels of CSF Fatty Acid Binding Protein (H-FABP) and 12 other correlated analytes increase as the disease progresses. These results were validated using the traditional case control status model. Stratification of our dataset demonstrated that increases in these analytes occur very early in the disease course and were apparent even in non-demented individuals with AD pathology (low ptau181, low Aß42) compared to pathology-negative elderly control subjects (low ptau181, high Aß42). FABP-Aß42 ratio demonstrates a similar hazard ratio for disease conversion to ptau181-Aß42 even though the overlap in classification is incomplete suggesting that FABP contributes independent information as a predictor Conclusions Our results clearly indicate that the approach presented here can be employed to correctly identify novel biomarkers for AD, and that CSF H-FABP levels start to increase at very early stages of the disease.
    Biological psychiatry 01/2014; · 8.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common and complex neurodegenerative disease in the elderly individuals. Recently, genome-wide association studies (GWAS) have been used to investigate AD pathogenesis. These GWAS have yielded important new insights into the genetic mechanisms of AD. However, these newly identified AD susceptibility loci exert only very small risk effects and cannot fully explain the underlying AD genetic risk. We hypothesize that combining the findings from different AD GWAS may have greater power than genetic analysis alone. To identify new AD risk factors, we integrated findings from 3 previous large-scale AD GWAS (n = 14,138) using a gene-based meta-analysis and subsequently conducted a pathway analysis using the kyoto encyclopedia of genes and genomes and gene ontology databases. Interestingly, we not only confirmed previous findings, but also highlighted, for the first time, the involvement of cardiovascular disease-related pathways in AD. Our results provided the clues as to the link between these diseases using pathway analysis methods. We believe that these findings will be very useful for future genetic studies of AD.
    Neurobiology of Aging. 01/2014; 35(4):786–792.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene-by-gene (G × G), or gene-by-environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRT(MV)) or either effect alone (LRT(M) or LRT(V)) in the presence of covariates. Using extensive simulations for our method and others, we found that all parametric tests were sensitive to nonnormality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean-only functional variant, we demonstrate how LD can produce variance-heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D', and relatively low r² values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance-only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect G × G interactions and also how vQTL are related to relationship loci, and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait.
    Genetic Epidemiology 01/2014; 38(1):51-9. · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TREM and TREM-like receptors are a structurally similar protein family encoded by genes clustered on chromosome 6p21.11. Recent studies have identified a rare coding variant (p.R47H) in TREM2 that confers a high risk for Alzheimer's disease (AD). In addition, common single nucleotide polymorphisms in this genomic region are associated with cerebrospinal fluid biomarkers for AD and a common intergenic variant found near the TREML2 gene has been identified to be protective for AD. However, little is known about the functional variant underlying the latter association or its relationship with the p.R47H. Here, we report comprehensive analyses using whole-exome sequencing data, cerebrospinal fluid biomarker analyses, meta-analyses (16,254 cases and 20,052 controls) and cell-based functional studies to support the role of the TREML2 coding missense variant p.S144G (rs3747742) as a potential driver of the meta-analysis AD-associated genome-wide association studies signal. Additionally, we demonstrate that the protective role of TREML2 in AD is independent of the role of TREM2 gene as a risk factor for AD.
    Neurobiology of aging 12/2013; · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Genetics Core of the Alzheimer's Disease Neuroimaging Initiative (ADNI), formally established in 2009, aims to provide resources and facilitate research related to genetic predictors of multidimensional Alzheimer's disease (AD)-related phenotypes. Here, we provide a systematic review of genetic studies published between 2009 and 2012 where either ADNI APOE genotype or genome-wide association study (GWAS) data were used. We review and synthesize ADNI genetic associations with disease status or quantitative disease endophenotypes including structural and functional neuroimaging, fluid biomarker assays, and cognitive performance. We also discuss the diverse analytical strategies used in these studies, including univariate and multivariate analysis, meta-analysis, pathway analysis, and interaction and network analysis. Finally, we perform pathway and network enrichment analyses of these ADNI genetic associations to highlight key mechanisms that may drive disease onset and trajectory. Major ADNI findings included all the top 10 AD genes and several of these (e.g., APOE, BIN1, CLU, CR1, and PICALM) were corroborated by ADNI imaging, fluid and cognitive phenotypes. ADNI imaging genetics studies discovered novel findings (e.g., FRMD6) that were later replicated on different data sets. Several other genes (e.g., APOC1, FTO, GRIN2B, MAGI2, and TOMM40) were associated with multiple ADNI phenotypes, warranting further investigation on other data sets. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future studies employing next-generation sequencing and convergent multi-omics approaches, and for clinical drug and biomarker development.
    Brain Imaging and Behavior 10/2013; · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eleven susceptibility loci for late-onset Alzheimer's disease (LOAD) were identified by previous studies; however, a large portion of the genetic risk for this disease remains unexplained. We conducted a large, two-stage meta-analysis of genome-wide association studies (GWAS) in individuals of European ancestry. In stage 1, we used genotyped and imputed data (7,055,881 SNPs) to perform meta-analysis on 4 previously published GWAS data sets consisting of 17,008 Alzheimer's disease cases and 37,154 controls. In stage 2, 11,632 SNPs were genotyped and tested for association in an independent set of 8,572 Alzheimer's disease cases and 11,312 controls. In addition to the APOE locus (encoding apolipoprotein E), 19 loci reached genome-wide significance (P < 5 × 10(-8)) in the combined stage 1 and stage 2 analysis, of which 11 are newly associated with Alzheimer's disease.
    Nature Genetics 10/2013; · 35.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reported odds ratios and population attributable fractions (PAF) for late-onset Alzheimer's disease (LOAD) risk loci (BIN1, ABCA7, CR1, MS4A4E, CD2AP, PICALM, MS4A6A, CD33, and CLU) come from clinically ascertained samples. Little is known about the combined PAF for these LOAD risk alleles and the utility of these combined markers for case-control prediction. Here we evaluate these loci in a large population-based sample to estimate PAF and explore the effects of additive and nonadditive interactions on LOAD status prediction performance. 2419 samples from the Cache County Memory Study were genotyped for APOE and nine LOAD risk loci from AlzGene.org. We used logistic regression and receiver operator characteristic analysis to assess the LOAD status prediction performance of these loci using additive and nonadditive models and compared odds ratios and PAFs between AlzGene.org and Cache County. Odds ratios were comparable between Cache County and AlzGene.org when identical single nucleotide polymorphisms were genotyped. PAFs from AlzGene.org ranged from 2.25% to 37%; those from Cache County ranged from .05% to 20%. Including non-APOE alleles significantly improved LOAD status prediction performance (area under the curve = .80) over APOE alone (area under the curve = .78) when not constrained to an additive relationship (p < .03). We identified potential allelic interactions (p values uncorrected): CD33-MS4A4E (synergy factor = 5.31; p < .003) and CLU-MS4A4E (synergy factor = 3.81; p < .016). Although nonadditive interactions between loci significantly improve diagnostic ability, the improvement does not reach the desired sensitivity or specificity for clinical use. Nevertheless, these results suggest that understanding gene-gene interactions may be important in resolving Alzheimer's disease etiology.
    Biological psychiatry 08/2013; · 8.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have identified the rs75932628 (R47H) variant in TREM2 as an Alzheimer's disease risk factor with estimated odds ratio ranging from 2.9 to 5.1. The Cache County Memory Study is a large, population-based sample designed for the study of memory and aging. We genotyped R47H in 2974 samples (427 cases and 2540 control subjects) from the Cache County study using a custom TaqMan assay. We observed 7 heterozygous cases and 12 heterozygous control subjects with an odds ratio of 3.5 (95% confidence interval, 1.3-8.8; p = 0.0076). The minor allele frequency and population attributable fraction for R47H were 0.0029 and 0.004, respectively. This study replicates the association between R47H and Alzheimer's disease risk in a large, population-based sample, and estimates the population frequency and attributable risk of this rare variant.
    Neurobiology of aging 07/2013; · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We undertook a two-stage genome-wide association study (GWAS) of Alzheimer's disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 × 10−157) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 × 10−9) and 5′ to the PICALM gene (rs3851179, P = 1.9 × 10−8). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimer's disease in the combined dataset (rs11136000, P = 8.5 × 10−10, odds ratio = 0.86; rs3851179, P = 1.3 × 10−9, odds ratio = 0.86).
    Nature Genetics 05/2013; 45(6):712. · 35.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Single-nucleotide polymorphisms (SNPs) located in the gene encoding the regulatory subunit of the protein phosphatase 2B (PPP3R1, rs1868402) and the microtubule-associated protein tau (MAPT, rs3785883) gene were recently associated with higher cerebrospinal fluid (CSF) tau levels in samples from the Knight Alzheimer's Disease Research Center at Washington University (WU) and Alzheimer's Disease Neuroimaging Initiative (ADNI). In these same samples, these SNPs were also associated with faster functional decline, or progression of Alzheimer's disease (AD) as measured by the Clinical Dementia Rating sum of boxes scores (CDR-sb). We attempted to validate the latter association in an independent, population-based sample of incident AD cases from the Cache County Dementia Progression Study (DPS). METHODS: All 92 AD cases from the DPS with a global CDR-sb ≤1 (mild) at initial clinical assessment who were later assessed on CDR-sb data on at least two other time points were genotyped at the two SNPs of interest (rs1868402 and rs3785883). We used linear mixed models to estimate associations between these SNPs and CDR-sb trajectory. All analyses were performed using Proc Mixed in SAS. RESULTS: Although we observed no association between rs3785883 or rs1868402 alone and change in CDR-sb (P > .10), there was a significant association between a combined genotype model and change in CDR-sb: carriers of the high-risk genotypes at both loci progressed >2.9 times faster than noncarriers (P = .015). When data from DPS were combined with previously published data from WU and ADNI, change in CDR-sb was 30% faster for each copy of the high-risk allele at rs3785883 (P = .0082) and carriers of both high-risk genotypes at both loci progressed 6 times faster (P < .0001) than all others combined. CONCLUSIONS: We replicate a previous report by Cruchaga et al that specific variations in rs3785883 and rs1868402 are associated with accelerated progression of AD. Further characterization of this association will provide a better understanding of how genetic factors influence the rate of progression of AD and could provide novel insights into preventative and therapeutic strategies.
    Alzheimer's & dementia: the journal of the Alzheimer's Association 05/2013; · 14.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau), and Aβ42 are established biomarkers for Alzheimer's disease (AD) and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n = 1,269), identifying three genome-wide significant loci for CSF tau and ptau: rs9877502 (p = 4.89 × 10(-9) for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (p = 1.07 × 10(-8) and p = 3.22 × 10(-9) for tau and ptau, respectively), located at 9p24.2 within GLIS3 and rs6922617 (p = 3.58 × 10(-8) for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent data sets, rs9877502 showed a strong association with risk for AD, tangle pathology, and global cognitive decline (p = 2.67 × 10(-4), 0.039, 4.86 × 10(-5), respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci.
    Neuron 04/2013; · 15.77 Impact Factor
  • Source
    Perry G Ridge, Mark T W Ebbert, John S K Kauwe
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is the most common form of dementia and is the only top 10 cause of death in the United States that lacks disease-altering treatments. It is a complex disorder with environmental and genetic components. There are two major types of Alzheimer's disease, early onset and the more common late onset. The genetics of early-onset Alzheimer's disease are largely understood with variants in three different genes leading to disease. In contrast, while several common alleles associated with late-onset Alzheimer's disease, including APOE, have been identified using association studies, the genetics of late-onset Alzheimer's disease are not fully understood. Here we review the known genetics of early- and late-onset Alzheimer's disease.
    BioMed research international. 01/2013; 2013:254954.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is an international health concern that has a devastating effect on patients and families. While several genetic risk factors for AD have been identified much of the genetic variance in AD remains unexplained. There are limited published assessments of the familiality of Alzheimer's disease. Here we present the largest genealogy-based analysis of AD to date. We assessed the familiality of AD in The Utah Population Database (UPDB), a population-based resource linking electronic health data repositories for the state with the computerized genealogy of the Utah settlers and their descendants. We searched UPDB for significant familial clustering of AD to evaluate the genetic contribution to disease. We compared the Genealogical Index of Familiality (GIF) between AD individuals and randomly selected controls and estimated the Relative Risk (RR) for a range of family relationships. Finally, we identified pedigrees with a significant excess of AD deaths. The GIF analysis showed that pairs of individuals dying from AD were significantly more related than expected. This excess of relatedness was observed for both close and distant relationships. RRs for death from AD among relatives of individuals dying from AD were significantly increased for both close and more distant relatives. Multiple pedigrees had a significant excess of AD deaths. These data strongly support a genetic contribution to the observed clustering of individuals dying from AD. This report is the first large population-based assessment of the familiality of AD mortality and provides the only reported estimates of relative risk of AD mortality in extended relatives to date. The high-risk pedigrees identified show a true excess of AD mortality (not just multiple cases) and are greater in depth and width than published AD pedigrees. The presence of these high-risk pedigrees strongly supports the possibility of rare predisposition variants not yet identified.
    PLoS ONE 01/2013; 8(10):e77087. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a complex disorder influenced by environmental and genetic factors. Recent work has identified 11 AD markers in 10 loci. We used Genome-wide Complex Trait Analysis to analyze >2 million SNPs for 10,922 individuals from the Alzheimer's Disease Genetics Consortium to assess the phenotypic variance explained first by known late-onset AD loci, and then by all SNPs in the Alzheimer's Disease Genetics Consortium dataset. In all, 33% of total phenotypic variance is explained by all common SNPs. APOE alone explained 6% and other known markers 2%, meaning more than 25% of phenotypic variance remains unexplained by known markers, but is tagged by common SNPs included on genotyping arrays or imputed with HapMap genotypes. Novel AD markers that explain large amounts of phenotypic variance are likely to be rare and unidentifiable using genome-wide association studies. Based on our findings and the current direction of human genetics research, we suggest specific study designs for future studies to identify the remaining heritability of Alzheimer's disease.
    PLoS ONE 01/2013; 8(11):e79771. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Various studies have suggested that the mitochondrial genome plays a role in late-onset Alzheimer's disease, although results are mixed. We used an endophenotype-based approach to further characterize mitochondrial genetic variation and its relationship to risk markers for Alzheimer's disease. We analyzed longitudinal data from non-demented, mild cognitive impairment, and late-onset Alzheimer's disease participants in the Alzheimer's Disease Neuroimaging Initiative with genetic, brain imaging, and behavioral data. We assessed the relationship of structural MRI and cognitive biomarkers with mitochondrial genome variation using TreeScanning, a haplotype-based approach that concentrates statistical power by analyzing evolutionarily meaningful groups (or clades) of haplotypes together for association with a phenotype. Four clades were associated with three different endophenotypes: whole brain volume, percent change in temporal pole thickness, and left hippocampal atrophy over two years. This is the first study of its kind to identify mitochondrial variation associated with brain imaging endophenotypes of Alzheimer's disease. Our results provide additional evidence that the mitochondrial genome plays a role in risk for Alzheimer's disease.
    PLoS ONE 01/2013; 8(9):e74158. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Salmonids are popular sport fishes, and as such have been subjected to widespread stocking throughout western North America. Historically, stocking was done with little regard for genetic variation among populations and has resulted in genetic mixing among species and subspecies in many areas, thus putting the genetic integrity of native salmonid populations at risk and creating a need to assess the genetic constitution of native salmonid populations. Cutthroat trout is a salmonid species with pronounced geographic structure (there are 10 extant subspecies) and a recent history of hybridization with introduced rainbow trout in many populations. Genetic admixture has also occurred among cutthroat trout subspecies in areas where introductions have brought two or more subspecies into contact. Consequently, management agencies have increased their efforts to evaluate the genetic composition of cutthroat trout populations to identify populations that remain uncompromised and manage them accordingly, but additional genetic markers are needed to do so effectively. Here we used genome reduction, MID-barcoding, and 454-pyrosequencing to discover single nucleotide polymorphisms that differentiate cutthroat trout subspecies and can be used as a rapid, cost-effective method to characterize the genetic composition of cutthroat trout populations. RESULTS: Thirty cutthroat and six rainbow trout individuals were subjected to genome reduction and next-generation sequencing. A total of 1,499,670 reads averaging 379 base pairs in length were generated by 454-pyrosequencing, resulting in 569,060,077 total base pairs sequenced. A total of 43,558 putative SNPs were identified, and of those, 125 SNP primers were developed that successfully amplified 96 cutthroat trout and rainbow trout individuals. These SNP loci were able to differentiate most cutthroat trout subspecies using distance methods and Structure analyses. CONCLUSIONS: Genomic and bioinformatic protocols were successfully implemented to identify 125 nuclear SNPs that are capable of differentiating most subspecies of cutthroat trout from one another. The ability to use this suite of SNPs to identify individuals of unknown genetic background to subspecies can be a valuable tool for management agencies in their efforts to evaluate the genetic structure of cutthroat trout populations prior to constructing and implementing conservation plans.
    BMC Genomics 12/2012; 13(1):724. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. Methods We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. Results We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P=0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P=0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. Conclusions Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.).
    New England Journal of Medicine 11/2012; · 51.66 Impact Factor

121 Following View all

234 Followers View all