CGI 2008 Conference Proceedings

Bartosz Fabianowski - John Dingliana

Sketching Complex Generalized Cylinder Spines

Abstract Generalized cylinders are a versatile class of ob-
jects commonly constructed from a spine and cross-sections
orthogonal to it. We propose a novel method for the intuitive
sketch-based specification of arbitrarily complex spines, in-
cluding those that loop over and under themselves. A two-
dimensional sketch of the spine is drawn using a pen and
a graphics tablet first. This is surrounded by a swept-sphere
bounding volume representing the generalized cylinder. Any
overlapping sections are automatically offset perpendicular
to the sketch plane, their ordering controlled by pen pres-
sure. The user may adjust the resulting shape by oversketch-
ing or rotating the view and dragging points in the spine. All
user input is processed by an optimization that generates a
smooth, non-intersecting shape at interactive speeds.

Keywords Sketch-based modeling - Generalized cylinders -
Space curves - Pen pressure

CR Subject Classification 1.3.3 [Computer Graphics]:
Line and curve generation - 1.3.5 [Computer Graphics]:
Modeling packages - 1.3.6 [Methodology and Techniques]:
Interaction techniques

1 Introduction

Sketch-based modeling allows three-dimensional objects to
be built using planar strokes. Initial techniques focused on
reconstructing rectilinear models from orthographic sketches
[15]. Follow-up work introduced new modeling paradigms,
most notably the inflation of sketched silhouettes into “pufty”
shapes by Teddy [12]. For generalized cylinders, the preva-
lent construction method is extrusion of two-dimensional
cross-sections along a spine.

While planar cross-sections are easy to sketch, spines
are more difficult to handle. Current systems often rely on
a single stroke for the spine [37], allowing a limited range of
shapes to be drawn very quickly. Multi-stroke techniques are
more flexible, but complex spines remain difficult or even

Graphics Vision and Visualisation Group
Trinity College Dublin, Ireland

impossible to express [19]. We introduce a novel method for
quickly and intuitively sketching arbitrarily complex spines,
including those that loop over and under themselves. Our
approach additionally helps to ensure that the resulting gen-
eralized cylinder will be free of self-intersections.

The user first draws an overhead view of the spine using
pressure-sensitive pen and graphics tablet. This fully speci-
fies the x and y coordinates of all its points, leaving only z
unknown. Additionally, whenever two sections of the spine
lie so close together that the surrounding generalized cylin-
der overlaps, pen pressure indicates which section should be
placed above the other. An optimization automatically com-
putes z values that vary as smoothly as possible while re-
specting the non-intersection constraints. In a second step,
the user may interactively adjust z values by rotating the
view and dragging points in the spine. Optimization is re-
peated after each change to ensure that the spine follows the
user’s input smoothly.

All calculations are performed on a simplified bounding
volume representation. The spine is modeled as a polyline
and each segment surrounded by a capsule, the envelope of
a sweep along it with a sphere. Efficient collision detection
between capsules [22] allows the optimization to run at in-
teractive speeds. Save for two hemispheres at the ends, the
space occupied by the capsules corresponds to a generalized
cylinder with constant circular cross-section. This bound-
ing volume is well-suited to many modeling applications,
including knots of strings or rope and animal limbs, whose
cross-sections are often close to circular.

Fig. 1 A coil spring sketched using our system in mere seconds

2 Related work

Sketch-based modeling can follow two main approaches. Re-
constructive techniques build three-dimensional objects from
two-dimensional sketches by reversing the projection. This
works for CAD-like models exhibiting symmetry and 90°
angles [15], and also some curved objects [8, 16,24].

Gestural methods interpret input strokes by instantiat-
ing and modifying building blocks instead. These may be
domain-specific templates [25,36], simple primitives such
as cubes and cylinders [30,37], reconstructions from sketches
[23,26], or members of object families parametrized by the
strokes. In Teddy [12] and follow-up work [1,7,18,29], the
user obtains “puffy” shapes by inflation of their sketched
silhouettes. Other families of objects often parametrized by
strokes include surfaces of revolution [5,32], ruled surfaces
[9], and generalized cylinders.

The latter are commonly limited to sweeps along a pla-
nar stroke [30,32,37], although some methods exist that can
provide three-dimensional spines. In [19], two sketches from
different perspectives are fused to obtain a three-dimensional
curve, while [6] evaluates sketches of a curve and its shadow.
Neither technique is able to produce complex, looping spines.
A three-dimensional spine may also be derived from a single
stroke by projecting it onto auxiliary geometry [17] or using
domain-specific heuristics to fill in the additional degree of
freedom [28] at the cost of reduced control over the shape.
Similarly, [7] internally builds a three-dimensional spine but
gives the user no direct control over its depth coordinate. Ar-
bitrarily complex spines can currently only be described by
directly inputting three-dimensional coordinates using ap-
propriate hardware [10,21,31] or a combination of multiple
input devices [14].

Our approach computes the spine’s shape from planar
input strokes by solving a constrained, nonlinear optimiza-
tion problem. We use a numerical method [27] for ease of
implementation and adaptability. After each iteration, inter-
sections of the generalized cylinder with itself must be found
and resolved. These have been formally analyzed [11], but
collision detection for deformable objects remains compu-
tationally expensive [34]. Approximation of the generalized
cylinder by a bounding volume made of capsules [22] allows
for fast collision detection [20,33]. Similar techniques may
be found in surgical simulation [4], albeit with the very dif-
ferent goal of simulating highly domain-specific interaction,
not general-purpose modeling.

3 Interface and interaction

Construction begins with the user drawing an overhead view
of the desired spine using a pressure-sensitive pen and a
graphics tablet. The spine’s coordinate system is aligned with
this initial viewport, its x and y axes spanning the sketch
plane and z pointing along the view direction. An orthogonal
projection ensures that the sketch fully defines the (x,y) co-
ordinates of each point in the spine, leaving z unknown. The

RS

(a) Overhead view sketching (b) z coordinate adjustment

Fig. 2 Visualization during the two construction steps

input is sampled at short intervals and the spine modeled
as a polyline. To accelerate computations, the surrounding
generalized cylinder is represented by a bounding volume
composed of capsules around the spine’s segments. Instant
feedback is provided by visualizing the stroke together with
a live preview of the generalized cylinder (figure 2a).

The spine nodes’ z coordinates are computed by an opti-
mization that varies them as smoothly as possible while pre-
venting the capsules from intersecting each other. Any two
sections of the cylinder’s representation that overlap in the
overhead view must be moved apart in the z direction. The
desired ordering is indicated by pen pressure — the section
whose spine was drawn with less pressure is placed above
the other. Because drawing with very low pressure is dif-
ficult on some tablets, the comparison is omitted and the
newer section always placed above the other if its pressure
does not exceed 60% of the possible maximum.

Mistakes can be corrected by oversketching [2]. Any sub-
sequent stroke beginning and ending on the generalized cylin-
der replaces the section of the spine between its endpoints. If
the stroke ends on a blank section of the canvas, the spine is
extended instead. Oversketching may be used to both correct
minor mistakes such as the wrong pressure used for a short
stretch of the spine or to significantly alter the spine. After
every oversketching stroke, the capsules are regenerated to
follow the spine’s new shape and optimization is rerun.

By sketching an overhead view, the user fully specifies
the (x,y) positions of all nodes in the spine. The correspond-
ing z coordinates initially are automatic guesses obtained by
optimization. These may be adjusted freely in a second con-
struction step by rotating the view and dragging nodes using
the pen. Since only a single coordinate is to be modified, the
dragging motion is projected onto the z axis, avoiding any
ambiguity in its interpretation. The direction of adjustment
is visually indicated to the user (figure 2b). A z coordinate
may manually be specified for any number of nodes, giving
the user complete control over the three-dimensional shape
of the spine. To reduce the amount of input required and pre-
vent self-intersections, optimization continues to compute z
coordinates for all other nodes. Manually positioned nodes
are highlighted when then pen hovers over the tablet and
may be returned to automatic computation of their z values
by depressing the pen without dragging. The first node of
a new spine by default is positioned at z = 0 to provide an
absolute reference point.

(a) Capsule pairs AD, BD, BE, CE (b) Volumes around bold sections
overlap of the spine overlap

Fig. 3 The two notations used for an overlap

Spine construction is completed by computing tangen-
tial coordinate frames at the nodes that allow planar cross-
sections to be positioned. We provide the user with a choice
between the propagation of an initial frame using incremen-
tal rotation and Sloane’s technique [3]. Our current imple-
mentation covers construction of the spine only. The final
generalized cylinder may be obtained by exporting the spine
to another modeling application, such as Blender, and adding
custom cross-sections there.

4 Preprocessing

Overlaps in the generalized cylinder are located by prepro-
cessing the sketched overhead view. Any other information
that will accelerate the subsequent optimization is also cal-
culated at this stage. Processing occurs progressively as an
initial stroke is being drawn and is then selectively repeated
for parts of the spine affected by oversketching.

Our representation for the generalized cylinder is a se-
ries of capsules, which together form a swept-sphere volume
around the spine. Every overlap may therefore be expressed
in two ways: as a list of overlapping capsule pairs (figure 3a),
or the exact sections of the spine whose surrounding vol-

(a) The red and blue sections overlap

(b) The red section has reached its own start

umes overlap (figure 3b). Both notations are useful and serve
complementary purposes.

A list of overlapping capsule pairs is assembled by test-
ing each newly constructed capsule against its predecessors.
This directly accelerates optimization as only pairs on the
list need to be checked for correct ordering and potential
collisions. To obtain the second notation, overlaps between
capsule pairs are expressed using their actual starting and
ending points, then recursively merged whenever consecu-
tive stretches of the spine are affected. It is important to note
that not all overlaps are relevant. As seen in figure 3a, a cap-
sule always overlaps its immediate predecessor because the
two share a point in the spine. Such spurious local overlaps
are a property of the capsule representation and should be ig-
nored. We therefore discard any overlap involving two con-
secutive capsules overlapping each other.

While the first notation is used to accelerate optimiza-
tion, the second is required to determine the desired order-
ing. If pressure was compared independently for each over-
lapping capsule pair, D in figure 3a may for example be
placed above A but below B, leading to a break in the gen-
eralized cylinder. By comparing the average pressures of the
two merged segments in figure 3b instead, capsules A, B and
C are all placed on the same side of D and E.

A special case occurs if the generalized cylinder repeat-
edly loops over itself, such as when sketching the coils of
a spring. In figure 4a, the red and blue sections of a gen-
eralized cylinder overlap. As the user continues to draw a
spiral, the sections grow by merging to eventually reach fig-
ure 4b. At this point, there still is a single overlap between
red and blue. However, any further extension of the stroke
would result in corruption with both the red and blue sec-
tions overlapping their own starts and part of the spine be-
longing to both sections at once. To handle such cases, we
detect a loop whenever the end of a section reaches its own
start. The section is counted as a full winding and a new one
begun, shown green in figure 4c. Should this section again
reach its own start, another winding would be detected. The
entire arrangement continues to be treated as a single large
overlap. This prevents breaks in the generalized cylinder as

(c) A new winding is begun

Fig. 4 Overlap handling for the special case of a generalized cylinder repeatedly looping over itself

(a) After coarse pass (b) After fine pass

Fig. 5 Optimization results for a heavily looping spine

all windings are arranged in the same order, determined by
comparing the average pressures of the first and last one.

5 Optimization

The need to determine z coordinates for all nodes in the spine
gives rise to a constrained, nonlinear optimization problem.
To produce a visually plausible shape, the coordinates should
vary smoothly while arranging overlaps in the correct order,
preventing self-intersections and respecting manually set z
values. Any algorithm capable of performing this optimiza-
tion could be used. We describe here our numerical tech-
nique. Additional details are given in the appendix. In each
iteration, internal forces drive the spine toward a smoother
shape while penalty forces correct constraint violations. In-
ternal forces are attenuated as optimization progresses to
prevent oscillation. Although the capsule is an efficient bound-

ing volume, computational effort is dominated by inter-capsule

collision detection and resolution. A multiresolution approach
accelerates the optimization by approximating the spine’s
shape in a coarse pass and reducing the number of iterations
in which collision detection is required.

5.1 Coarse pass

This initial pass operates on the level of entire overlapping
sections (figure 3b), calculating a single z value for each, re-
gardless of its length and the number of capsules spanned.
For every section i passing over another one j, nodes are
placed at their centers, initialized to z; = —r and z; = r,
with r the radius of the swept sphere. Instead of costly col-
lision detection between the two sections, the simple con-
straint z; > z; 4 2r is used to ensure that one passes roughly
over the other. For the special case of two sections sepa-
rated by w windings, initial values +wr and the constraint
z; > zj +2wr are used instead. Additional immovable nodes
are placed wherever the user has manually set a z coordinate
by dragging the spine. This ensures that the internal forces
strive to interpolate manually set positions.

In each iteration, the internal forces apply a Laplacian
smoothing, directing every movable node toward the linear
interpolation of its neighbors. Before displacing nodes, cor-
rective forces are computed for each node pair violating a
constraint. After 1000 iterations, the results of the coarse

/N\/\

(a) Laplacian smoothing only (b) With forces on neighbors

Fig. 6 Laplacian smoothing of a spine with three manually set z values

pass are transferred to the actual spine nodes by interpolat-
ing between them. We have found Catmull-Rom and simple
linear interpolation to work equally well. Figure 5 illustrates
the approximation of a final shape produced by the coarse
pass for a heavily looping spine.

5.2 Fine pass

In the fine pass, z coordinates at the actual spine nodes are
optimized. Internal forces again apply a Laplacian smooth-
ing. Because nodes with manually set z coordinates are never
moved, this alone would make the spine linearly interpolate
between them (figure 6a). A smoother shape is obtained with
each node exerting an additional force of opposite sign and
half the magnitude on its neighbors. The total internal force
is the sum of these influences, clamped to the strongest indi-
vidual one (figure 6b).

Before advancing to the next iteration, each overlapping
capsule pair is checked for constraint violations. If two cap-
sules intersect or have incorrect ordering, the z displacement
is computed that will arrange them in the right order without
intersections again. This is preceded by a simple bounding
box test to eliminate unnecessary calculations. Half the dis-
placement is applied to either capsule in the form of penalty
forces acting on the nodes at its ends. Penalty forces are ac-
cumulated for each node, clamped to the strongest individual
influence to prevent excessive displacement from multiple
forces acting in the same direction. This technique is guar-
anteed to resolve an isolated collision in a single iteration.
Interactions between multiple capsules evolve over several
iterations, a total 1000 of which are made.

6 Results

We introduced a small number of users to our implementa-
tion of the technique. All were immediately able to model
spines. Pressure-sensitive ordering of overlapping sections
was perceived as intuitive and prompted creative exploration.
Users were often sketching looping shapes that are difficult
or impossible to achieve using other approaches. Overdraw-
ing support resolved the two most common problems. First,
users would sometimes draw with too little or too much pres-
sure, leading to an incorrect ordering of overlapping sec-
tions. This could quickly be fixed by retracing the relevant
section with corrected pressure. Second, when attempting to

draw with very low pressure, the pen sometimes was acci-
dentally lifted, prematurely ending the stroke. Overdrawing
allowed the stroke to be continued from this point. Man-
ual adjustment of z coordinates was only used when tasked
with constructing a specific three-dimensional shape. We ob-
served overall modeling times on the order of seconds, never
exceeding a minute per spine. The spine shape was updated
at interactive speeds by our C++ implementation running
on a Pentium D 3.73 GHz under FreeBSD. As optimization
time is dominated by collision detection and resolution, up-
date times ranged from 2 ms for spines without any overlaps
to 120 ms for the tightly packed windings of figure 5.

Figure 7 demonstrates some of the spine shapes that were
easily constructed using our technique. Examples 7a to 7c
illustrate the utility of pressure-based ordering. Spines loop-
ing over and under themselves were specified using a sin-
gle stroke each. Shown in figure 7d is a shape similar to the
wire trailing behind Pixar’s famous Luxo, Jr., modeled after
an example in [19]. In our system, the desired spine was ob-
tained using an initial stroke and four interactively added z
coordinates. To better illustrate its three-dimensional shape,
the result has been raytraced in Blender. The next two exam-
ples demonstrate that our technique can simplify a modeling
task even if the desired generalized cylinder does not fit the
bounding volume. Instead of constructing it fully in Blender,
the trumpet’s spine was quickly sketched using our system.
While the system could in this case not automatically ensure
sufficient space would remain around the spine, the speci-
fication of a looping space curve via its sketching interface
remained much faster than traditional modeling tools. The
octopus illustrates how our system can be used to model and
adjust a character’s pose. Each arm was sketched as a sepa-
rate stroke in an overhead view and then interactively trans-
formed into the desired shape by dragging on the spines.

The final example in figure 8 shows how a field beyond
generic three-dimensional modeling can benefit from our
technique. When designing neon signs, an arrangement of
the fluorescent tube is required that spells out a given writ-
ing without self-intersecting. Our system can quickly pro-
duce this from sketched input.

7 Conclusions and future work

We have introduced a novel method for sketching general-
ized cylinder spines. Arrangement of overlapping sections
based on pen pressure allows complex, looping spines to
intuitively be described using a single stroke. Computation
of z coordinates by optimization produces smooth spines
and prevents the surrounding generalized cylinder from self-
intersecting. Adjustments to the proposed spine shape via
oversketching or the dragging of nodes result in renewed op-
timization at interactive speeds.

Our technique provides several benefits for the construc-
tion of generalized cylinders. Existing methods for sketch-
ing space curves can be used to build a spine [6,19]. How-
ever, with the spine treated on its own, no provision is made

—eo—96

(a) Figure-eight knot (b) Running bowline

A p—

(d) Cable trailing Luxo, Jr.

(c) Coat-hanger

— b

(e) Trumpet spine (f) Trumpet in Blender

A

(g) Octopus, first pose (h) Octopus, second pose

Fig. 7 Models sketched using our system

(a) Front view

S = = =)

(b) Bottom view

Fig. 8 Neon sign prototyped in our system

to ensure sufficient space around it remains for the gener-
alized cylinder. Also, curve complexity is limited in these
approaches by the need to find a mapping between multi-
ple strokes. An alternative is the construction of generalized
cylinders using methods based on Teddy, which inflate them
from sketched silhouettes. Self-occluding objects are possi-
ble by automatically inferring hidden silhouettes [7, 18] and
using a paneling technique [35] to arrange overlapping sec-
tions. The process is not interactive, however, and no con-
trol is provided over z coordinates. Contours may also be
connected wrongly, resulting in incorrect objects.

In our approach, the ordering of overlapping sections is
controlled by the user via pen pressure. This can be prob-

lematic when multiple overlaps coincide and a very precise
choice of pressure is required to stack them in the desired
order. We would like to give the user additional graphical
feedback about the current position in the stacking order,
adapting the idea from [13]. It would also be desirable to
verify whether the ordering constraints specified for all over-
laps can simulatenous be fulfilled. The mathematical treat-
ment required is complicated by the fact that the generalized
cylinder’s capsule structure must be taken into account. It
is currently also possible to force self-intersections by drag-
ging nodes so that insufficient space remains between them.
While a formal treatment again would be complicated, we
want to experiment with rejecting a dragging motion if it
leads to the optimization being unable to find a valid shape.

The limitation we want to address first is the constant
circular cross-section of our bounding volume representa-
tion. Direct use of custom cross-sections would lead to pro-
hibitive computational costs for collision detection and res-
olution. However, we can improve the tightness of fit by
allowing a wider range of bounding volumes to be used.
Sweeping a sphere of varying radius is our first goal. Next,
we want to investigate nonuniform scaling of the sphere, al-
lowing eccentric cross-sections to better be approximated.
The tightest bounding volumes can automatically be com-
puted if we extend our system to let the user sketch cross-
sections. This will also eliminate the need to export spines
into Blender as all the final model can then be assembled by
our system.

Abstracting from our particular implementation or even
generalized cylinders, we believe that the implicitness with
which our users accepted pressure as an additional degree of
freedom shows its great potential for sketch-based model-
ing. The use of pressure is common throughout painting and
drawing applications such as Corel Painter or Adobe Illus-
trator. Techniques aiming to adapt the sketching metaphor to
three dimensions, however, generally neglect it. To closely
emulate the feeling of pen and paper, a graphics tablet is re-
quired. And with a tablet, pressure information is inherently
available. We are therefore very interested in investigating
the potential uses of pressure throughout sketch-based mod-
eling. The other degrees of freedom offered by some tablets,
pen tilt and rotation, may extend this research in the future.

Acknowledgements We thank the anonymous reviewers for their help-
ful comments. This work was supported by the Irish Research Council
for Science, Engineering and Technology under the Embark Initiative.

References

1. de Aratjo, B., Jorge, J.: BlobMaker: Free form modelling
with variational implicit surfaces. In: Encontro Portugués de
Computacao Grafica EPCG 2003, pp. 17-26 (2003)

2. Baudel, T.: A mark-based interaction paradigm for free-hand
drawing. In: ACM Symposium on User Interface Software and
Technology UIST 1994, pp. 185-192 (1994)

3. Bloomenthal, J.: Graphics Gems, chap. Calculation of Reference
Frames Along a Space Curve. Academic Press, San Diego, CA,
USA (1990)

10.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

. Brown, J., Latombe, J.C., Montgomery, K.: Real-time knot tying

simulation. The Visual Computer 20(2-3), 165-179 (2004)

. Cherlin, J., Samavati, F., Sousa, M., Jorge, J.: Sketch-based model-

ing with few strokes. In: Spring Conference on Computer Graph-
ics SCCG 2005, pp. 137-145 (2005)

. Cohen, J., Markosian, L., Zeleznik, R., Hughes, J., Barzel, R.: An

interface for sketching 3D curves. In: Symposium on Interactive
3D Graphics 13D 1999, pp. 17-21 (1999)

. Cordier, F., Seo, H.: Free-form sketching of self-occluding ob-

jects. IEEE Computer Graphics and Applications 27(1), 50-59
(2007)

. Das, K., Diaz-Gutierrez, P., Gopi, M.: Sketching free-form sur-

faces using network of curves. In: Eurographics Workshop on
Sketch-Based Interfaces and Modeling SBIM 2005, pp. 127-134
(2005)

. Eggli, L., Hsu, C.Y., Briiderlin, B., Elber, G.: Inferring 3D models

from freehand sketches and constraints. Computer-Aided Design
29(2), 101-112 (1997)

Fleisch, T., Rechel, F., Santos, P., Stork, A.: Constraint stroke-
based oversketching for 3D curves. In: Eurographics Workshop
on Sketch-Based Interfaces and Modeling SBIM 2004, pp. 161—
165 (2004)

. Gansca, 1., Bronsvoort, W., Coman, G., Tambulea, L.: Self-

intersection avoidance and integral properties of generalized cylin-
ders. Computer Aided Geometric Design 19(9), 695-707 (2002)
Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: A sketching inter-
face for 3D freeform design. In: ACM SIGGRAPH 1999, pp.
409-416 (1999)

Ju, T., Zhou, Q.Y., Hu, S.M.: Editing the topology of 3D models
by sketching. In: ACM SIGGRAPH 2007, pp. 42:1-42:9 (2007)
Kallio, K.: 3D6B editor: Projective 3D sketching with line-based
rendering. In: Eurographics Workshop on Sketch-Based Interfaces
and Modeling SBIM 2005, pp. 73-79 (2005)

Kanungo, T., Haralick, R., Dori, D.: Understanding engineering
drawings: A survey. In: IAPR International Workshop on Graphics
Recognition GREC 1995, pp. 119-130 (1995)

Kaplan, M., Cohen, E.: Producing models from drawings of
curved surfaces. In: Eurographics Workshop on Sketch-Based In-
terfaces and Modeling SBIM 2006, pp. 51-58 (2006)

. Kara, L., Shimada, K.: Construction and modification of 3D ge-

ometry using a sketch-based interface. In: Eurographics Work-
shop on Sketch-Based Interfaces and Modeling SBIM 2006, pp.
59-66 (2006)

Karpenko, O., Hughes, J.: SmoothSketch: 3D free-form shapes
from complex sketches. ACM Transactions on Graphics 25(3),
589-598 (2006)

Karpenko, O., Hughes, J., Raskar, R.: Epipolar methods for multi-
view sketching. In: Eurographics Workshop on Sketch-Based In-
terfaces and Modeling SBIM 2004, pp. 167-173 (2004)

Lam, D.: Tokamak physics engine. Website (2007).
http://www.tokamakphysics.com/

Lapides, P., Sharlin, E., Sousa, M., Streit, L.: The 3D tractus: A
three-dimensional drawing board. In: IEEE International Work-
shop on Horizontal Interactive Human-Computer Systems Table-
Top 2006, pp. 169-176 (2006)

Larsen, E., Gottschalk, S., Lin, M., Manocha, D.: Fast proximity
queries with swept sphere volumes. Tech. Rep. TR99-018, UNC
Chapel Hill (1999)

Liu, W., Kondo, K., Mitani, J.: An interactive sketch-based model-
ing system using a topology library and subdivision methods. In:
Eurographics Workshop on Sketch-Based Interfaces and Model-
ing SBIM 2005, pp. 89-98 (2005)

Masry, M., Lipson, H.: A sketch-based interface for iterative de-
sign and analysis of 3D objects. In: Eurographics Workshop on
Sketch-Based Interfaces and Modeling SBIM 2005, pp. 109-118
(2005)

Murakawa, J., Yoon, I., Hong, T., Lank, E.: Parts, image, and
sketch based 3D modeling method. In: Eurographics Workshop
on Sketch-Based Interfaces and Modeling SBIM 2006, pp. 67-74
(2006)

26. Naya, F.,, Conesa, J., Contero, M., Company, P., Jorge, J.: Smart
sketch system for 3D reconstruction based modeling. In: Interna-
tional Symposium on Smart Graphics SG 2003, pp. 58-68 (2003)

27. Nocedal, J., Wright, S.: Numerical Optimization, second edn.
Springer, New York, NY, USA (2006)

28. Okabe, M., Owada, S., Igarashi, T.: Interactive design of botanical
trees using freehand sketches and example-based editing. Com-
puter Graphics Forum 24(3), 487—-496 (2005)

29. Owada, S., Nielsen, F., Nakazawa, K., Igarashi, T.: A sketching
interface for modeling the internal structures of 3D shapes. In:
International Symposium on Smart Graphics SG 2003, pp. 49-57
(2003)

30. Pereira, J., Jorge, J., Branco, V., Ferreira, F.: Calligraphic inter-
faces: Mixed metaphors for design. In: International Workshop
on Design, Specification and Verification of Interactive Systems
DSV-IS 2003, pp. 154-170 (2003)

31. Sachs, E., Roberts, A., Stoops, D.: 3-Draw: A tool for designing
3D shapes. IEEE Computer Graphics and Applications 11(6), 18—
26 (1991)

32. Schmidt, R., Wyvill, B., Sousa, M., Jorge, J.: ShapeShop: Sketch-
based solid modeling with BlobTrees. In: Eurographics Workshop
on Sketch-Based Interfaces and Modeling SBIM 2005, pp. 53-62
(2005)

33. Smith, R.: Open dynamics
http://www.ode.org/

34. Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G.,
Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F., Magnetat-
Thalmann, N., Strasser, W., Volino, P.: Collision detection for de-
formable objects. Computer Graphics Forum 24(1), 61-81 (2005)

35. Williams, L.: Perceptual completion of occluded surfaces. Ph.D.
thesis, University of Massachusetts Amherst (1994)

36. Yang, C., Sharon, D., van de Panne, M.: Sketch-based modeling
of parameterized objects. In: Eurographics Workshop on Sketch-
Based Interfaces and Modeling SBIM 2005, pp. 63-72 (2005)

37. Zeleznik, R., Herndon, K., Hughes, J.: SKETCH: An interface for
sketching 3D scenes. In: ACM SIGGRAPH 1996, pp. 163-170
(1996)

engine. Website (2007).

A Implementation details

In the coarse optimization pass, two nodes are constructed for each
pair of overlapping sections. The nodes are ordered by their positions
pi along the sketched overhead view of the spine, so that p; < piti.
An internal force then drives each node’s z coordinate toward linear
interpolation between its neighbors:

P ((PH—I —pi)zie1 + (pi — Pic1) zit1)
r== -z
Pi+1 — Pi-1

a

The nodes are displaced by adding these forces to their current z
coordinates. To prevent oscillation, the attenuation factor a is exponen-
tially increased over the course of the optimization. Whenever the new
z coordinates would violate the constraint (z; +F;) > (z;+F;)+2r fora
pair of nodes, corrective forces are applied. Node i experiences a force
proportional to F; and vice versa. This corresponds to two sections of
the spine colliding and moving together in the direction of the stronger
force. The resulting total forces acting on the nodes are:

ol z;—2r
F—F

F; = F;+cF;

EF;=F;+cF

During the fine pass, the z coordinates of the actual spine nodes
are optimized. The internal force is calculated as above, but each node
is additionally affected by the internal forces at its neighbors:

Fi=F—05(F_1+Fy1)

Corrective forces are determined by collision detection. When two
capsules collide or are incorrectly ordered, the minimal displacement
d is computed that will arrange them in the correct order again. This
can efficiently be done by expressing each capsule as two spheres and a
truncated cylinder. The displacement required is computed separately
for each pair of primitives in the two capsules and the largest value
used. A corrective force of F. = 0.5d is applied to the nodes at the
ends of one capsule, F, = —0.5d at the other. Corrective forces from
multiple collisions are added. To prevent excessive displacement, every
sum of forces is clamped to the strongest individual influence acting in
its direction. During both optimization passes, nodes whose z value
has manually been set by the user are present, but immovable with the
forces acting on them always zero.

