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Editorial

This final issue of ORiON Volume 24 contains five interesting papers, again spanning a
substantial portion of the wide operational research spectrum, from practical studies to
the establishment of theoretical results and the development of new methodology.

In the first paper, titled Portfolio selection theory and wildlife management, John Hearne,
Truly Santika and Peter Goodman, consider the potential of portfolio selection theory, first
suggested by Markowitz [3] in 1952, to determine the optimal mix of species on a game
ranch. In this fascinating application, land, or more accurately the food that it sustains,
is the resource available to “invest,” while the various game species (with their unique
return and risk profiles) are the “investment alternatives.” The authors solve the problem
of deciding what proportion of the available resource is to be invested in each species.
They show that if the objective is to minimise risk for a given return, then the problem
is analogous to the portfolio selection problem. They also demonstrate the applicability
of their approach using typical data for a hypothetical game ranch. The authors conclude
that it is necessary to include a third objective in addition to the usual risk and return
objectives, so as to ensure sufficient species to maintain the “character” of a game ranch,
in terms of the resulting overall quality of the viewing or hunting experience of visitors to
the ranch.

The second paper, by Babul Hasan and John Raffensperger titled Two pricing methods
for solving an integrated commercial fishery planning model, contains two novel pricing
methods for solving an integer programming problem. The authors demonstrate these
methods by solving an integrated commercial fishery planning model (IFPM) previously
published in ORiON [2]. The aim in this model was twofold: (i) to schedule fishing
trawlers (i.e. to determine when and where the trawlers should go fishing, and when
the trawlers should land their catches), and (ii) to decide how to process the landed
fish into products at a processing plant so as to maximise profit. Whereas production
planning alone would result in an easy linear programming problem, the introduction
of a trawler scheduling aspect into the IFPM results in a hard integer program (in the
sense that traditional solution methods involve computation times that are far too long
to be practical). The two pricing methods developed in this paper are a decomposition-
based O’Neill pricing method and a reduced cost-based pricing method. The authors
demonstrate the working of these approximate solution methods by means of numerical
examples for different planning horizons, considering differently sized problem instances,
and concluding that these methods are indeed viable in terms of their execution times
when considering a realistic instance of the IFPM.

In the third paper, titled The identification of possible future provincial boundaries for
South Africa based on an intramax analysis of journey-to-work data, Hannelie Nel, Stephan
Krygsman and Tom de Jong use the intramax method and a combination of national cen-
sus data on place of residence and place of work to identify functional regions in South
Africa, based on journey-to-work flows. They describe how these functional regions may
be used to demarcate sensible provincial boundaries or provide solutions to disputed areas.
The authors briefly review the process that was followed in 1993 to demarcate the current
provincial boundaries and go on to propose new boundaries for a four or five province
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regime, based on the intramax analysis of the journey-to-work flow data mentioned above.
They also put forward practical solutions to a number of split-municipality and disputed
region problems that have surfaced in the media over the past few years. Their results
compare favourably with those from principal component and cluster analyses [1] previ-
ously used to demarcate the South African space economy into a hierarchy of development
regions.

The topic of the fourth paper, titled A survey and comparison of heuristics for the 2D
oriented on-line strip packing problem by Nthabiseng Ntene and Jan van Vuuren, is the
two-dimensional oriented on-line strip packing problem in which it is required that items
be packed, one at a time without rotation or overlap, into a strip of fixed width and
infinite height so as to minimise the total height of the packing. The authors review ten
heuristics from the literature for the special case where the items are rectangles, propose
six modifications to some of these heuristics, and present two entirely new shelf algorithms
for this class of strip packing problems. They then go on to compare the performances
and efficiencies of all the algorithms in terms of the mean packing height achieved and
computation time required when applied to 542 benchmark data sets documented in the
literature. They find that two of their proposed algorithmic modifications outperform
most of the reviewed algorithms in the literature if the packing data set satisfies certain
conditions in terms of the aspect ratios of the rectangles to be packed.

In the final paper, titled The Steiner ratio for points on a triangular lattice, Oloff de Wet
presents a novel, short proof that the Steiner ratio for points on a triangular lattice in
the Euclidean plane is 2/

√
3. The Steiner ratio is an efficiency measure of how badly

a minimum spanning tree performs compared to a Steiner minimal tree. This kind of
efficiency finds important applications in, for example, the design of integrated circuit
boards, communication networks, power networks and pipelines of minimum cost. In the
proof, a Steiner tree in two dimensions is “lifted” to become a rectilinear tree in three
dimensions, where it is suitably altered. Proof of the result readily follows for the altered
rectilinear tree, which is then projected back into the plane. This beautiful proof is a
classic example of the seeming contradiction that it may be exceedingly difficult to prove
a result in a confined or special case setting, but much easier to prove a more general result
(by relaxing the setting confinement), which admits the original result as special case.

I trust that the diversity and quality of the five papers in this issue are such that each reader
of ORiON will find something suiting his/her particular tastes and interests. Suggestions
and comments on publications in ORiON, in the form of letters to the editor, are welcome
and may be published in future issues of the journal.

In January this year an international Advisory Board was appointed for ORiON, com-
prising fourteen operations researchers from Canada, England, France, India, Italy, New
Zealand, the Philippines, South Africa, and the United States of America (these individu-
als are listed in the front cover of the journal). An electronic copy of ORiON will be sent
to these board members every six months and it will be the task of the Advisory Board
to advise the Editorial Board on the standard of papers accepted (on a post-publication
basis) and also to help settle refereeing disputes in their areas of expertise. The Board will
also lend international standing to the journal. An electronic copy of Volume 24(1) went
out the Advisory Board in June this year, and the board members are thanked for the
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invaluable feedback received, including excellent assessments with respect to the standards
of papers that appeared in the Volume 24(1), as well as a wealth of practical advice and
sensible suggestions with respect to style, typesetting and general strategizing.

I would also like to thank the eleven authors who have contributed their interesting work
to Volume 24(2) of ORiON. My sincere thanks also go to the ten anonymous referees who
have generously given of their time to evaluate the papers in this issue timeously and in a
very professional manner; their excellent work has led to substantial improvements in the
quality of papers in virtually all cases.

My thanks also go to Adri van der Merwe, editorial assistant, who assumes much of the
administrative duties involved in managing the submission and refereeing processes of
manuscripts. I would also like to thank Philip Fourie who has assisted me with meticulous
proofreading of the papers contained in this issue — his time and expertise are much
appreciated. Thank you also to Associate Editor John Hearne for managing the refereeing
process of the penultimate paper in this issue so timeously and professionally on my behalf.

Finally, I would like to thank the business manager, Stephan Visagie, and his typesetting
assistant, Lieschen Venter, for their high standards and considerable patience during the
nontrivial typesetting process of the manuscripts in LATEX and for overseeing the time–
consuming publication process of this issue.

Jan van Vuuren
December 2008
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Abstract
With a strong commercial incentive driving the increase in game ranching in Southern Africa
the need has come for more advanced management tools. In this paper the potential of Port-
folio Selection Theory to determine the optimal mix of species on game ranches is explored.
Land, or the food it produces, is a resource available to invest. We consider species as invest-
ment choices. Each species has its own return and risk profile. The question arises as to what
proportion of the resource available should be invested in each species. We show that if the
objective is to minimise risk for a given return, then the problem is analogous to the Portfolio
Selection Problem. The method is then implemented for a typical game ranch. We show that
besides risk and return objectives, it is necessary to include an additional objective so as to
ensure sufficient species to maintain the character of a game ranch. Some other points of
difference from the classical Portfolio Selection problem are also highlighted and discussed.

Key words: Portfolio selection, multi-objective optimisation, game ranching, wildlife management.

1 Introduction

The trend towards transforming livestock production systems into game ranching has
increased rapidly since the early 1990s. By the year 2000 it was estimated that there
were approximately 5000 fenced game ranches and 4000 mixed game and livestock farms
in South Africa covering more than 13% of the country’s land area (ABSA Economic
Research, 2003). In 2008 some 3000 additional livestock farms were in the process of
conversion to integrated game and livestock production. Some concern about the economic
sustainability of this activity and the lack of understanding of risk due to market and
climatic variability has been expressed (Falkema and Van Hoven, 2000). Strategies to
improve the economic returns from game ranches were formulated by Hearne et al. (1996),
but this work did not deal with risk.

Theron and Van den Honert (2003) dealt with issues of risk and return in an agricultural
context. They developed an agricultural investment model based on investment portfo-
lio techniques first proposed by Markowitz (1952). Their objective was to optimise the
∗Corresponding author: School of Mathematical and Geospatial Sciences, RMIT University, GPO Box

2476V, Melbourne, 3001, Australia, email: john.hearne@rmit.edu.au
†School of Mathematical and Geospatial Sciences, RMIT University, GPO Box 2476V, Melbourne, 3001,

Australia.
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104 JW Hearne, T Santika & P Goodman

proportion of land allocated to each of a number of agricultural products. The ideas of
Theron and Van den Honert are followed in this paper. Their potential application to
game ranches is explored by means of an illustrative case study.

2 The Problem

The portfolio selection problem is the bi-objective problem of choosing a portfolio of
investments that minimises risk while maximising returns. As an acceptable trade-off
between risk and return is usually required, an efficient frontier of Pareto optimal solutions
is generated by repeatedly solving a single objective optimisation problem. Such a problem
minimises risk for various given values of return.

Most modern Operations Research textbooks, such as Winston (2003) or Ragsdale (2004),
include the formulation of a simple portfolio selection problem similar to the following
formulation.

Suppose K is the total capital available to invest in n investment opportunities. Let pi

and ri denote respectively the capital invested in and the expected return from investment
opportunity i, and let p = (p1, . . . , pn)T . Furthermore, suppose V is the portfolio variance
and C is the covariance matrix of investment returns. Then the objective is to

minimise V = pT Cp,

subject to
∑
i∈S

ripi ≥ R, (acceptable revenue returned),∑
i∈S

pi = K, (all capital invested),

pi ≥ 0, i ∈ {1, . . . , n}.


(1)

By repeatedly solving (1) with different specified values of R an efficient frontier of portfolio
variances may be obtained.

Before pursuing the principles of (1) in a game ranch context some background information
is necessary. The food requirements of large herbivores are often given in terms of animal
units. An animal unit (au) is usually defined as the amount of food required to sustain
a domestic cow of 455 kg. An impala, for example, only requires 0.16 animal units per
head. Therefore six impala require 6× 0.16 = 0.96 au of food resources which is still less
than the food resources required by one domestic cow. The carrying capacity of a given
area of land is defined as the number of animal units the land can sustain.

For a game ranch, a problem analogous to (1) is obtained if species represent investment
opportunities and the carrying capacity of the land represents the capital available for
investment. Let K be the number of animal units available (i.e. the carrying capacity)
and denote the set of livestock species by S. Furthermore, suppose pi animal units are
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allocated to species i ∈ S. Then the analogous problem is to

minimise V = pT Cp,

subject to
∑
i∈S

ripi ≥ R, (acceptable revenue returned),∑
i∈S

pi = K, (utilizing carrying capacity),

pi ≥ 0, i ∈ S.


(2)

A shortcoming of the above formulation is that the total food resources represented
by the carrying capacity K are assumed to be homogeneous. The formulation may be
improved by dividing the carrying capacity into three broad food classes: bulk graze,
concentrate graze and browse. The actual utilisation of these food resources depends
on both the number of animal units of each species and their respective diets. Let
F = {bulk graze, concentrate, browse}, and suppose the proportion of food resource j
in the diet of species i is denoted by αij . Then the additional constraint∑

i∈S

piαij ≤ Kj , j ∈ F (3)

is required, where
∑

j∈F Kj = K and Kj ≥ 0 for all j ∈ F .

The expected returns generated in this model are more complex than those for the ordinary
capital investment portfolio. Whilst the return on an investment in shares is mainly a
function of changes in price over a certain period, wildlife returns comprise changes in
both sales price and population numbers. For example, suppose that there are b buffalo
on a ranch at time t, and suppose that the average market price of buffalo at this time is
sb. Then the market value of the buffalo population on the ranch at time t is bsb. With an
annual population growth rate of fb a ranch owner may expect to own (1 + fb) b buffalo
in year t + 1. Also, with an annual price growth rate of ∆sb, the sales price of buffalo
is expected to become

(
1 + ∆sb

)
sb after one year. The value of the population after one

year would therefore be bsb(1 + fb)
(
1 + ∆sb

)
. From this value and the value at time t it is

easily shown that the expected annual return on capital invested in the buffalo population
is ∆sb + fb + ∆sbfb.

For species i ∈ S, the expected return on capital in livestock is therefore given by

Ri = ∆si + fi + ∆sifi, (4)

where ∆si denotes the average change in the sales price for species i over a certain time
period. This is calculated as

∆si =
1

T − 1

T−1∑
t=1

(
si,t+1 − sit

sit

)
, i ∈ S (5)

where sit is the sales price of species i at time t, and T is the duration of the time under
consideration.

The arithmetic mean is calculated in (5) above. This is the classical approach followed in
most textbooks. However, there is a large body of literature with alternative formulations
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of the problem, including for example, the geometric approach suggested by Leippold et
al. (2004). A thorough review of various methods for calculating ∆si is given by Steinbach
(2001).

3 Implementation

Consider a hypothetical but typical ranch in southern Africa. Suppose that twelve species
are suitable for this ranch. Data relating to these species are given in Table 1. Typical

Proportional Food Preference

Growth Bulk Concentrate
Species au/head Rate Graze Graze Browse

White Rhino 2.45 7% 0.9 0.1 0.0
Blesbok 0.22 15% 1.0 0.0 0.0
Zebra 0.54 15% 0.7 0.3 0.0
Blue Wildebeest 0.49 16% 0.3 0.7 0.0
Reedbuck 0.19 15% 0.3 0.7 0.0
Red Hartebeest 0.37 15% 0.2 0.8 0.0
Nyala 0.26 20% 0.0 0.4 0.6
Eland 1.01 15% 0.4 0.2 0.4
Impala 0.16 25% 0.0 0.7 0.3
Giraffe 1.45 12% 0.0 0.0 1.0
Kudu 0.40 15% 0.0 0.1 0.9
Springbok 0.16 15% 0.25 0.25 0.5

Table 1: List of species, animal units per head, growth rates, and the proportions of each food

type in their preferred diet.

carrying capacities available on such a ranch would be 250 au of bulk graze and 200 au
for each of concentrate graze and browse. Previous annual sales prices over the last fifteen
years for each species are given in Table 2 and these prices are used to estimate the rate
of price change and the covariance matrix required. The model was implemented using
the built–in solver of Microsoftr Excel [2].

The efficient frontier for this problem is shown in Figure 1. In the absence of risk con-
siderations, a return of nearly 31.28% can be obtained. This drops to 26.31% when risk
is minimised without any consideration for returns. Normally a decision-maker can use
such a graph to choose the preferred trade-off between risk and return. There are other
considerations, however, for decision-makers in this problem.

For a quality hunting experience the ranch needs to have a good spread of species. In
Figure 2 the populations of each species are shown for the two extremes of the efficient
frontier. In the case where “Return” is maximised it may be seen that only three species
are maintained at non-zero population levels. In the case where “Risk” is minimised with
no constraint on the required return only five species have non-zero populations.

In terms of a “quality wildlife experience” both the solutions shown in Figure 2 would
probably be considered undesirable. It is reasonable to argue that a third objective is
required, namely to maximise the minimum proportion of the carrying capacity allocated
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Figure 1: Efficient frontier of (risk, return) values as solution to (2)–(3).

to a given species. With three objectives it is best to re-formulate the problem as a multiple
objective optimisation problem. “Best” solutions or goals have already been determined
for “Returns” and “Risk”. Let Q denote the smallest proportion of the carrying capacity
allocated to a single species. The following maximin problem determines a goal for Q:

Maximise Q

subject to
∑
i∈S

pi = K, (utilizing carrying capacity),

pi ≥ Q, i ∈ S,
Q ≥ 0.

The solution to the above problem gives Q as 5.39% of the carrying capacity. This means
that each species is allocated at least this proportion of the carrying capacity. In terms of
individuals this allocates resources sufficient to sustain 35 Eland and greater numbers for
other species. Note that due to the constraints relating to the three different types of food
resources making up the carrying capacity not all species are allocated equal proportions.
So, for example, giraffe are allocated nearly 16% and white rhino just over 30%.

4 Multiple objective optimisation

Having determined goals or best values for the three objectives the multiple objective
optimisation problem can now be formulated. Let g1, g2 and g3 be the best values obtained
for return, risk, and Q, respectively. Furthermore, let w1, w2 and w3 denote the weights
allocated to the objectives of return, risk and Q respectively. Then the objective is to
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 Figure 2: Populations for the two extreme cases where ‘Return’ is maximised and where ‘Risk’

is minimised.

minimise w1

g1 −
∑
i∈S

ripi

g1
+ w2

pTCp− g2
g2

+ (1− w1 − w2)
g3 −Q
Q

subject to
∑
i∈S

piαij ≤ Kj , j ∈ F, (enforcing species diversity),∑
i∈S

pi = K, (utilising carrying capacity),

pi ≥ Q, i ∈ S.


(6)

Solving this problem with w2 = 0 and w1 varying from 0 to 1 the results shown in Figure 3
are obtained. It may be seen that placing more weight on returns reduces the minimum
allocation received by a species. Similarly, omitting returns from the objective and varying
weights between risk and Q yields the results shown in Figure 4. It is seen that higher
risks have to be incurred as Q is increased. It is clear from this analysis that ensuring a
“good wildlife experience” comes at the cost of reduced returns and increased risk.

5 Land as capital

We have been dealing with problems that allocate food resources (animal units) rather
than capital. Nevertheless, like in the capital investment problem one of the objectives is
to maximise the return on capital. Food resources are directly related to the area of land
available. In calculating returns on investment, therefore, it would be reasonable that the
capital value of the land be taken into account. In §2 we considered the returns that would
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Figure 3: Solutions to the multiple objective problem (6) with w2 = 0. Here Q is the minimum

proportion of carrying capacity (food resources) allocated to any species. The risk associated with

each solution is given, but risk was omitted from the objective function.

be achieved from an initial investment in b buffalo. If L is the value of land utilised by a
single buffalo then the return on investment is given by

bsb

(
(1 + fb)

(
1 + ∆sb

))
+ bL− (bsb + bL)

(bsb + bL)
.

After some simplification the return on investment is given by

Rb =
∆sb + fb + ∆sbfb

1 + ρb
,

where ρb = L
sb

and L = ubsrπ. Here ub denotes the animal unit equivalent for one buffalo
(au), sr denotes the stocking rate (ha.au−1), and π denotes the price per hectare of land
(Rand.ha−1). Note that when land value is included, the original return on investment is
simply divided by 1 + ρi for species i.

As an example, using the animal unit equivalent from the second column of Table 1, a
stocking rate of 6 hectares per animal unit, and a nominal price of land at R4000 per
hectare, the values of ρ can be obtained for each species. For impala and white rhino
the calculations yield values of 7.87 and 0.41 respectively. The effect of land price on the
returns from these two species may be seen by multiplying the land price by a multiplier.
Figure 5 shows the results for land prices from zero through to 1.5 times the nominal land
price.

There is an important conclusion to be drawn from Figure 5. Although not true, suppose
that impala and white rhino had identical food preferences. In the absence of land costs
it would be preferable to stock a ranch with as many impala as possible. As the value
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Figure 5: The effect of land costs on the returns from impala and white rhino.

of land increases, eventually better returns on investment are obtained from white rhino
rather than from impala. It is therefore to be expected that the optimal population of
each species will be affected by the value of land.

The effect on return on investment when the cost of land is included in the capital is now
further explored. Equal weights were assigned to each of three objectives (returns, risk and
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Land cost
multiplier Blesbok Eland Giraffe R/Hartebeest Impala Kudu

0 142 146 46 85 194 78
1 139 79 66 84 191 76
2 134 29 81 81 184 73

Nyala Reedbuck W/Rhino Springbok B/Wildebeest Zebra
0 121 169 63 194 64 58
1 119 273 73 191 63 57
2 115 374 80 184 61 55

Table 3: The effect of the cost of land on the optimal population numbers of each species. The

nominal cost of land is multiplied by 0, 1 and 2 as indicated. For each case the three objectives

(returns, risk and Q) in (6) are equally weighted.

Q). The multiple objective optimisation problem (6) is solved again with three different
land costs. This was achieved by multiplying the nominal land costs by 0, 1, and 2. The
effect on the optimal populations is shown in Table 3. The two rows commencing with ‘0’
represent the case where land costs are not considered in the calculations. The two rows
commencing with ‘1’ use recent or ‘nominal’ land costs, while the rows commencing with
‘2’ represent the case where land costs are double the nominal value. For each case the
three objectives (return, risk and Q) are equally weighted. It can be seen that as land
costs increase the optimal balance of species changes: Giraffe, reedbuck and white rhino
are allocated a greater proportion of the resources while the population of all other species
are decreased. Optimal numbers of Eland, for example, decrease from 146 with no land
costs to 79 with nominal land costs.

6 Discussion

The problem of determining population levels for each species on a game ranch so as to
maximise returns while minimising risk is essentially analogous to the portfolio selection
problem. A difference is that growth in investment value occurs through both natural
growth and price change. In our illustration, natural growth was fixed. In practice,
however, there will also be some fluctuations in growth rates. It is possible also that
changes in price and growth are not independent random variables. There is insufficient
data available at present to explore this question further.

A static problem formulation has been used here for illustration purposes. However, these
ideas are easily extended to multiperiod problems. In such a case another difference from
the standard multiperiod portfolio selection problem emerges. The game ranch problem
would not necessarily incur the commission or transaction costs involved in buying and
selling shares. Species offering improved returns may simply be allowed to grow to a new
level. Of course, this might not always offer an optimal transition path from one ‘portfolio’
to another.

The purpose of this paper has been to show the connection between portfolio selection
problems and the game ranching problem discussed. There have been many advances in
Portfolio Selection Theory since the original work by Markowitz (1952). Much of this work
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can be applied to the game ranch problem in a similar way. The main difficulty is that
lack of awareness of this type of approach has meant that the appropriate data has never
been collected.

References

[1] Absa Group Economic Research, 2003, Game ranch profitability in South Africa, 3rd edition,
The SA Financial Sector Forum, Rivonia.

[2] Microsoft Excel, 2008, Excel homepage, [Online], [cited 2008, October 29], Available from:
http://office.microsoft.com/en-gb/excel/default.aspx

[3] Falkema & Van Hoven W, 2000, Bulls, bears and lions: Game ranch profitability in southern
Africa, SA Financial Sector Forum Publications, Rivonia, p. 69.

[4] Hearne J, Lamberson R & Goodman P, 1996, Optimising the offtake of large herbivores from a
multi-species community, Ecological Modelling, 92, pp. 225–233.

[5] Leippold M, Trojani F & Vanini P, 2004, A geometric approach to multiperiod mean variance
optimization of assets and liabilities, Journal of Economic Dynamics & Control, 28, pp. 1079–1113.

[6] Markowitz HM, 1952, Portfolio selection, Journal of Finance, 7, pp. 77–91.

[7] Ragsdale CT, 2007, Spreadsheet modeling and decision analysis, 5th edition, Thomson South-
Western, Mason (OH).

[8] Steinbach MC, 2001, Markowitz revisited: Mean-variance models in financial portfolio analysis,
SIAM Review, 43, pp. 31–85.

[9] Theron P & Van den Honert R, 2003, A mathematical approach to increasing the long-term
wealth of agricultural enterprise, ORiON, 19(1/2), pp. 53–74.

[10] Winston WL, 2004, Operations research: Applications and algorithms, 4th edition, Duxbury Press,
Belmont (CA).



114



Volume 24 (2), pp. 115–130

http://www.orssa.org.za

ORiON
ISSN 0529-191-X

c©2008

Two pricing methods for solving an integrated
commercial fishery planning model

MB Hasan∗ JF Raffensperger†

Received: 9 April 2007; Revised: 3 August 2007; Accepted: 23 October 2007

Abstract

In this paper, we develop two novel pricing methods for solving an integer program. We
demonstrate the methods by solving an integrated commercial fishery planning model (IFPM).
In this problem, a fishery manager must schedule fishing trawlers (determine when and where
the trawlers should go fishing, and when the trawlers should return the caught fish to the
factory). The manager must then decide how to process the fish into products at the factory.
The objective is to maximise profit. The problem may be modelled as a single integer pro-
gram, with both the trawler scheduling and production planning parts integrated. Inventory
constraints connect the two parts of the problem. Production planning alone would result
in an easy linear program, but due to the trawler scheduling aspect, the IFPM is a hard
integer program in the sense that traditional solution methods result in computation times
that are far too long to be practical. The two pricing methods developed in this paper are a
decomposition–based O’Neill pricing method and a reduced cost–based pricing method. We
demonstrate the methods by means of numerical examples for different planning horizons,
corresponding to differently sized problems.

Key words: Decomposition, pricing, reduced cost, fishing trawler scheduling.

1 Introduction

In this paper we present recent research on the solution of an integer program for an inte-
grated commercial fishery’s activities. Two loosely-connected problems arise in a modern
commercial fishery. The first is to schedule trawlers for fishing, including deciding where
and when those trawlers should work, and, crucially, when they should return to land the
fish. The landed fish generally becomes inventory, which is raw material for a processing
plant. The processing plant cleans, processes, and packages the fish for the market. The
second problem is to schedule the processing of different types of products.

Based on real data for a commercial fishery in New Zealand, we previously developed
a model (Hasan and Raffensperger, 2006) to solve this problem: the integrated fishery
∗Corresponding author: Department of Management, University of Canterbury, Private Bag 4800,

Christchurch, 8020, New Zealand, email: b.hasan@mang.canterbury.ac.nz
†Department of Management, University of Canterbury, Private Bag 4800, Christchurch, 8020, New

Zealand.

115



116 MB Hasan & JF Raffensperger

planning model (IFPM). The IFPM is designed to co-ordinate trawler scheduling and
processing. The model can theoretically be updated and solved periodically to aid in a
manager’s decision making. Unfortunately, for realistic planning horizons of 20 periods
or more, computational times involved in solving the IFPM are quite long, even with
methods such as Dantzig-Wolfe decomposition and subgradient optimisation. We have
since developed two novel column generation algorithms to solve the IFPM. These al-
gorithms show promise and are based on the decomposition-based pricing algorithm of
Mamer and McBride (2000), combined with the integer variable pricing method of O’Neill
et al. (2005).

1.1 The fishery planning literature

Wide-ranging research has been reported on fisheries. Many papers describe biological
models, but only a few consider production planning. Mikalsen and Vassdal (1981) devel-
oped a multi-period linear programming (LP) model for one month production planning
so as to smooth the seasonal fluctuations of fish supply. Their model is market-driven and
incorporates the acquisition of raw material purchased (rather than acquired with their
own fishing fleet).

Jensson (1988) developed a product mix LP model to maximize profit of an Icelandic
fish processing firm over a five period planning horizon. He addressed both production
planning and labour allocation for that processing firm, but did not consider any fleet-
specific issues or quota sizes.

Gunn et al. (1991) developed a model for calculating the total profit of a Canadian com-
pany with respect to integrated fishing and processing. Their model includes a fleet of
trawlers, a number of processing plants and market requirements. However, their model
ignores the trawler scheduling and labour allocation in the processing firm. Indeed, none
of these papers report models that attempt to integrate both trawler scheduling and pro-
duction.

1.2 The integer programming literature

The literature on integer programming is extensive. We describe only a few papers here
that have informed our work.

Martin et al. (1985) presented a reduced cost-based branch-and-bound method for solving
mixed integer linear programs (MILPs). The authors formulate two candidate problems
on the basis of 0-1 integer variables and then optimize both of the candidate problems in
order to obtain the MILP solution.

Mamer and McBride (2000) developed a decomposition-based pricing (DBP) procedure
for linear programs (LPs). Their algorithm works by solving subproblems just as the
Dantzig-Wolfe algorithm uses subproblems. However, the DBP master problem exhibits
the same form and structure as the original model, but with far fewer variables. Variables
that are positive in the subproblem are brought directly into the master problem; all
other variables are omitted from the master problem. Our work in this paper builds
substantially on the ideas of Mamer and McBride (2000). A DBP approach has also
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been adopted by De Carvalho (2006) for cutting stock, and by Raffensperger and Schrage
(2007) for scheduling training in a tank battalion. We have also previously adopted a DBP
approach with respect to an IFPM in Hasan and Raffensperger (2007). In this paper, we
describe two improved DBP methods.

The first method we call decomposition-based O’Neill pricing (DBONP), because it is
based on the work of O’Neill et al. (2005). These authors developed a technique for
constructing a set of linear prices by solving a MILP and an associated LP, based on a
theorem of Gomory and Baumol (1960). They first solve a MILP, set the integer variables
to their optimal values, and then remove the integrality constraints to convert the MILP
to an LP. They use the dual prices obtained from this LP to form an efficient contract
(the dual of the IFPM ) in the context of an electricity market.

The second method is a reduced cost-based pricing (RCBP) method. Unlike Martin et al.
(1985), we set constraints for both 0-1 integer variables (O’Neill et al., 2005) in the same
candidate problem, which is the restricted master problem in the proposed RCBP method.
In this method, we do not solve a subproblem at all. Instead, we choose new variables
for the restricted master problem based on a reduced cost calculation, and we bring a set
of variables into the restricted master problem at each iteration. We show that both of
these methods produce better solutions than those reported in our earlier work (Hasan
and Raffensperger, 2007).

The remainder of this paper is organized as follows. In §2, we briefly present the IFPM.
In §3, we review O’Neill’s pricing method and describe the mathematical formulation
of the proposed DBONP method. We also present the DBONP algorithm along with
numerical examples. In §4, we present the mathematical formulation of the proposed
RCBP method, and also present the RCBP algorithm along with numerical examples.
The solutions obtained by the DBONP and RCBP methods are compared with that of
DBP in §5. Some conclusions follow in §6.

2 The fishery model in matrix notation

In this section we briefly describe our IFPM. The details of the model can be found in
Hasan and Raffensperger (2006). We have omitted details of the model in order to focus
on the algorithm.

Parameters
Let Vt,v be the profit earned by trawler v during period t and let It denote the cost per kg
of fish landed during period t. Furthermore, suppose Pi,j,l is the price per kg of fish type i
converted into product j of quality l and let A(0)

a,i,t,v denote the amount of raw fish i that

will be landed during period t by trawler v from area a. Also, let A(1)
i,l,t,v denote the mass

transformation for raw fish type i from trawler v of quality l during period t, and let A(2)
i,j,l,t

denote the mass transformation for raw fish type i into finished product type j of quality l
during period t. Finally, let d(1)

a,t,v denote the mass balance coefficients on trawler v during

period t in area a and let d(2)
i,j,l,t denote the mass transformation for raw fish type i into

finished product type j of quality l during period t.
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Decision variables
Let wp,a,u,t,v be a binary decision variable taking on the value of 1 if a trawler v will go
fishing during period u in area a from factory p and lands its catch during period t, or
0 otherwise. Furthermore, let the variable fi,l,t denote the current quantity of fish type i
of quality l during period t and let the variable xi,j,l,t denote the amount of fish type i
converted into product j of quality l during period t.

The objective in the IFPM is to

maximize
∑
t,v

Vt,v

∑
p,a,u

(u− t)wp,a,u,t,v −
∑

t

It
∑
i,l

fi,l,t +
∑
i,j,l

Pi,j,l

∑
t

xi,j,l,t,

subject to

∑
p,u,v

A
(0)
a,i,t,vwp,a,u,t,v = fi,l,t for all i, l, t, (1)

∑
a,p,u,v

d
(1)
a,t,vwp,a,u,t,v = b

(1)
t for all t, (2)

∑
j

d
(2)
i,j,l,txi,j,l,t = b

(2)
i,l,t for all i, l, t, (3)

∑
v

A
(1)
i,l,t,vfi,l,t +

∑
j

A
(2)
i,j,l,txi,j,l,t = b

(0)
i,l,t for all i, l, t, (4)

wp,a,u,t,v ∈ {0, 1}, for all p, a, u, t, v (5)
fi,l,t, xi,j,l,t ≥ 0 for all i, j, l, t, (6)

where b(0)
i,l,t denotes the restriction on the quantity of fish type i of quality l during period t,

b
(1)
t denotes the restriction on the trawler scheduling constraint and b

(2)
i,j,t denotes the

restriction on the quantity of fish type i converted into product j during period t.

Constraint set (1) represents the relationship of the trawler scheduling variables w to
landed fish f , as a mass balance in movement of fish from trawlers to the factory, while
(2) expresses constraints involving only trawler scheduling, indicating, for example, that
a trawler may be in only one place at a time. Constraint set (3) expresses fish processing
restrictions, modelling the flow of fish through the factory as raw fish is converted into
various products. Constraint set (4) constitutes mass balance constraints, representing
the flow of raw landed fish inventory into the fish processing factory. When the integer
constraints (5) are relaxed, the model is the usual linear programming relaxation.

The IFPM consists of trawler scheduling and processing, connected by inventory con-
straints, either (1) or (4). Using Lagrangean relaxation, one can relax either of these
side constraints, in which case the model decomposes into an integer program for trawler
scheduling, and a linear program for the fish processing. These separate problems are
easier to solve, and the sum of their objective values represents an upper bound (since
it is a maximization problem) on the optimal objective function value of the IFPM. For
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example, if we relax (4), we obtain the two subproblems,

maximize
∑
i,j,l

Pi,j,l

∑
t

xi,j,l,t −
∑
i,l,t

θi,l,t

∑
j

A
(2)
i,j,l,txi,j,l,t

subject to
∑

j

d
(2)
i,j,l,txi,j,l,t = b

(2)
i,l,t for all i, l, t,

xi,j,l,t ≥ 0, for all i, j, l, t,


P1(θ) (7)

and

maximize
∑
t,v

Vt,v

∑
p,a,u

(u− t)wp,a,u,t,v −
∑

t

It
∑
i,l

fi,l,t

−
∑
i,l,t

θi,l,tfi,l,t

∑
v

A
(1)
i,l,t,v

subject to
∑
p,u

A
(0)
a,i,t,vwp,a,u,t,v = fi,l,t for all i, l, t,

∑
a,p,u,v

d
(1)
a,t,vwp,a,u,t,v = b

(1)
t for all t,

wp,a,u,t,v ∈ {0, 1} for all p, a, u, t, v



P2(θ), (8)

where θ = [θi,l,t] is the matrix of dual prices on (4) assuming that the IFPM is solved as
an LP, not as an integer program (IP). It is unfortunate that P2(θ) cannot be directed by
some kind of standard price information on the integer variable w = [wp,a,u,t,v] . In fact,
the DBONP method actually finds such price information, and uses it.

Following the decomposition-based pricing method for this problem (Hasan and Raf-
fensperger, 2007), the master problem follows from the original problem, assuming its
structure and including all its constraints. However, initially only enough variables are
included to allow a feasible solution. In the IFPM, the zero matrix is feasible, as the
fishery manager can simply choose to do nothing.

At iteration k, the master problem Mk is solved as a linear program, in order to find the
necessary dual prices θ. These prices are passed to the subproblems P1(θ) and P2(θ),
which are then solved. Positive variables from the subproblems are then passed to the
master problem, increasing the total number of variables that it contains. The set of
variables in the master problem is tracked by the indices of the positive variables found
thus far, in an index set Ik. Thus, a variable with its index in Ik has been positive in a
subproblem in some previous iteration, and will appear in the master problem. Variables
that have always been zero in every subproblem do not have their index in Ik, and thus
do not appear in the master problem. In the master problem Mk the objective is to

maximize
∑
t,v

Vt,v

∑
p,a,u

(u− t)wp,a,u,t,v −
∑

t

It
∑
i,l

fi,l,t +
∑
i,j,l

Pi,j,l

∑
t

xi,j,l,t,
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subject to
∑
p,u,v

A
(0)
a,i,t,vwp,a,u,t,v = fi,l,t for all i, l, t,

∑
a,p,u,v

d
(1)
a,t,vwp,a,u,t,v = b

(1)
t for all t,

∑
j

d
(2)
i,j,l,txi,j,l,t = b

(2)
i,l,t for all i, l, t,

∑
v

A
(1)
i,l,t,vfi,l,t +

∑
j

A
(2)
i,j,l,txi,j,l,t = b

(0)
i,l,t for all i, l, t,

wp,a,u,t,v, fi,l,t, xi,j,l,t ≥ 0, for all p, a, u, t, v, i, l, t, j

fi,l,t, wp,a,u,t,v, xi,j,l,t ∈ Ik for all p, a, u, t, v, i, l, t, j,

where Ik is the index set of positive variables found in the subproblems, and where fi,l,t,
wp,a,u,t,v, xi,j,l,t = 0 for fi,l,t, wp,a,u,t,v, xi,j,l,t /∈ Ik. The index set Ik increases in size with
each iteration because each iteration of the subproblems adds new positive variables.

While this decomposition approach is already better than a direct integer programming
approach using CPlex, for example, we wished to improve the method further.

3 Decomposition-based O’Neill pricing (DBONP)

In this section, we first discuss the notion of O’Neill pricing in §3.1. In §3.2, we then
present the mathematical formulation of the DBONP and present the DBONP algorithm.
This is followed by a presentation of numerical examples over different planning horizons
§3.3.

3.1 O’Neill’s pricing method

O’Neill et al. (2005) developed a technique for constructing a set of linear prices from
solving an MILP and an associated LP, based on the following theorem of Gomory and
Baumol (1960).

Theorem 1 An MILP with m continuous variables and n integer variables that has a
feasible and bounded optimal solution in (Rm × Zn) can be converted to an LP with at
most (m+ n) continuous variables and at most n additional linear constraints. �

These authors were not interested in a solution as such, nor in the associated computation
time, but in finding efficient prices for indivisible objects. To find these prices, they first
solved an MILP to optimality. They then added new constraints that fix the integer
variables to their optimal values, and removed the integrality constraints to convert the
MILP to an LP. Solution of this problem gave dual prices to the new constraints. They
showed that the dual variables in the LP have a traditional interpretation as prices. The
dual variables explicitly price integral activities, and clear the market in the presence of
nonconvexities. They used these dual prices to form an efficient contract in the context of
a market for electricity.
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3.2 Mathematical formulation for DBONP

To apply the method of O’Neill et al. (2005) in the context of DBP, our method

1. finds an optimal solution w = [wp,a,u,t,v] to the restricted master problem as an
integer program;

2. fixes the integer variables to their optimal values w∗ by means of new constraints of
the form w = w∗ and solves the restricted master problem as an LP, thus obtaining
dual price information θ1 on the constraints in (9);

3. then uses the resulting dual prices θ1 to better inform the trawler scheduling sub-
problem as to which variables should be selected. The trawler subproblem can use
this new information through Lagrangean relaxation of the new constraints, that is
by solving the following problem, called P (θ,θ1), in which the objective is to

maximize
∑
t,v

Vt,v

∑
p,a,u

(u− t)wp,a,u,t,v −
∑

t

∑
i,l

fi,l,t

−
∑
i,l,t

θi,l,t

∑
v

A
(1)
i,l,t,v

−
∑
i,l,t

1θi,l,t(u− t)
∑
p,a,u

(wp,a,u,t,v − w∗p,a,u,t,v)

subject to
∑
p,u

A
(0)
a,i,t,vwp,a,u,t,v = fi,l,t for all i, l, t,

∑
a,p,u,v

d
(1)
a,t,vwp,a,u,t,v ≤ 1bt for all t,

wp,a,u,t,v ∈ {0, 1}, for all p, a, u, t, v
fi,l,t ≥ 0, for all i, l, t.



P (θ,θ1)

4. Positive variables from both subproblems are brought into the restricted master
problem. Two stopping criteria are enforced, namely when no new positive variables
are produced, or when the objective values of the subproblems and master problem
are equal. By explicitly pricing the integer variables, and using that price information
in the subproblem, we bring better variables into the restricted master problem, and
return to step 1.

Note, however, that this approach requires solving the restricted master problem as an
integer program at every iteration. This is computationally expensive. We therefore
employ ordinary DBP, solving the restricted master problem and subproblems as LPs,
until we find an LP optimum. We then switch to the formal DBONP method, and continue
iterating. This approach creates two separate loops. The first loop does not utilize the
constraints (9), whereas the second loop does.

Loop 1. Relax the inventory balance constraint (4), and then apply the DBP method, to
obtain the final restricted master problem as an LP.

Step 0: Initialize. Set iteration number k ← 1 and the initial prices θ1 ← θ.
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Step 1: Solve subproblems P1(θ) and P2(θ), treating P2(θ) as an IP. For wi > 0
put i in Ik, where Ik = {i : wi > 0 in P1(θ), and P2(θ) for any iteration
1, 2, . . . , k}.

Step 2: Solve Mk as an LP to obtain dual prices θk and pass them to the subprob-
lems.

Step 3: If v (P1(θ) + P2(θ)) = v
(
Mk+1

)
, then go to Loop 2. Else k ← k + 1 and

go to step 1. Here v (P1(θ) + P2(θ)) represents the objective function value of
the subproblems and v

(
Mk+1

)
represents the objective function value of the

restricted master problem.

Loop 2. Solve the current restricted master problem as an IP, and add constraints which
fix the integer variables to their optimal values. Solve the master problem as an LP
and obtain the dual prices on the inventory balance constraint (4), and the equations
associated with the integer variables. We have the dual prices θk as before, but now
we also have new dual prices θ1 from the new constraints.

Step 4: Solve the restricted master problem as an IP.

Step 5: For integer variables, fix wi = wi∗.

Step 6 : Solve the master problem as an LP with wi fixed. Obtain dual prices θk

and θ1, and pass them to the subproblems.

Step 7: Solve the subproblems P1(θ) and P2(θ,θ1) with the dual prices obtained
from step 6. If no new variables enter into the restricted master problem, then
stop. Else go back to step 4.

We present the logic of the DBONP algorithm in the form of a flowchart Figure 1.

3.3 Numerical results

We compare the solutions of the DBONP approach with those obtained from the original
IFPM, LP relaxation problem, and DBP algorithm. The results are presented in Table 1.
We observe no duality gap for the 5, 10 and 25-period models, thus confirming optimality.
However, the 15, 20, and 30-period models exhibit small gaps. For example, a 30-period
model exhibits a 0.02% duality gap. The average duality gap is only 0.04% computed
over the six different planning horizon models. These gaps may be considered negligible.
Notice that for the results described above we started with dual prices of θ = 0. Instead,
we also attempted creating the initial dual prices naively. Results are reported in Table 2.
Solutions obtained from DBONP are close to the true optima. The average duality gap is
only 0.06%, but sometimes worse than in Table 1.

Tables 1 and 2 show that the solutions obtained via the DBONP approach are either equal
to or very close to the optimal solutions (15-period, 20-period and 30-period models). To
see why a small difference in profit remains, we compared the true optimal solution with
that obtained by the DBONP algorithm for a 30-period planning horizon problem. The
total number of trawler trips in the DBONP solution coincides with that in the exact
solution, but the schedule is slightly different, as shown in Figures 2 and 3. As a result,
there is a slight change in the processing and holding costs.
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Solve
trawler subproblem P1(θ)

processing subproblem P2(θ).

Is wi ≥ 0,

for i /∈ Ik?

Add index i to Ik,

Solve master LP over Ik.

Solve master IP.

Fix integer variables wi = wi∗

Solve LP master

Solve P1(θ), P2(θ)

v(P1(θ), P2(θ))
= v(M) ?

Stop

yes

yes

no

Dual price θ

no

Figure 1: Flowchart of the DBONP procedure.

1 4 7 10 14 18 22 26 30

Figure 2: Trawler 1 schedule in the optimal solution. Here the edges represent periods and

vertices represent the required number of periods for a trip.

1 4 7 11 15 19 23 26 30

Figure 3: Trawler 1 schedule in the DBONP solution. Here the normal edges represent the

trawler trips which coincide with the schedule obtained by the exact (IP) solution and the dashed

edges represent the trips which are slightly different from the schedule obtained by the exact (IP)

solution.

Figures 4, 5, and 6 show the solution times, duality gap, and number of iterations, for
different planning horizon models respectively, when solved by the DBP and DBONP
algorithms. The DBONP approach requires a larger number of iterations and more com-
putation time, but produces better solutions than the DBP approach.

In this section we employed both DBP and O’Neill pricing to develop the DBONP tech-
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Length of
planning Number of Number of Solution DBP DBONP Duality
Horizon variables iterations time (s) solution solution gap

5 489 29 217 $522 764 $522 764 0.00%
10 1 284 27 216 $1 065 540 $1 065 775 0.00%
15 2 229 33 345 $1 579 309 $1 579 570 0.15%
20 3 324 48 912 $1 874 097 $1 878 580 0.08%
25 6 440 45 796 $2 120 282 $2 121 887 0.00%
30 6 938 44 3 562 $2 293 803 $2 300 230 0.02%

Table 1: Comparison of the solutions obtained by the DBP and DBONP methods. All com-

putations performed on a Pentium III processor with a clock speed of 665 MHz and 384 MB

RAM.

Length of
planning Number of Number of Solution DBP DBONP Duality
Horizon variables iterations time(s) solution solution gap

5 1 264 29 208 $522 764 $522 764 0.00%
10 2 601 30 266 $1 065 540 $1 065 540 0.02%
15 4 087 36 387 $1 579 309 $1 580 670 0.08%
20 4 926 50 1045 $1 874 097 $1 873 950 0.30%
25 6 259 43 710 $2 120 282 $2 121 887 0.00%
30 8 277 50 3129 $2 293 803 $2 300 460 0.01%

Table 2: Comparison of the number of iterations, computation times and solutions obtained by

the DBP and DBONP methods. All computations performed on a Pentium III processor with a

clock speed of 665 MHz and 384 MB RAM.

nique. We found that the DBONP algorithm requires slightly longer computation times,
but produces better solutions than our earlier DBP procedure. To improve further on the
computation times, we also developed a reduced cost–based pricing method.

4 The Reduced cost–based pricing for IFPM

One reason why the DBONP algorithm took a relatively long computation time was due
to solution of the trawler scheduling subproblem as an IP. We therefore attempted to
eliminate this step. Instead, we use the O’Neill price information to find the reduced
cost for each integer variable. Under this approach we are moving away from the DBP
philosophy for the trawler scheduling aspect of the problem, but we continue to use DBP
for the fish processing subproblem. So the processing subproblem, and the restricted
master problem, are the same as with the DBP approach. Instead of employing the
trawler scheduling subproblem, we merely calculate the reduced cost of the variables of
that subproblem, which is extremely fast.

4.1 The Reduced cost of a variable

The reduced cost of a variable wj with associated objective function coefficient cj is the
net change in the objective function when generating one unit of wj , and is defined as
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Figure 5: % Duality gap of DBP and DBONP.

c̄j = cj − zj , where zj denotes cBVB
−1aj . Here cBV are the cost coefficients of the basic

variables, B−1 is the inverse of the basis matrix, and aj is the corresponding column of the
basic variables. The reduced cost gives the marginal value of a variable on the objective
function related to the current basic solution. For a maximization problem, the variable
with largest positive reduced cost will be the incoming variable. Following the notation
in AMPL (Fourer et al., 1993), we denote the reduced cost of variable w as w.rc. Denote
λ1 and λ2 as the dual prices on (1) and (2) respectively, with a0 and d1 as the relevant
columns of A0 and D1 respectively. Then

w.rc = c1 − λ1a0 − λ2d1 − θ′ (9)

This reduced cost calculation has an explicit term for the integrality constraint. In the
next section, we show how to use this reduced cost calculation.
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4.2 The RCBP algorithm

The RCBP algorithm proceeds as follows:

Step 0. Set k ← 1.

Step 1. Solve Mk as an IP.

Step 2. Add constraints of the form (9) for the integer variables. Solve the restricted
master problem as an LP. Obtain dual prices for the trawler scheduling constraints
(1), (2), and (9).

Step 3. Calculate w.rc in (11). Scan the reduced costs for all integer variables. Include
integer variables with positive reduced cost to the restricted master problem. For
the continuous variables from the fish processing part of the problem, there are two
options:

Option 1: All continuous variables appear in every restricted master problem.
Option 2: Continuous variables with positive reduced cost are added to the re-

stricted master problem at each iteration.

Step 4. For the processing subproblem, solve the processing LP subproblem, and add all
positive variables to the restricted master problem as in the DBP approach.

Step 5. If no new variable enters the restricted master problem, then stop. Else k ← k+1
and go back to step 1.

We present the logic of the RCBP algorithm in the form of a flowchart in Figure 7.

4.3 Numerical results

We solved IFPM with different planning horizon models using each option in Step 3.
Option 2 takes fewer iterations and less time to solve the fishery model than does Option
1. Results are reported in Table 3.
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Calculate reduced cost for
variables in P1(θ)

Solve P2(θ)

P1(θ) : wi.rc > 0,

for i /∈ Ik?
P2(θ) : wi ≥ 0,

for i /∈ Ik?

Fix integer variales,

wi = wi∗ .
Solve LP master.

Stop

yes

Dual price θ
no

Figure 7: Flowchart of the RCBP procedure.

Planning Description of Number of Solution RCBP optimal Duality
Horizon entering variables iterations time (sec.) value gap

5 Option 1 5 39 $522 764 0%

Option 2 3 5 $522 764 0%

10 Option 1 10 142 $1 065 538 0.02%

Option 2 5 15 $1 065 538 0.02%

15 Option 1 11 113 $1 582 006 0%

Option 2 5 53 $1 582 008 0%

20 Option 1 7 109 $1 877 275 0.15%

Option 2 4 71 $1 879 928 0.01%

25 Option 1 6 74 $2 107 736 0.66%

Option 2 8 111 $2 121 887 0%

30 Option 1 8 262 $2 284 545 0.71%

Option 2 10 901 $2 299 648 0.05%

Table 3: Total profit, number of iterations, and solution times for the RCBP procedure.

5 Comparison of DBP, DBONP and RCBP solutions

In this section we compare the solutions obtained as well as the number of iterations and
solution times required by the DBP, DBONP and RCBP methods in Figures 8–10. The
RCBP algorithm is the best among the methods we developed. It requires the smallest
solution time to solve, requires fewer iterations and yields better solutions. We further
investigated these methods using three different problem instances under many different
catch rate scenarios. The numerical results reported here are consistent with those otained
for the other problem instances.
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Figure 9: Number of iterations required to solve DBP, DBONP, and RCBP.

6 Conclusion

In this paper we developed two different column generation algorithms for faster solution
of an IFPM. The first is the DBONP method and the second is the RCBP method —
both these approaches are based on O’Neill pricing.

In the RCBP method, we solved only easy LP subproblems and avoided the need to solve
IP subproblems. Instead of solving the IP trawler scheduling subproblem, we calculated
the reduced cost for each variable, choosing variables with positive reduced cost to bring
into the restricted master problem.

Compared to the DBP method alone, we found that the DBONP algorithm took slightly
longer, but tended to produce better solutions. However, the RCBP method is both faster
and gives better solutions than the DBP approach, and in some cases than the DBONP
method.

Note that we never employed a specialized branch-and-bound technique, except for that
native to CPlex in the restricted master problem and subproblems. It therefore appears
that the combination of DBP and O’Neill pricing approaches may facilitate the develop-
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Figure 10: Solution times to solve DBP, DBONP, and RCBP. 
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Abstract

National census data contain information on place of residence and place of work. It is possible
to combine this information and create journey-to-work flows. The process of establishing
these flows are presented in this paper. The intramax method is explained and used to identify
functional regions based upon these flows. Interesting applications, such as the demarcation
of regions in South Africa are considered and solutions to disputed areas are put forward. The
process of the creation of the current provincial boundaries are discussed. New boundaries,
based on the intramax analysis of the journey-to-work data are proposed for four or five new
provinces. Results compare favourably with those from a principal component and cluster
analysis, which has previously been used to demarcate the South African space economy into
a hierarchy of development regions.

Key words: Journey-to-work flows, provincial boundaries, intramax method, principal component

analysis, functional regions, demarcation of regions.

1 Introduction

On 28 May 1993, the Negotiating Council of the Multiparty Negotiating Process estab-
lished a fifteen-person commission to make proposals for new internal boundaries in South
Africa [7]. The resulting Commission on the Demarcation/Delimitation of Regions (the
CDDR) held its first meeting on 8 June 1993 and reached a decision by 31 July 1993. After
six weeks, the commission more than doubled the number of provinces, from the initial
four to the current nine provinces [7]. No meaningful time was allotted for public consulta-
tion, and the commissioners took as the initial draft the nine planning regions established
by the Development Bank of Southern Africa between 1982 and 1988 [7]. Only one month
of the CDDR’s itinerary was devoted to gathering of testimony, and in reaction to broad
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public criticism, a further three months were allocated, beginning in August 1993. After
the commission submitted its report, politicians hacked away and swapped magisterial
districts in order to reach a final party agreement. From a party-political point of view,
the negotiations resulted in demarcations that offered important minority parties a future
base for provincial power [9].

Griggs [9] noted that these political party compromises resulted in two main problems:
too many non-viable provinces, and boundary conflicts. Only Gauteng and the Western
Cape provinces had thriving metropolitan regions, no former ‘homelands’ and had the
potential in 1994 to generate enough income to finance their own administrations. He
noted that most of the other provinces lack resources, infrastructure and capacity, and
require central government support. Furthermore, more than fourteen years after the final
provincial map was produced by multiparty negotiations, there were still eight or more
active disputes. Griggs [9] proposed increased public participation by referenda as a way
of resolving many of the issues.

Boundaries should be drawn so as to minimise the splitting of communities. South Africa’s
current spatial organisation and delineation are characterised by internal conflicts. Figure
1 shows, on a national level, the disputed areas after the 1993 delineation of provincial
boundaries. Ramutsindela and Simon [19] described the process of negotiating between the
provinces in the time period after 1993 as “horse-trading.” Northern Province (currently
Limpopo Province), for example, demanded that the towns of Groblersdal and Marble
Hall, which are part of Mpumalanga, be transferred to the Northern Province to compen-
sate for relinquishing Bushbuckridge. On the other hand, the people of Bushbuckridge
have been campaigning for years to be incorporated into Mpumalanga and not Limpopo
Province. While belonging to Limpopo Province, research has shown that many (95–98%)
of the residents prefer incorporation into Mpumalanga, with their reasons advanced being
geographical proximity and economic ties. Residents argue that this is where they work
and undertake their shopping [19].

According to Smith [21], the former chairperson of the ANC, Mosiuoa Lekota, became
the most senior member of the party to date to suggest that a reduction in number
from the current nine provinces should be considered seriously. According to Ngalwa
[18] a discussion document, which moots a four or five province option, was drafted and
circulated in government during 2007. Some ministers in the previous cabinet, including
Finance Minister Trevor Manuel, Defence Minister Mosiuoa Lekota and Minister Sydney
Mufamadi have publicly suggested that the number of provinces should be reduced. They
also requested that proper research should be conducted to review the performance of the
provincial system before deciding on their future.

It is clear that the process of demarcation cannot be examined without taking political
motives into consideration, whilst the needs of people living and working in the provinces
should also be considered. Functional regions based on activities of households and busi-
nesses are the people’s way of deciding to which areas they belong.



Possible provincial boundaries for South Africa based on journey-to-work data 133

Figure 1: Disputed areas after the 1993 delimitation of provincial boundaries [19]. (Original

source: Saturday Weekend Argus, 13–14 January, 1996, p20.)

2 Functional regions

The concept of a functional region or functional area may be described in many ways.
Feldman et al. [4] described it as an area defined by business and economic activities
rather than by administrative or historic boundaries. A functional region was also defined
by Brown and Holmes [1] as an area or locational entity which enjoys more interaction or
connection within its boundaries than with outside areas.

Functional regions may also be seen as areas in which the businesses concerned recruit
most of their labour force. The quality of functional region demarcation has a strong
influence on both productivity and prosperity. The functional region is a phenomenon
arising exclusively from human activity, and is best described as a community of interests.
In respect of human activity, specific reference is paid to transport, work and residential
choice and therefore functional regions are a spatial manifestation of social organisation.
Functional regions represent the day-to-day regions in people’s lives, i.e. they are created
by the various choices and decisions of individual people and enterprises.

Feldman et al. [4] noted that the best-established technique for a functional approach
to area grouping is to identify boundaries across which relatively few people commute.
Mitchell et al. [17] reasoned that journey-to-work data provide information about the
interaction between spatial units and are a useful basis for defining functional regions. A
commuting area is conceived as a geographical area within which there is a high degree
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of interactivity and may be seen as an appropriate spatial region to capture the interplay
between labour supply and demand. Mitchell et al. [17] concluded that aggregations of
journey-to-work data reflect economic behaviour rather than administrative structures.

The objective of this paper is to analyse journey-to-work flow data and to use intra-
max analysis to establish functional regions in South Africa in general, but specifically at
provincial level. The purpose is to demonstrate how functional regions differ from adminis-
trative regions (which are more than likely demarcated in terms of political or ideological
philosophy). A further objective is to test whether the functional regions or provinces
identified by the intramax analysis are economically viable regions.

3 Literature review on analysis of flow data

Journey-to-work data may be captured in a network flow problem, which consists of a
collection of transhipment nodes connected by directed arcs in both directions. Figure 2
contains an example of journey-to-work data between four regions.

i j

1 2

aij

aji

a12

a21

aii ajj

a11 a22

Figure 2: Example of a network of flows between 4 regions.

A schematic representation of a so-called interaction matrix is provided in Table 1, where
rows are designated as origins and columns are destinations. Marginal totals may be
interpreted as follows: Oi =

∑
j aij and Dj =

∑
i aij represent the total outflow from

region i and total inflow into region j respectively.

Ward [26] developed a hierarchical aggregation procedure which is a routine for searching
through groups of data to find which pair of basic data units shows the greatest mutual
similarity with respect to specified characteristics. Given k subsets, this method permits
their reduction to k−1 mutually exclusive subsets by considering the union of all possible(
k
2

)
= k(k− 1)/2 pairs that can be formed and accepting the union with which an optimal

value of the objective function is associated. The process may be repeated until all subsets
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Region 1 Region 2 . . . Region j . . . Total

Region 1 a11 a12 . . . a1j . . .
∑
j

a1j = O1

Region 2 a21 a22 . . . a2j . . .
∑
j

a2j = O2

...
...

...
. . .

...
. . .

...
Region i ai1 ai2 . . . aij . . .

∑
j

aij = Oi

...
...

...
. . .

...
. . .

...
Total

∑
i

ai1 = D1

∑
i

ai2 = D2 . . .
∑
i

aij = Dj . . .
∑
i

∑
j

aij = n

Table 1: Journey-to-work interaction matrix.

are in one group.

Ward [26] defines a functional relation that provides a “value reflecting” number as an
objective function. It is common practice to use the mean value to represent all scores.
The loss in information that results from treating scores as one group may be indicated
by a “value-reflecting” number such as the Error Sum of Squares (ESS). The ESS is given
by

ESS =
m∑

i=1

(xi − x)2 =
m∑

i=1

x2
i −

1
m

(
m∑

i=1

xi

)2

,

where xi is the score of the i-th individual and where m denotes the number of individuals.
If scores are classified in groups, the grouping can be evaluated as the sum of the ESS
values, that is

ESSGroups = ESS(Group 1) + ESS(Group 2) + . . .

The same procedure can be used for aggregation of flow data if the objective function is
respecified in terms of the two-directional flow between two regions. It will be necessary
to consider two entries for this purpose, namely aij and aji, for all i 6= j.

Masser and Brown [14] formulated as objective the maximisation, at each stage of the
grouping process, of the difference between the observed values, aij , and “expected values”
a∗ij , which are derived similarly to the expected frequency of the cell in row i and column
j in a contingency table for the Chi-square test, namely

a∗ij =
OiDj

n
, where n =

∑
i

∑
j

aij .

The objective is therefore to

maximise
i 6=j

{
(aij − a∗ij) + (aji − a∗ji)

}
.

The entries aij are standardised so that∑
i

∑
j

a′ij = 1,
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where a′ij = aij/n. It can be shown that the standardised objective is to

maximise
i 6=j

{
(a′ij − a

′∗
ij) + (a′ji − a

′∗
ji)
}

.

Contiguity constraints may be introduced to restrict the search for potential pairings.
These constraints may take the form cij = 1, if movement of a basic data unit from i to j
is allowed, and cij = 0 otherwise.

The intramax analysis is a stepwise analysis. During each step two areas are grouped
together and the interaction between the two areas becomes internal (or intrazonal) in-
teraction for the new resulting area. This new area now takes the place of the two parent
areas at the next step of the analysis. So with N areas, all areas are grouped together into
one area after N − 1 steps and all interaction is intrazonal. The outcome of an intramax
analysis may be presented in dendrogram form.

According to Tyree [24], the alternative concept of mobility ratios was developed by three
sociologists, Natalie Rogoff, David Glass and Gösta Carlsson [24], working independently
on the problem of intergenerational occupational mobility. A matrix of frequencies of
occupations of respondents by occupations of fathers may be converted into matrices of
inflow and outflow percentages. The mobility ratio Mij is simply the ratio

Mij =
aijn

OiDj
, i 6= j, (1)

of the frequency observed in a cell to the frequency expected under the assumption of
statistical independence. Hollingworth [13] studied migration between Scottish executive
areas and also defined the mobility index as (1). The value of the objective function in this
case is then Mij + Mji, which was used as a symmetric measure of the mutual association
of areas i and j.

Hirst [12] noted that both the objective functions defined by Masser and Brown [14] and
Hollingworth [13] is inappropriate, because of the influence of unequal marginal distribu-
tions which define the expected frequencies. For example, the ratio or difference between
the observed and expected values will tend to increase for cells in those rows and columns
with large sums. Since the objective function is recalculated after each step in the grouping
procedure, this bias will be cumulative.

Tyree [24] suggested that the interaction matrix should first be adjusted to achieve an ar-
bitrary origin-destination distribution. This may be accomplished iteratively by standard
matrix operations: rows are scaled initially to sum to a given total, and then columns
are scaled to sum to the same total. This procedure is repeated until sufficient conver-
gence occurs to a matrix in which all row and column sums are simultaneously equal.
Hirst [12] claimed that it can be proved that this matrix exists, is unique, and that the
iterative procedure is convergent. He suggested that a possible solution would be to divide
a′ij − a

′∗
ij by a

′∗
ij , with a

′∗
ij corrected for blank entries in the interaction matrix as proposed

by Goodman [7], but noted that results will still tend to favour small zones, because of
the differences between the values obtained for small as opposed to large zones. Hirst also
remarked that an increasing number of heuristic techniques has become available, and
that a need for comparative evaluation of their respective merits and areas of application
has arisen.
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Masser and Scheurwater [15] evaluated three methods for functional regionalisation, namely
the functional distance method [1] (not discussed in this paper), the iterative proportional
fitting based procedure (IPFP) [20] (not discussed in this paper) and the intramax proce-
dure [14]. Their conclusion was that the intramax procedure is the only one of the three
procedures which explicitly identifies regions that have more (direct) interaction with each
other than with other areas at each stage of the grouping process. It has a practical ad-
vantage over the other two methods, because it only involves a series of direct comparisons
between the observed and expected values that are calculated by the multiplication of the
respective row and column totals. This avoids the complex set of matrix manipulations
that are required for the other two methods. The intramax procedure may be more read-
ily applied to large data sets and may be adapted more easily to deal with large, sparse
matrices. Masser and Scheurwater [15] also noted that stronger connections would ap-
pear between pairs of smaller zones containing a relatively low proportion of intrazonal
interaction than between pairs of larger zones containing a relatively high proportion of
intrazonal interaction and that the former would tend to fuse together before the latter.
They reason that this bias noted by Hirst [12], far from being a disadvantage, is in fact
advantageous and that it is a reflection of the inherent characteristics of the structure of
spatial interaction in the matrix.

Fischer et al. [5] compared the intramax procedure with the IPFP-based graph approach
(not discussed in this paper) and came to the conclusion that the intramax approach
is superior to the IPFP-based graph-theoretical one, because the results are easily in-
terpretable in terms of functional regions. The intramax approach also leads to spatial
groupings which show more interaction with each other than with other regions.

Brown and Pitfield [2] noted that the objective function was reformulated in literature
appearing after the comment of Hirst [12] to

maximise
i 6=j

{
a′ij − a

′∗
ij

a
′∗
ij

+
a′ji − a

′∗
ji

a
′∗
ji

}
.

They remarked that this revised form of the objective function was employed in all sub-
sequent applications of the procedure, and may be re-expressed a little more simply as

maximise
i 6=j

{
a′ij

a
′∗
ij

+
a′ji

a
′∗
ji

}
. (2)

The reason for this is that the part that is subtracted in each term is constant and may
thus be ignored. This objective function is also discussed by Brown and Pitfield [2]. The
resulting formula is strikingly similar to the mobility ratios employed by Hollingworth [13],
where

a′ij

a
′∗
ij

=
1
naij

1
n

∑
j aij

1
n

∑
i aij

=
naij∑

j aij
∑

i aij
.

4 The software suite Flowmap

Flowmap [25] is a software suite developed at the University of Utrecht, the Netherlands
(in conjunction with the CSIR, South Africa). The suite performs geographical analyses
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and specialises in displaying interaction data (such as commuting and migration flows),
interaction analysis (such as accessibility analysis), network analysis, and interaction
modelling. The program uses several kinds of data, which may be grouped into three
classes: maps, flow data and distance tables.

Flowmap uses intramax analysis to identify functional regions from an interaction matrix.
“The objective of the intramax procedure is to maximise the proportion within the group
interaction at each stage of the grouping process, while taking account of the variations in
the row and column totals of the matrix” [22]. This implies that in this particular case
two areas are grouped together for which the objective function

Tij

OiDj
+

Tji

OjDi
(3)

is maximised where Tij is the interaction between origin location i and destination location
j, and where

Oi =
∑

j

Tij and Dj =
∑

i

Tij .

This is similar to (2) and the method of Hollingsworth [11], but the constant n is omitted.
The objective function in (3) can only be calculated for all Dj > 0 and for all Oi > 0.
In Flowmap actual flow values are used, hence Tij instead of a′ij , but that should not
have any effect on the results as no comparisons are made; the maximum relationship is
merely sought at each aggregation step. The use of the above objective function is also
substantiated in a thesis by Floor and de Jong [6].

5 Methodology and data

The methodology employed and the data used in this paper are described in this section.

5.1 Journey-to-work data and intramax analysis

The data used in this paper all derive from the 2001 South African Census [22]. The
question was asked “In the seven days before 10 October did (the person) do any work
for pay (in cash or in kind), profit or family gain, for one hour or more? If “Yes,” does
(the person) work in the same sub-place in which s/he usually lives?” If “No,” the main
place of work was recorded. The definition of work includes formal, informal and seasonal
work. The database of all persons between the age of 15 to 65 represented 28 427 129
individuals. A subdatabase was prepared at the request of the authors containing amongst
others, the following fields: main place code and main place of work code. For reasons of
confidentiality, records were totalled and frequencies in each category, defined by the field
names, were calculated. The resulting subdatabase contained a total of 1 890 827 records.
Part of the confidentialising process was to change frequencies of 1 and 2 according to an
algorithm, as follows:

• Change a frequency of 1 to 0 in two thirds of the cases;
• Change a frequency of 1 to 3 in one third of the cases;
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• Change a frequency of 2 to 0 in one third of the cases and
• Change a frequency of 2 to 3 in two thirds of the cases.

Certain records were not considered for the intramax analysis1. The records not consid-
ered included 198 758 records (18 792 972 individuals) for which the main place of work
were marked as not applicable, due to the fact that these records represent persons un-
employed or not economically active. A further 65 556 records (156 899 individuals) were
deleted, because the main place of work was “unspecified.” Of the remaining records, a
further 107 818 records (182 237 individuals) were removed due to the fact that they replied
“No” to the question “Is this your usual place of stay?” A further 3 997 records (9 679
individuals) were deleted because their economic activity was marked “Not economically
active.” Some further 32 290 records (59 933 individuals) were deleted because the main
place names could not be matched (the province code was given instead of the code of a
specific main place).

The following data cleanup was also performed and the interaction data were adjusted
accordingly:

• 7 islands were removed,
• 638 fully embedded regions were dissolved,
• 24 main places without interaction were dissolved,
• 46 main places with only intrazonal interaction were dissolved.

Intramax analysis was therefore applied to a total of 861 939 records involving 2 393 ex-
tended main places.

5.2 Principal component and cluster analysis

It is important to validate the results, e.g. to use different methods with different variables
to establish whether boundaries and regions defined by the intramax analysis may be
viewed as socio-economic functional regions. Harmse [10], using mainly 1996 Census
data, demarcated the South African space economy into a hierarchy of five development
regions, i.e. a highly developed metropolitan core region, an upward transitional region,
a downward transitional region, a resource frontier region and special problem regions.
Harmse et al. [11] reapplied this technique on 2001 Census data, using the following socio-
economic variables:

• Population density,
• Birth rate,
• Youthful dependency ratio,
• Per capita income,
• Number of persons per 10 000 earning more than R51 201 per month,
• Percentage of people employed,
• Number of people per 1 000 working in agriculture,
• Number of people per 1 000 working in secondary sector,
• Number of people per 1 000 working in financial services,

1Only employed persons for whom journey-to-work data per main place could be calculated are included.
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• Percentage of people living in urban areas,
• Number of people per 1 000 with more than 12 years of education,
• Percentage of households whose refuse is removed by local authority,
• Percentage of households living in formal housing,
• Percentage of households using electricity for cooking, and
• Percentage of households with piped water in the house.

A data matrix consisting of variables and municipalities as spatial units was compiled as
input for the multivariate analysis. Using principal component analysis, the large number
of correlated variables was reduced to fewer variables that captured most of the variation
in the original variables. Cluster analysis was then used to identify groups of similar main
places in order to reduce the number of spatial units to a more manageable number, using
the scores of the different principal components. By applying Ward’s cluster analysis,
the semi-partial R2 values generated was used to identify a significant grouping. The
mean score on principal component I for these different groups was calculated in order to
determine how the groups may be assigned to the different regional types [10]. The results
are reported in the following section.

The Community Profile database [23] of Census 2001 was accessed in SuperCross for-
mat at main place level. The weighted mean, median and inter quartile range of some
socio-economic variables were calculated for a proposed five-province scenario and were
compared using Bonferroni multiple comparisons.

6 Results

6.1 Intramax analysis

A total of 2 392 iterations were required in the intramax process. At each stage of the
clustering process, two regions with the strongest possible commuting ties were aggregated.
These two regions were then seen as one region, and commuting between these two regions
become intrazonal. The total number of regions was thus reduced by one region and the
interaction matrix was reduced by one row and one column. This process was repeated
until only one region remained (theoretically), in which all commuting is intrazonal.

During this process, there were 18 minor areas exhibiting unusually large flows, which were
not clustered — they remained original main places. For example, the Kgalagadi Park
(main place 39 302) in the Northern Cape has only outside commuter links and comprises
a total of 7 persons all residing/working in the Saldanha area over 800 km away. The
flows to/from the 18 problem main places were removed. Other surviving unlinked main
places were also removed or dissolved, yet ensuring that this process did not impact on
the boundaries of the remaining clusters.

The clustering process continued until 80% of the interzonal interaction internalised with
70 functional areas (blocks) remained. The results are shown in the dendrograms in
Figures 3–7 and the map in Figure 8.

In Figure 3, the Nama Khoi region includes the town of Springbok and the Richtersveld
National Park. This fuses with the Matzikama region, which includes Van Rhynsdorp,
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Figure 3: Dendrogram of the last nine regions in the Western Cape.

Vredendal, Calvinia, Sutherland, Carnarvon and others. Approximately 31% of all the
journey-to-work flows in and out of these regions are intrazonal for this new aggrega-
tion. In the next step, this region fuses with the Witzenberg region, which includes
places such as Ceres, Tulbach and Clanwilliam (47% intrazonal). The Cape Town region
(including Stellenbosch, Strand, Paarl, etc.) fuses with the Swartland region, which in-
cludes Moorreesburg, Malmesbury, Saldanha and others (30% intrazonal). The Breede
River/Winelands area (Montagu, Swellendam, etc.) fuses with the Breede Valley area
(Worcester, Robertson, etc.) (31% intrazonal), which then fuses with the Cape Town
/ Swartland cluster (44% intrazonal). This cluster then fuses with the Theewaterskloof
cluster (63% intrazonal), which includes the Overberg region. The George cluster (which
includes most of the Garden Route) fuses with the larger Cape Town cluster (64% intra-
zonal), and finally this fuses with the Witzenberg / Nama Khoi / Matzikama cluster (68%
intrazonal). (‘First Province’ of the nine last clusters shown in Figure 8.)

In Figure 4, the Paradise Beach and Kouga areas (Jeffreys Bay, Tsitsikamma National
park, Stormsriver area) merges with the Port Elizabeth area (30% intrazonal), and fuses
in the next step with the Ubuntu area (including Victoria West, Richmond, etc.) and the
Inxuba Yethemba region (Cradock, Middelburg, etc.) (31% intrazonal). This region then
fuses with the Graaff Reinet area (47% intrazonal). The Grahamstown and East London
regions (31% intrazonal) fuse with the Lusikisiki (including Flagstaff), Queenstown, Kok-
stad and Marburg (Port Shepstone and others) regions (63% intrazonal). This region then
fuses with the greater Port Elizabeth cluster (67% intrazonal). (‘Second Province’ of the
nine last clusters shown in Figure 8.)

In the second part of Figure 4, the Durban and Pietermaritzburg regions (34% intrazonal)
merge with the Umvoti (Greytown, Kranskop, etc.) and Stanger regions (43% intrazonal).
The Myeni/Ntsinde area (Jozini, etc.) fuses with the Richards Bay area (31% intrazonal),
and this region fuses next into the greater Durban region, followed by the Mkhambathini
region, which looks like a region on its own (Camperdown, etc.) (69% intrazonal). (‘Third
Province’ of the nine last clusters shown in Figure 8.)

The third part of Figure 4 consists of the Ladysmith region (including Escourt, etc.)
and the Newcastle region (including the Volksrust and Standerton areas in the current
Mpumalanga Province) (45% intrazonal). (‘Fourth Province’ of the nine last clusters
shown in Figure 8.)



142 JH Nel, SC Krygsman & T de Jong
The third part of figure 4 consists of the Ladysmith (including Escourt and other regions) and Newcastle (including Volksrust and Standerton areas in the current 
Mpumalanga Province) (45% intrazonal).  (‘Fourth Province’)  This ‘Fourth Province’ fuses then with the ‘Third Province’ (70% intrazonal) shown in Figure 8. 
 
 
 
 
                         0         0         0         0         0         0         0         0         0         0         1 
                         0.........1.........2.........3.........4.........5.........6.........7.........8.........9.........0 
                         0         0         0         0         0         0         0         0         0         0         0 
 
Graaff Reinet            ├──────────────────────────────────────────────┐  .         .         .         .     │   .         .      
                                   .         .         .         .      │  .         .         .         .     │   .         .      
Kouga                              .         .         .         .      │  .         .         .         .     │   .         .      
                         ├─────────────────────────────┐         .      │  .         .         .         .     │   .         .      
Paradise Beach                     .         .         ├┐        .      ├───────────────────┐  .         .     │   .         .      
                                   .         .         ││        .      │  .         .      │  .         .     │   .         .      
Port Elizabeth           ├─────────────────────────────┘│        .      │  .         .      │  .         .     ├─────────────┐      
                                   .         .         .│        .      │  .         .      │  .         .     │   .         │      
Inxuba Yethemba          ├──────────────────────────────┼───────────────┘  .         .      │  .         .     │   .         │      
                                   .         .         .│        .         .         .      │  .         .     │   .         │      
Ubuntu                   ├──────────────────────────────┘        .         .         .      ├─────────┐  .     │   .         │      
                                   .         .         .         .         .         .      │  .      │  .     │   .         │      
Grahamstown              ├──────────────────────────────┐        .         .         .      │  .      │  .     │   .         │      
                                   .         .         .├───────────────────────────────┐   │  .      │  .     │   .         │      
East London              ├──────────────────────────────┘        .         .         .  │   │  .      │  .     │   .         │      
                                   .         .         .         .         .         .  │   │  .      │  .     │   .         │      
Lusikisiki               ├─────────────────────────────┐         .         .         .  ├───┘  .      │  .     │   .         │      
                                   .         .         ├┐        .         .         .  │      .      │  .     │   .         │      
Queenstown               ├─────────────────────────────┤│        .         .         .  │      .      │  .     │   .         │      
                                   .         .         │├───────────────────────────────┘      .      │  .     │   .         │      
Kokstad                  ├─────────────────────────────┘│        .         .         .         .      │  .     │   .         │      
                                   .         .         .│        .         .         .         .      │  .     │   .         │      
Marburg                  ├──────────────────────────────┘        .         .         .         .      │  .     │   .         │      
                                   .         .         .         .         .         .         .      ├────────┘   .         │      
Pietermaritzburg         ├─────────────────────────────────┐     .         .         .         .      │  .         .         │      
                                   .         .         .   ├────────┐      .         .         .      │  .         .         │      
Durban                   ├─────────────────────────────────┘     .  │      .         .         .      │  .         .         │      
                                   .         .         .         .  ├─────────────────────┐    .      │  .         .         │      
Umvoti                   ├───────────────────────────┐ .         .  │      .         .    │    .      │  .         .         │      
                                   .         .       ├──────────────┘      .         .    │    .      │  .         .         │      
Stanger                  ├───────────────────────────┘ .         .         .         .    ├───┐.      │  .         .         │      
                                   .         .         .         .         .         .    │   │.      │  .         .         │      
Myeni/Ntsinde            ├──────────────────────────────┐        .         .         .    │   │.      │  .         .         │      
                                   .         .         .├─────────────────────────────────┘   ├┐      │  .         .         │      
Richards Bay             ├──────────────────────────────┘        .         .         .        ││      │  .         .         │      
                                   .         .         .         .         .         .        ││      │  .         .         │      
Mkhambathini             ├────────────────────────────────────────────────────────────────────┘├──────┘  .         .         │      
                                   .         .         .         .         .         .         │         .         .         │      
Ladysmith                ├────────────────────────────────────────────┐    .         .         │         .         .         │      
                                   .         .         .         .    ├────────────────────────┘         .         .         │      
Newcastle                ├────────────────────────────────────────────┘    .         .         .         .         .         │      
 

Figure 4 :  Dendogram of last 21 regions in Eastern Coastal region 
 
In figure 5 the Dukathole (including Jamestown in the current Eastern Cape and Aliwal North) and Kopanong  (Bethulie, Philippolis and more) areas fuse (31% 
intrazonal).  This region fuses then with the Naledi (Van Stadensrus, Wepener and more regions) and Bloemfontein region and the resulting region results in 47% 
intrazonal flows.   The Setsoto (Clocolan, Ficksburg, Senekal areas), Nketoana (Lindley, Reiz, Petrus Steyn areas), Phuthaditjhaba and Phumelela (Memel, Vrede 
and Warden) regions merge (47% intrazonal flow) and this region fuses with the greater Bloemfontein region (68% intrazonal).  The Tswelopele (Bultfontein and 

Figure 4: Dendrogram of the last twenty-one regions in the Eastern Coastal region. Kouga

and Paradise Beach merge at the very start of the procedure resulting in less than 0.5% intrazonal

interaction.

In Figure 5 the Dukathole (including Jamestown in the current Eastern Cape and Aliwal
North) and Kopanong (Bethulie, Philippolis, etc.) areas fuse (31% intrazonal). This re-
gion then fuses with the Naledi (Van Stadensrus, Wepener, etc.) and Bloemfontein regions
and the resulting region results in 47% intrazonal flows. The Setsoto (Clocolan, Ficks-
burg, Senekal), Nketoana (Lindley, Reitz, Petrus Steyn), Phuthaditjhaba and Phumelela
(Memel, Vrede and Warden) regions merge (47% intrazonal flow) and this region fuses with
the greater Bloemfontein region (68% intrazonal). The Tswelopele (Bultfontein and Hoop-
stad), Maquassi Hills (Leeudoringstad and Makwassie regions in the current North West
Province), Thabong (Odendaalsrus and Welkom), Nala (Bothaville regions), Moqhaka
(Kroonstad and Steynsrus) and Klerksdorp region in the current North West Province
fuse (48% intrazonal) which then fuse with the previous region, including Bloemfontein,
(69% intrazonal) to form the ‘Fifth Province’ of the nine last clusters shown in Figure 8.

In Figure 6, the regions of Kai !Garib (Augrabies, Kakamas and other regions in the North-
ern Cape) and !Kheis (Groblershoop, Grootdrink, etc. in the Northern Cape) merge with
the Kimberley, Letsemeng (Petrusburg, Jacobsdal, etc. in the Free State) and Vryburg
(also Schweizer-Reneke and other regions in the North West Province) regions (47% in-
trazonal). This region merges with the Rustenburg and Mafikeng fusion (69% intrazonal),
resulting in the ‘Sixth Province’ of the nine last clusters shown in Figure 8.

The Modderfontein region merges with the Boksburg, Johannesburg fusion (28% intra-
zonal), and the Evaton (Vaal Triangle, including Sasolburg in the Free State) and Lesedi
(Heidelberg, Nigel Springs) regions then fuse into the Johannesburg region (46% intra-
zonal), then follow the Pretoria region, the Randfontein region and lastly the Merafong
(Carltonville, Khutsong and others) region (66% intrazonal). This results in the ‘Seventh
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Hoopstad regions), Maquassi Hills (Leeudoringstad and Makwassie regions in the current North West Province), Thabong (Odendaalsrus, Welkom areas),  Nala 
(Bothaville regions), Moqhaka (Kroonstad, Steynsrus areas) and Klerksdorp region in the current North West Province fuse (48% intrazonal) which then fuse with the 
previous region, including Bloemfontein, (69% intrazonal) to form the ‘Fifth Province’ of the 9 clusters shown in Figure 8. 
 
 
 
                         0         0         0         0         0         0         0         0         0         0         1 
                         0.........1.........2.........3.........4.........5.........6.........7.........8.........9.........0 
                         0         0         0         0         0         0         0         0         0         0         0 
 
Dukathole                ├──────────────────────────────┐        .         .         .         .         .         .         │      
                                   .         .         .├───────────────┐  .         .         .         .         .         │      
Kopanong                 ├──────────────────────────────┘        .      │  .         .         .         .         .         │      
                                   .         .         .         .      ├────────────────────┐ .         .         .         │      
Naledi                   ├───────────────────────────┐ .         .      │  .         .       │ .         .         .         │      
                                   .         .       ├──────────────────┘  .         .       │ .         .         .         │      
Bloemfontein             ├───────────────────────────┘ .         .         .         .       ├┐.         .         .         │      
                                   .         .         .         .         .         .       ││.         .         .         │      
Setsoto                  ├──────────────────────────────────────────────┐  .         .       ││.         .         .         │      
                                   .         .         .         .      │  .         .       ││.         .         .         │      
Nketoana                 ├─────────────────────────────┐         .      ├────────────────────┘│.         .         .         │      
                                   .         .         ├┐        .      │  .         .        │.         .         .         │      
Phuthaditjhaba           ├─────────────────────────────┘├───────────────┘  .         .        │.         .         .         │      
                                   .         .         .│        .         .         .        ├──────────────────┐ .         │      
Phumelela                ├──────────────────────────────┘        .         .         .        │.         .       │ .         │      
                                   .         .         .         .         .         .        │.         .       │ .         │      
Tswelopele               ├─────────────────────────────┐         .         .         .        │.         .       │ .         │      
                                   .         .         ├─────────────────┐ .         .        │.         .       │ .         │      
Maquassi Hills           ├─────────────────────────────┘         .       │ .         .        │.         .       │ .         │      
                                   .         .         .         .       │ .         .        │.         .       │ .         │      
Thabong                  ├───────────────────────────┐ .         .       ├────────────────────┘.         .       │ .         │      
                                   .         .       ├──────────────────┐│ .         .         .         .       │ .         │      
Nala                     ├───────────────────────────┘ .         .      ││ .         .         .         .       │ .         │      
                                   .         .         .         .      ├┘ .         .         .         .       │ .         │      
Moqhaka                  ├──────────────────────────────┐        .      │  .         .         .         .       │ .         │      
                                   .         .         .├───────────────┘  .         .         .         .       │ .         │      
Klerksdorp               ├──────────────────────────────┘        .         .         .         .         .       │ .         │      
 

Figure 5:  Dendogram of the last 14 regions in the Central region 
 
In Figure 6, the regions of Kai !Garib (Augrabies, Kakamas and other regions in the Northern Cape) and !Kheis (Groblershoop, Grootdrink and more in the Northern 
Cape) merged with the Kimberley, Letsemeng (Petrusburg, Jacobsdal and more in the Free State) and Vryburg (also Schweizer-Reneke and other regions in the 
North West Province)regions (47% intrazonal).  This region merges with the Rustenburg (  )  Mafikeng (  )  fusion (69% intrazonal), resulting in the ‘Sixth Province’ in 
figure 8. 
 

Figure 5: Dendrogram of the last fourteen regions in the Central region.

Province’ of the nine last clusters shown in Figure 8.

The Modderfontein region merges with the Boksburg, Johannesburg fusion (28% intrazonal), and the Evaton (Vaal Triangle, including Sasolburg in the Free State) 
and Lesedi (Heidelberg, Nigel Springs) regions then fuse into the Johannesburg region (46% intrazonal), then follow the Pretoria region, the Randfontein region and 
lastly the Merafong (Carltonville, Khutsong and others) region. (66% intrazonal).  This results in the ‘Seventh Province’ in Figure 8. 
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Kai !Garib               ├──────────────────────────────────────────────┐  .         .         .         .       │ .         │      
                                   .         .         .         .      │  .         .         .         .       │ .         │      
!Kheis                   ├──────────────────────────────────────────────┤  .         .         .         .       │ .         │      
                                   .         .         .         .      ├─────────────────────┐.         .       │ .         │      
Kimberley                ├─────────────────────────────┐         .      │  .         .        │.         .       │ .         │      
                                   .         .         ├┐        .      │  .         .        │.         .       │ .         │      
Letsemeng                ├─────────────────────────────┘├───────────────┘  .         .        │.         .       ├───────────┘      
                                   .         .         .│        .         .         .        ├────┐     .       │ .         .      
Vryburg                  ├──────────────────────────────┘        .         .         .        │.   │     .       │ .         .      
                                   .         .         .         .         .         .        │.   │     .       │ .         .      
Rustenburg               ├────────────────────────────────────────────┐    .         .        │.   │     .       │ .         .      
                                   .         .         .         .    ├───────────────────────┘.   │     .       │ .         .      
Mafikeng                 ├────────────────────────────────────────────┘    .         .         .   │     .       │ .         .      
                                   .         .         .         .         .         .         .   │     .       │ .         .      
Randfontein              ├──────────────────────────────────────────────────────────────┐      .   │     .       │ .         .      
                                   .         .         .         .         .         .  │      .   ├────────┐    │ .         .      
Modderfontein            ├───────────────────────────┐ .         .         .         .  │      .   │     .  │    │ .         .      
                                   .         .       ├────────────┐        .         .  │      .   │     .  │    │ .         .      
Boksburg                 ├──────────────────────────┐│ .         .│        .         .  ├──┐   .   │     .  │    │ .         .      
                                   .         .      ├┘ .         .├────┐   .         .  │  │   .   │     .  │    │ .         .      
Johannesburg             ├──────────────────────────┘  .         .│    │   .         .  │  │   .   │     .  │    │ .         .      
                                   .         .         .         .│    ├───────────────┐│  │   .   │     .  │    │ .         .      
Evaton                   ├────────────────────────────────────────┘    │   .         . ││  │   .   │     .  │    │ .         .      
                                   .         .         .         .     │   .         . ├┘  ├───────┘     .  │    │ .         .      
Lesedi                   ├─────────────────────────────────────────────┘   .         . │   │   .         .  │    │ .         .      
                                   .         .         .         .         .         . │   │   .         .  │    │ .         .      
Pretoria                 ├─────────────────────────────────────────────────────────────┘   │   .         .  │    │ .         .      
                                   .         .         .         .         .         .     │   .         .  │    │ .         .      
Merafong                 ├─────────────────────────────────────────────────────────────────┘   .         .  ├────┘ .         .      
                                   .         .         .         .         .         .         .         .  │      .         .      
 
 
Figure 6 :  Dendogram of the last 15 regions in the Gauteng region 
 
 

Figure 6: Dendrogram of the last fifteen regions in the Gauteng region.

Figure 7 is a fusion of the remaining regions of the Limpopo Province and the Mpumalanga
Province. Msukaligwa (Ermelo region) and Mkhondo (Piet Retief region) merge with
Embalenhle (Kinross, Leslie, Evander regions) and Witbank region (48% intrazonal). The
Highlands (Dullstroom, Machadodorp regions) and Mbombela (Nelspruit region) regions
merge with the greater Witbank region (67% intrazonal) which completes the ‘Eighth
Province’ of the nine last clusters shown in Figure 8.
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Finally the Greater Tzaneen (including Haenertsburg, Letsitele, etc.) and Phalaborwa
(including Gravelotte, Die Eiland, etc.) regions merge (28% intrazonal). The Pietersburg
region (Polokwane) fuses with the Tzaneen region (45% intrazonal), followed by a fusion
with the Tshivhase region (Thohoyandou, Gijana, etc.) and lastly the Bela-Bela region
(Warmbaths, Nylstroom, etc.), with a total of 67% intrazonal flow, resulting in the ‘Ninth
Province’ in Figure 8.

 
Figure 7 is a fusion of the remaining regions of the Limpopo Province and the Mpumalanga Province.  Msukaligwa (Ermelo region)  and  Mkhondo (Piet Retief 
region)  merge with Embalenhle (Kinross, Leslie, Evander regions) and Witbank region (48% intrazonal).  The Highlands (Dullstroom, Machadodorp regions) and 
Mbombela (Nelspruit region) regions merge with the greater Witbank region (67% intrazonal) with completes the ‘Eighth Province’ in Figure 8. 
 
Finally the Greater Tzaneen (including Haenertsburg and Letsitele for example) and Phalaborwa (also Gravelotte and Die Eiland for example) regions merge (28% 
intrazonal).  The Pietersburg region (Polokwane, fuses with the Tzaneen region (45% intrazonal),  followed by the fusion with the Tshivhase region (Thohoyandou, 
Gijana regions) and lastly the Bela-Bela region (Warmbaths, Nylstroom regions), with a total of  67% intrazonal flow, resulting in the ‘Ninth Province’ in Figure 8. 
 
 
                         0         0         0         0         0         0         0         0         0         0         1 
                         0.........1.........2.........3.........4.........5.........6.........7.........8.........9.........0 
                         0         0         0         0         0         0         0         0         0         0         0 
 
 
Msukaligwa               ├─────────────────────────────┐         .         .         .         .         .  │      .         .      
                                   .         .         ├─────────────────┐ .         .         .         .  │      .         .      
Mkhondo                  ├─────────────────────────────┘         .       │ .         .         .         .  │      .         .      
                                   .         .         .         .       ├──────────────────┐  .         .  │      .         .      
Embalenhle               ├─────────────────────────────┐         .       │ .         .      │  .         .  │      .         .      
                                   .         .         ├─────────────────┘ .         .      │  .         .  │      .         .      
Witbank                  ├─────────────────────────────┘         .         .         .      ├───┐        .  │      .         .      
                                   .         .         .         .         .         .      │  .│        .  │      .         .      
Highlands                ├─────────────────────────────┐         .         .         .      │  .│        .  │      .         .      
                                   .         .         ├────────────────────────────────────┘  .│        .  │      .         .      
Mbombela                 ├─────────────────────────────┘         .         .         .         .│        .  │      .         .      
                                   .         .         .         .         .         .         .│        .  │      .         .      
Greater Tzaneen          ├───────────────────────────┐ .         .         .         .         .├───────────┘      .         .      
                                   .         .       ├────────────────┐    .         .         .│        .         .         .      
Phalaborwa               ├───────────────────────────┘ .         .    ├─┐  .         .         .│        .         .         .      
                                   .         .         .         .    │ │  .         .         .│        .         .         .      
Pietersburg              ├────────────────────────────────────────────┘ ├───────────────────┐  .│        .         .         .      
                                   .         .         .         .      │  .         .      │  .│        .         .         .      
Tshivhase                ├──────────────────────────────────────────────┘  .         .      ├───┘        .         .         .      
                                   .         .         .         .         .         .      │  .         .         .         .      
Tshivhase                ├──────────────────────────────────────────────────────────────────┘  .         .         .         .      
                                   .         .         .         .         .         .         .         .         .         . 

 
Figure 7 :  Dendogram of the last 11 regions in the Northern region 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Dendrogram of the last eleven regions in the Northern region.

The dots in Figure 8 are proportional to the volume or level of intrazonal interaction
per new functional block and the nine-province division shown in the figure has been
constructed by means of the intramax method from the interaction between the remaining
70 blocks.

Tables 2 and 3 show the commuter flows crossing provincial boundaries in the current
context and the proposed new situation with nine provinces. The number of boundary-
crossing commuters is reduced in the intramax solution by over 45% from 287 000 to
approximately 157 000. The total workforce is approximately 9.4 million, but only some
2.7 million workers commute daily between different main places. The difference between
the total workforce and the part of the workforce that actually commutes explains the
difference between the numbers in Tables 2 and 3 and the numbers given in §5.1.

6.2 Reducing the number of provinces to four or five

The dendrograms in Figures 3 to 7 show that ‘Province 4’ (Newcastle region) fuses with
‘Province 3’ (Durban region) (69% intrazonal). Next, the remainder of the Mpumalanga
region (‘Province 8’) fuses with the remainder of the Limpopo Province (‘Province 9’)
(71% intrazonal). Next follows the remainder of the North West region (‘Province 6’),
which fuses with the greater Gauteng area (‘Province 7’) (73% intrazonal). The Eastern
Cape region (‘Province 2’) clusters together with the KwaZulu-Natal region (‘Province
3’) (77% intrazonal) leaving a remainder of five ‘provinces’, i.e. the Western Cape with
part of the Northern Cape; an amalgamation of the Eastern Cape and KwaZulu-Natal;
an amalgamation of the North West and Free State; an amalgamation of the remain-
der of the Northern Cape, North West and Gauteng; and an amalgamation of Limpopo
Province and the remainder of Mpumalanga (five provinces). In the next step, the newly
formed Limpopo Province would fuse with the Gauteng region (four possible provinces),
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Figure 8: The remaining nine clusters with dots indicating the relative size of the intrazonal

interaction per functional region.

the Eastern Cape and KwaZulu-Natal region would fuse with the Western Cape region
(three provinces) and the Free State region would amalgamate with the Gauteng region
(two provinces). The country thus becomes consolidated into a final North-South division.

The boundaries between the Western Cape region and the Eastern Cape / KwaZulu-Natal
region are mountainous regions, but it seems that rivers, such as the Orange River and the
Vaal River, which were historical boundaries, do not impact as much on the boundaries
any longer, because of the accessibility via roads to the nearest major centres.

Figure 9 shows the reduction from nine provinces to four provinces.

6.3 Disputed areas

The disputed area of Bushbuckridge is used as an example to demonstrate how the intra-
max analysis may be used to resolve similar contentious situations. The current provincial
boundary crosses straight through the Buschbuckridge functional area and generates five
times more cross-boundary commuting than the alternative suggested by intramax.
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Pro- Total
vince flow EC FS GP KZN LP MP NW NC WC

EC 163 998 149 004 1 064 2 870 4 556 665 966 1 279 368 3 226
FS 92 398 880 81 951 5 679 772 350 419 1 059 530 758
GP 1 007 615 5 325 6 781 957 885 6 314 3 483 7 234 14 313 1 351 4 929
KZ 415 992 7 593 992 5826 392 881 1893 2 306 1 174 590 2 737
LP 129 898 1 438 545 5 926 1 399 108 316 10 215 1 098 436 525
MP 132 701 1 023 893 33 515 1 666 2 093 91 377 1 196 415 523
NW 240 823 1 100 1 640 86 974 755 6 467 872 137 311 5 180 524
NC 27 245 312 349 607 138 166 574 467 24 065 567
WC 479 774 3 812 1 478 4 165 5 374 1 024 566 792 2 143 460 420

Table 2: Commuter flow within and between the current nine provinces. The following abbrevi-

ations are used: EC = Eastern Cape, FS = Free State, GP = Gauteng, KZN = KwaZulu-Natal, LP

= Limpopo, MP = Mpumalanga, NW = North West, NC = Northern Cape and WC = Western

Cape. Total flow value within provinces: 2 403 210 (89.32%). Total flow value between provinces:

287 234 (10.68%).

The map in Figure 10(a) shows “major” commuter flows, many crossing the current
provincial boundary. The map in Figure 10(b) shows the intramax analysis results af-
ter a cleanup into eleven functional areas just before the Buskbuckridge area fuses with
the South Kruger Park. The map in Figure 10(c) shows several larger commuter flows
into / out of Bushbuckridge across the current provincial boundary.

The intramax results shown in Figure 10(d) allocate the whole of the Bushbuckridge
functional area to the southern province and the proposed boundary follows the boundary
of the building block instead of cutting through it. Of the 60 420 commuters in the area
3 771 (6.24%) currently cross the provincial boundary. This number would be reduced to
679 (1.12%) in the proposed provincial split.

The disputed regions of Groblersdal and Marble Hall (Shown in Figure 1) were allocated
to Mpumalanga, but transferred to Limpopo province in December 2005 [8]. The intramax
analysis indicates that these regions will actually fuse with the Gauteng region. Sasolburg
will also fuse into the Gauteng region, and not with the Free State, where it is currently
situated.

Kuruman, Postmasburg and Hartswater (currently in the Northern Cape) will be allocated
to the North West region, but the boundaries of the North West region will move further
south, and include more regions of the Northern Cape, even regions such as Upington,
Prieska and De Aar. This is because of the accessibility to Kimberley, which will also be
located in the North West region.

The Namaqualand (currently in the Northern Cape), Clanwilliam and Van Rhynsdorp
(currently in the Western Cape) regions will be allocated to the Western Cape, and again,
here, the N7 route ensures accessibility to the Cape Metropole.

The Pondoland, East Griqualand (currently in the Eastern Cape) and Umzimkulu (cur-
rently in the KwaZulu Natal) regions will fuse initially with the Eastern Cape region, but
in a four and five province scenario, the Eastern Cape region will fuse with the KwaZulu-
Natal region, leaving these disputed areas in the middle of the new province.
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Pro- Total
vince flow CT QT DU NC Kl lB JO WB PB

CT 481 244 461 782 3 930 4 583 546 1395 2 485 4 658 1 086 779
QT 184 433 2773 169 864 3 482 454 1 489 1 343 3 264 981 783
DU 365 583 2 694 7 529 343 668 2 300 848 1 121 4 955 1 701 767
NC 28 159 97 438 1 440 23 573 147 79 1 151 505 729
Kl 118 382 972 1 267 610 181 108 484 2 363 3 749 398 358
lB 134 115 942 968 360 170 1 591 119 701 9 086 333 964

JO 1 160 833 5 473 6 436 4 412 1 296 3 996 10 862 1 117 538 6 246 4574
WB 98 406 594 1 037 753 537 729 594 4 930 87 510 1 722
PB 119 194 499 1 343 879 171 603 1 148 11 021 1 974 101 556

Table 3: Commuter flow within and between the last nine clusters. The following abbreviations

are used: CT = Cape Town (combination of Western Cape and Northern Cape), QT = Queenstown

(mostly Eastern Cape), DU = Durban (mostly KwaZulu-Natal), NC = Newcastle (combination

of KwaZulu-Natal and Mpumalanga), KL = Klerksdorp (combination of Free State and North

West), RB = Rustenburg (combination of North West and Northern Cape), JO = Johannesburg

(mostly Gauteng, with parts of surrounding provinces included), WB = Witbank (remainder of

Mpumalanga) and PB = Pietersburg (remainder of Limpopo Province). Total flow value within

provinces: 2 533 676 (94.18%). Total flow value between provinces: 156 673 (5.82%).

The Brits and Garankuwa areas (currently in the Northwest Province) will also fuse with
the Gauteng region.

Since 2001, numerous administrative problems and service delivery constraints associated
with cross boundary municipalities prompted a special Presidential Coordinating Council
to recommend the scrapping of this municipal category in 2001 [16]. The process of elimi-
nating cross boundary municipalities was completed in December 2005 with the adoption
by the National Assembly of the Constitution’s Twelfth Amendment Act and the Cross-
boundary Municipalities Laws Repeal and Related Matters Act, 2005 [3]. Both pieces of
legislation effectively eliminated the reality of cross boundary municipalities and demar-
cated affected municipalities to one province or another. As a result, amongst others,
aBushbuckridge, Khutsong, and Matatiele have been incorporated into the Mpumalanga,
North West and Eastern Cape provinces respectively. The last two communities have
violently resisted the new provincial locations.

Khutsong is part of Merafong municipality which was not indicated as a disputed area
in Figure 1. This municipality was partly in the Northwest Province and partly in the
Gauteng Province. It was allocated in 2005 to the Northwest Province. According to
Figures 6 and 8 the area merges with the ‘Seventh Province’, which is mostly part of
Gauteng.

Matatiele is part of Pondoland in Figure 1, and according to intramax analysis will be
incorporated into the Queenstown area, which will, according to Figures 4 and Figure 8,
merge with the ‘Second Province’, which will mostly be the Eastern Cape.
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(a) Nine provinces (b) Eight provinces (c) Seven provinces

(d) Six provinces (e) Five provinces (f) Four provinces

Figure 9: Reduction from nine to four provinces using intramax analysis.

6.4 Principal component/cluster analysis compared with intramax

According to Harmse et al. [11] the data matrix, consisting of 16 variables and 249 spatial
units, was subjected to a principal component analysis. Three principal components had
eigenvalues larger than 1, and together they were responsible for 77.9% of the variation
in the original data set. The first principal component represented most of the socio-
economic variables, and 10 out of 16 variables had scores of more than 0.75 on principal
component I (PC I).

The calculated PC I scores for each of the 249 spatial units comprised a new data set.
Cluster analysis was performed on this data set and the most effective grouping of the
249 spatial units resulted in 18 groups, which were then assigned to four regional types.
Discriminant analysis was conducted to determine the effectiveness of the groupings.

Figure 11 shows the results of the demarcation of socio-economic development regions in
the South African space economy. The 2001 development regions in South Africa ranged
from the highly developed core region, through the upward-transitional and downward-
transitional regions, to the special problem regions. According to Harmse et al. [11], the
core region has the highest level of development and, in 2001, 69.2% of the country’s total
income was earned by people living in the core region. The core region housed 38% of
the country’s population on only 5.45% of the land area. The non-contiguous core region
consists of the following regions (in descending order per province): City of Johannesburg
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Map1 shows “major “commuter flows; many crossing current provincial border (in blue) 

 (a) Flows of 10 or more commuters
between MPs.

 
 

Intramax analysis results after cleanup in 11 functional areas just before Buskbuckridge 

area clusters with the South Kruger Park 

(b) Just before Bushbuckridge
merges with a neigbouring area the
74 MPs in the region have clustered
to 11 functional areas.

 
 

Several larger commuter flows into/out of Bushbuckridge cross current provincial 

boundary (in blue) 

 

(c) Flows of 100 or more commuters
between the functional areas Bush-
buckridge has stronger ties to the
east (Kruger Park South).

 
 

Intramax results in a two way split of the area where the whole Bushbuckridge functional 

area is allocated to the southern province. The new provincial boundary is indicated in 

black. 

 

Of the 60420 commuters in the area 3771 (6.24%) cross the provincial border in the 

current situation. This number would be reduced to 679 (1.12%) in the proposed 

provincial split. 

  
 

proposed 

boundary 

provincial 

boundary 

(d) An intramax two way split of
the area results in a new provincial
boundary.

Figure 10: In-depth analysis of Bushbuckridge as example of a disputed area.

Metro in Gauteng, the Kruger Park in Mpumalanga, City of Tswane Metro in Gauteng,
City of Cape Town Metro and Stellenbosch in the Western Cape, Ekurhuleni Metro in
Gauteng, Gamagara in the Northern Cape, Midvaal in Gauteng, Mossel Bay in the Western
Cape, Ethekwini in KwaZulu-Natal, Mogale City in Gauteng, Overstrand, Cape Agulhas,
Saldanha Bay, George and Drakenstein in the Western Cape, Nelson Mandela Metro in
the Eastern Cape, uMngeni in KwaZulu-Natal, Kungwini and Randfontein in Gauteng,
Potchefstroom in the North West, Emfuleni in Gauteng, Knysna in the Western Cape,
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Nokeng tsa Taemane in Gauteng and the Swartland municipalities in the Western Cape.
The Sol Plaatjie municipality in the Northern Cape would be the next on the list.

The levels of the socio-economic development in the 45 districts comprising the upward
transitional region were not as high as in the core region, but although the region contains
only 13.3% of the total population, it contributes a further 13.7% of the total income and
16.7% of the total number of people employed. These regions are usually adjacent to the
core regions.

The 133 districts in the downward transitional region comprise the largest part of the
system (61.1%). These are usually relatively poorly developed and unintegrated regions.
These regions usually make a relatively small contribution towards the economy. In this
case, the 33.3% of the total population only contributes 25.5% of total employed and 15.0%
of total income.

The 45 districts in the special problem region have the lowest level of development in the
space economy. These regions are characterised by very low levels of income and very
low levels of employment. In this case, 15.4% of the population contributes 3.9% of total
employment and 2.1% of total income. These regions pose a challenge to development
[11].

Special Downward Upward 13 District
problem transitional transitional Core municipalities

region region region region excluded

Number of districts 45 133 45 26 13
% of total area 9.9 61.1 21.2 5.5 2.4

% of total population 15.4 33.3 13.3 38.0 0.01
% of total employed 3.9 25.5 16.7 53.9 0.02

% of total income 2.1 15.0 13.7 69.2 0.03

Table 4: Contribution of each regional type to selected variables [11].

The last four regions obtained by the intramax analysis were superimposed in Figure 11
on the development regions of the South African space economy, to establish visually some
measure of validity of the intramax analysis.

Clearly, the Western Cape region consists of a strong core region and most of the sur-
rounding regions are upward transitional. There are no special problem regions in this
province, and one can come to the conclusion that the level of socio-economic development
is high, i.e. this province can exist as a unit.

The combination of Gauteng, North West and Limpopo Province also has a strong core
region in the Gauteng province, with smaller core regions in the mining areas of the
Northern Cape. It has smaller upward transitional areas and larger downward transitional
areas with a few problem regions. The strong core should be able to carry these problem
regions economically. If this region is sub-divided and the Northern region (Limpopo
province) is separated from this region, it might lead to a province (the northern part)
with no core region, very little upward transition, large downward transition and problem
regions, resulting in the region exhibiting low socio-economic development. This province
might be dependent on the government for support.
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In the central province, which is a combination of the Free State and North West provinces,
the Potchefstroom region is reflected as a core region, but the Bloemfontein and Kroonstad
regions are upward transitional regions. There are no problem regions in this province.

The last region is the combination of the major parts of the Eastern Cape and KwaZulu-
Natal. Three core areas are identified: the Durban, Pietermaritzburg and Port Elizabeth
regions. This region has large problem areas and downward transition regions, compared
to upward transition regions. For this region, these three cores can combine their economic
power in the combined province, but this province will experience a challenge to survive
economically, based on these results.

Figure 11: Development regions in the South African space economy, with the four proposed

provinces superimposed on the development regions.

6.5 Socio-economic results, using 2001 Census data

The last five provinces are finally compared using certain socio-economic variables of
data extracted from the Census 2001 Community Profile Databases [23]. The Limpopo
Province region is kept separate from the Gauteng/North West region, because it was
noticed that the combined region comprised 47.7% of the country, and might be too large
to be considered a province. The results in Tables 5, 6 and 7 were calculated by weighing
the data in the main places appropriately.

The weighted mean and median values for each region might differ substantially, because
of the uneven distribution of the variables amongst the different main places within each
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region. For this reason, both statistics are reflected.

The statistics in Table 5 were weighted for the total number of people in each main
place. The Western Cape region has the highest level of urbanisation (795 per 1 000
persons), followed by the Free State / North West and Gauteng / North West regions
(approximately 630 per 1 000 persons). The Limpopo region has the lowest number (165
per 1 000 persons), the lowest number of informal persons, too, but the highest level of
tribal / farm / small holding persons (785 per 1 000 persons) and the highest level of
youthful dependency (children 0–14 years of age). The other regions have approximately
the same level of informal persons (between 77 and 93 per 1 000 persons). The Western
Cape has the lowest level of tribal / farm / small holding persons per 1 000 persons.

The statistics in Table 6 were weighted for the number of persons between 15 and 65 years
of age. The Western Cape region has the highest level of agricultural and manufacturing
activity and the highest employment level per 1 000 people aged 15 to 65 years, but
the lowest level of mining activities. This region has the lowest number of people with
education level of grade 7 and lower per 1 000 people aged 15 to 65 years.

The Free State / North West region has a high level of agricultural and mining activity, but
low on the manufacturing level per 1 000 people aged 15 to 65 years of age. Employment
levels are average.

Province % of the total
(number of number of Urban Informal Tribal + farm Youthful
main places) people in SA Person Person small holding dependency

Western Cape WMN: 795 [A] 78 [A] 98 [D] 273 [D]
region WMD: 929 5 0 279
(350) 10.2 WQ: 733–968 0–112 0–12 246–300
Free State/North WMN: 632 [B] 77 [A] 258 [C] 305 [C]
West region WMD: 810 0 0 314
(267) 7.20 WQ: 0–963 0–171 0–843 282–338
Eastern Cape/ WMN: 333 [C] 92 [A] 554 [B] 355 [B]
KwaZulu–Natal WMD: 0 0 964 351
region (1288) 34.9 WQ: 0–809 0–103 0–999 284–434
Gauteng/North WMN: 635 [B] 93 [A] 239 [C] 269 [D]
West region WMD: 846 34 0 257
(627) 31.0 WQ: 338–899 0–93 0–137 216–310
Limpopo WMN: 165 [D] 30 [B] 785 [A] 379 [A]
region WMD: 0 0 992 407
(496) 16.7 WQ: 0–0 0–0 957–999 341–424
South WMN: 467 80 427 320
Africa WMD: 659 0 12 250
(3028) 100 WQ: 0–893 0–92 0–994 397–317

Table 5: Comparing the five intramax regions with respect to area of residence and youth-

ful dependency per 1 000 persons. [A] to [D]: different symbols indicate which means of these

variables (comparing different regions in descending order from [A] to [D]) are significantly differ-

ent, Bonferroni multiple comparison test, p < 0.05. The following abbreviations are used: WMN

for weighted mean per 1 000 persons, WMD for weighted median per 1 000 persons and WQ for

weighted inter-quartile range per 1 000 persons.
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The Eastern Cape / KwaZulu-Natal region features significantly less agricultural activity,
less mining activities, the lowest level of employment, and comparatively a high level
of people with an education level of grade 7 and lower. However, some manufacturing
activities take place in this region.

The Gauteng / North West region has a low level of agricultural activity, a high level
of mining activity and a relatively high level of manufacturing activity and employment
compared to the other regions.

The Limpopo region has a high level of agricultural activity, a higher than average level of
mining activity, but a low level of manufacturing activity and a low level of employment.
If combined with the Gauteng / North West region, the two regions can augment each
other.

Province (number Industry Industry Industry Grade 7
of main places) agriculture mining manufacturing Employed and less

Western WMN: 67 [A] 3.4 [C] 67 [A] 484 [A] 272 [C]
Cape region WMD: 9 1.0 75 489 254
(348) WQ: 7–30 0–2 34–91 9 425–526 178–312
Free State/ WMN: 55 [A] 34 [A] 24 [D] 337 [C] 420 [A]
North West WMD: 8 2 21 290 428
region (267) WQ: 5–18 1–18 10–30 0 226–483 360–502
Eastern Cape/ WMN: 23 [B] 1 [C] 38 [C] 251 [D] 418 [A]
KwaZulu–Natal WMD: 4 1 27 228 424
region (1287) WQ: 3–9 0–2 4–60 93–378 269–570
Gauteng/ WMN: 22 [B] 23 [AB] 51 [B] 404 [B] 303 [B]
North West WMD: 6 3 50 352 283
region (627) WQ: 4–10 2–7 30–66 287–541 169–403
Limpopo WMN: 51 [A] 15 [B] 24 [D] 270 [D] 445 [A]
region WMD: 11 2 14 214 462
(496) WQ: 6–21 1–9 6–31 123–354 394–521
South WMN: 34 13 43 337 367
Africa WMD: 7 2 38 322 360
(3025) WQ: 4–13 1–4 11–63 189–497 228–500

Table 6: Comparing the five intramax regions with respect to industries, employment and

education per 1 000 of persons aged 15–65. [A] to [D]: different symbols indicate which means of

these variables (comparing different regions in descending order from [A] to [D]) are significantly

different, Bonferroni multiple comparison test, p < 0.05. The following abbreviations are used:

WMN for weighted mean per 1 000 persons (aged 15–65), WMD for weighted median per 1 000

persons (aged 15–65) and WQ for weighted inter-quartile range per 1 000 persons (aged 15–65).

The statistics in Table 7 were weighted for the total number of households. The Western
Cape region has the highest level of annual household income, and the highest mean
number of households living in brick houses, equipped with electricity and piped water
inside the house per 1 000 households. The Free State / North West region has the highest
level of informal houses per 1 000 households. The Eastern Cape / KwaZulu-Natal region
has the lowest level of brick housing, and the lowest level of electricity and piped water
in the house per 1 000 households. The Limpopo region has the lowest level of annual
household income.
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Province (number Ann hh Brick Informal Elec– Piped water
of main places) income (R) house house tricity in house

Western WMN: 75 615 [A] 631 [A] 156 [B] 878 [A] 851 [A]
Cape region WMD: 63 850 606 53 929 931
(344) WQ: 408–116 558–773 37–217 814–984 802–948
Free State/ WMN: 30 853 [C] 572 [B] 232 [A] 747 [B] 699 [C]
North West WMD: 18 610 594 231 748 663
region (266) WQ: 13 926–28 160 465–669 43–356 638–879 585–914
Eastern Cape/ WMN: 34 123 [C] 413 [C] 106 [C] 573 [D] 458 [D]
KwaZulu–Natal WMD: 19 896 429 41 645 516
region (1282) WQ: 13 955–36 424 204–568 13–131 5 299–859 46–820
Gauteng/ WMN: 60 780 [B] 555 [B] 211 [A] 787 [B] 754 [B]
North West WMD: 29 916 558 147 853 856
region (626) WQ: 20 738–101 675 437–676 51–327 698–916 684–911
Limpopo WMN: 26 135 [C] 624 [A] 89 [C] 629 [C] 467 [D]
region WMD: 17 642 673 42 649 415
(491) WQ: 13 787–22 741 479–777 17–89 510–773 249–689
South WMN: 46 361 530 155 702 623
Africa WMD: 23 954 558 82 763 731
(3009) WQ: 16 190–56 298 411–682 23–243 581–903 384–886

Table 7: Comparing the five intramax regions with regards to household income, type of

housing and services per 1 000 of households. [A] to [D]: different symbols indicate which means of

these variables (comparing different regions in descending order from [A] to [D]) are significantly

different, Bonferroni multiple comparison test, p < 0.05. The following abbreviations are used:

WMN for weighted mean per 1 000 households, WMD for weighted median per 1 000 households

and WQ for weighted inter-quartile range per 1 000 households.

7 Conclusion

Based on journey-to-work flows extracted from Census 2001 data, the intramax procedure
was used to aggregate the 3 109 (with some minor modifications) main places in South
Africa into four or possibly five provinces. The provinces thus identified are:

• A ‘Western Cape’ province, which includes most of the current Western Cape and
some regions of the previous Northern Cape region;
• a coastal province which is the amalgamation of most regions in the Eastern Cape

and KwaZulu-Natal provinces;
• a central province consisting of most of the Free State and a small part of the North

West province;
• a combination of the Gauteng province, the remainder of the Northern Cape and

North West province; and
• a combination of the Limpopo province and the Northern parts of Mpumalanga.

It is interesting to note that provinces with relatively low commuting figures, as reflected
in Table 3, also have low employment figures, as reflected in Table 6.

Disputed areas were highlighted and intramax solutions were provided for these disputes.
These solutions are based on economic activities of people living in the areas, which might
be of interest to policy makers in future.
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The results of a recent paper on the demarcation of the socio-economic development re-
gions in the South African space economy were discussed with the purpose of applying
them to the newly formed provinces. It is clear that the Western Cape region, with a
strong core and mostly upward transitional regions also reflects high socio-development,
according to Tables 5–7. The Eastern Cape / KwaZulu-Natal region reflects three mi-
nor core regions and large downward transitional and special problem regions. This is
reflected in the fact that the socio-economic variables in Tables 5–7 clearly indicate that
few industrial activities take place (apart from manufacturing). This region also suffers
from low education, employment and income levels and poorly developed services in com-
parison with the other provinces. The development of this region poses a challenge to
the government, but it has a true potential to improve, especially given its manufacturing
base and access to harbours.

The central region, comprising of a combination of most of the Free State and parts of
the North West province is almost a perfect match. The agricultural industry in the Free
State combined with some mining activities from the regions in the North West province
ensures that this region can be economically viable. Additionally, the fact that there are
no problem regions according to the South African space economy model, indicates that
this region can be economically independent.

The last two regions — Gauteng, parts of the Northern Cape, the North West province
and a combination of Limpopo and Mpumalanga — may be too large for one province,
but the northern region has no core (the Kruger Park should be seen independently), large
problem areas and downward transitional regions, which correspond to low income, poor
education and employment levels compared to the other regions with large rural areas. It
has a good agricultural industry in place, as well as some mining activities, which might be
further explored. If this province is combined with the highly developed Gauteng region,
which lacks a significant agricultural industry, it can be a powerful region.

Based on commuting flows, the intramax method is a useful tool for demarcating regions
using daily activity systems. From a management point of view provincial/adminstrative
boundaries should take these daily activity systems into account in some form or another.
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Abstract

The two dimensional oriented on-line strip packing problem requires items to be packed, one
at a time, into a strip of fixed width and infinite height so as to minimise the total height
of the packing. The items may neither be rotated nor overlap. In this paper, ten heuristics
from the literature are considered for the special case where the items are rectangles. Six
modifications to some of these heuristics are proposed, along with two entirely new shelf
algorithms. The performances and efficiencies of all the algorithms are compared in terms of
the total packing height achieved and computation time required in each case, when applied
to 542 benchmark data sets documented in the literature.

Key words: Heuristic packing, on-line packing, shelf algorithm, strip packing.

1 Introduction

The two dimensional strip packing problem involves packing a list of items (in this case,
rectangles) into a bin (referred to as a strip) of fixed width and infinite height. The
objective is to minimise the total packing height in the strip for which rectangles do not
overlap. Each rectangle Li is specified by the pair of dimensions (h(Li), w(Li)) referring
to its height and width respectively. Ntene and Van Vuuren [22] conducted a survey on
heuristics for solving offline strip packing problems approximately. These are problems
where the entire set of rectangles to be packed is known in advance. There are, however,
applications where the entire set of rectangles to be packed is not known in advance and
problems of this nature are referred to as on-line packing problems. Applications of this
class of problems include warehouse storage [2, 3], VLSI design [14] and scheduling with
a shared resource [3, 6, 20].

In an on-line environment, rectangles are packed one at a time; rectangle Li+1 only be-
comes available once rectangle Li has been packed [2, 13, 14, 19, 20]. Another condition
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for a system to be fully on-line is that once a rectangle has been packed it may not be
moved at a later stage of the packing. The challenge in on-line packing problems is due
to the potential volatility of rectangle heights that have yet to be packed [19].

The main objective in this paper is to examine and compare the time efficiencies and per-
formances of a number of existing heuristics for on-line packing problems in the literature,
and to propose some improvements or suggest altogether new algorithmic approaches.
The paper is organised as follows. In §2 the mechanisms behind a number of existing
level algorithms for on-line packing problems are reviewed and illustrated by means of
a numerical example. In §3 a number of shelf algorithms from the literature are briefly
described and illustrated by means of an example. A number of algorithms for solving
on-line packing problems with additional constraints (approximately) are discussed and
illustrated by means of an example in §4. Then a number of possible modifications to
some of these procedures considered in §2–4 are presented in §5. Two entirely new shelf
algorithms are presented in §6 and finally all the algorithms are tested on a large set
of existing benchmark problem instances so that their performances and time-efficiencies
may be compared statistically in §7.

To illustrate the packing patterns produced by the various algorithms mentioned above,
all algorithms are applied to an example instance requiring 10 rectangles to be packed into
a strip of width 15 units. This is the same example instance used by Ortmann et al. [23]
to facilitate comparisons for offline packing algorithms. The rectangle dimensions (height,
width) for the example instance are shown in Table 1.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

(14, 5) (5, 4) (4, 9) (15, 1) (6, 11) (6, 2) (4, 6) (2, 5) (6, 10) (1, 7)

Table 1: Dimensions (h(Li), w(Li)) of rectangles L1, . . . , L10 used as example instance in §2–6.

2 Level Algorithms

The algorithms considered in this section are a slight variation on the algorithms inves-
tigated in [22], namely the next fit decreasing height (NFDH) [10], the first fit decreasing
height (FFDH) [10] and the best fit decreasing height (BFDH) [11] algorithms. Since we
are dealing with on-line packing problems, we do away with the pre-ordering condition in
each of these original algorithms.

In the next fit level (NFL) algorithm [11], rectangles are packed (one at a time and in
the order given) on the current level, left justified. The first level corresponds with the
bottom of the strip. If there is insufficient horizontal space on the current level to pack
the next rectangle, a horizontal line is drawn across the upper edge of the tallest rectangle
on the current level so as to create a new level above the current level. All levels below
the current level are never revisited.

In the first fit level (FFL) algorithm [11], rectangles are packed (one by one in the order
given) on the lowest level into which they fit both height-wise and width-wise; if a rectangle
does not fit into any existing level, then a new level is created exactly as in the NFL
algorithm and the rectangle in question is packed on that level.
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The best fit level (BFL) algorithm [11] is similar to the FFL algorithm, except that each
rectangle is placed on the lowest level (into which it fits both height-wise and width-wise)
with minimum residual horizontal space (the space between the right-most edge of the
last rectangle packed on a level and the right-hand boundary of the strip).

For our example instance in Table 1, total packing heights of 46, 45 and 42 units are
obtained by the NFL, FFL and BFL algorithms respectively, as shown in Figure 1(a)–(c).

3 Shelf algorithms

In shelf algorithms, rectangles are also packed on horizontal planes (referred to as shelves)
of fixed height as in the case of level algorithms. However, this class of algorithms differs
from the class of level algorithms in that additional space (called free space) is intentionally
left between the top-most edge of the tallest rectangle on a shelf and the position of the
next shelf so as to accommodate (to some degree) potential volatility in the heights of
rectangles yet to be packed. However, in a level algorithm, the position of a level coincides
with the top-most edge of the tallest rectangle on the previous level. The name shelf
algorithm is derived from the situation where books are packed in a stack of bookshelves
[2].

Shelf algorithms were first designed by Baker et al. [2] who modified two existing offline
heuristics, namely the NFDH and FFDH algorithms [10]. The resulting two shelf algo-
rithms are referred to as the next fit shelf (NFSr) and first fit shelf (FFSr) algorithms,
where 0 < r < 1 is a parameter, and these algorithms are described in §3.1. In these
shelf algorithms, the objective is to pack rectangles of similar heights rk+1 < h(Li) ≤ rk

on a single shelf of fixed height rk (for some integer k). The parameter r is a measure of
how much free space is allowed on each shelf to accommodate variations in the heights
of rectangles to come. A small value of r (approximately equal to zero) results in large-
sized shelves — hence allowing for rectangles with large variations in height to be packed
on the same level. On the other hand, a large value of r (approximately equal to 1) allows
rectangles of almost similar heights to be packed on one level due to the small shelf heights
created [25]. For the shelf algorithms applied to our example instance in Table 1, a value
of r = 0.6 was selected for illustrative purposes.

Coffman [12] modified the BFDH algorithm [11] to arrive at the so-called best fit shelf
(BFSr) algorithm, also described in §3.1, which differs from the NFSr and FFSr algorithms
in a manner analogous to the difference between the NFL, FFL and BFL level algorithms.
As Csirik and Woeginger [14] mention, shelf algorithms are based on one dimensional bin
packing procedures: after determining an appropriate shelf on which a rectangle may be
packed, so that it fits height-wise, the problem then becomes the one dimensional bin
packing problem of determining amongst which of the shelves of appropriate height the
rectangle should be packed (during this last stage only one dimension, namely width, is of
interest, because it has been determined that height-wise the rectangle will fit). It is on
this basis that another shelf algorithm, known as the harmonic shelf (HSMr) algorithm is
reviewed in §3.2.
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3.1 The Next Fit Shelf, First Fit Shelf and Best Fit Shelf algorithms

The next fit shelf (NFSr) algorithm [2] with parameter 0 < r < 1 is a natural modification
of the NFDH algorithm [10], the difference being that the rectangles are not sorted in
the NFSr algorithm; they are merely packed in the order given. In this algorithm, a
value of r is initially selected for the entire packing. Before packing each rectangle, the
smallest integer k is computed for which rk+1 < h(Li) ≤ rk; here rk is referred to as the
appropriate height of the shelf to pack rectangle Li. A rectangle is packed on the highest
shelf of appropriate height. If a shelf of appropriate height for rectangle Li does not exist,
a new shelf of appropriate height is created above the top-most shelf and rectangle Li is
packed there, left justified. If a shelf of appropriate height exists, but there is insufficient
space to accommodate the rectangle, this shelf is closed off and a new shelf of the same
(appropriate) height is created above the top-most level.

The first fit shelf (FFSr) algorithm [2] with parameter 0 < r < 1 is a modification of the
FFDH algorithm [10] and it is similar to the NFSr algorithm, except that a rectangle is
placed left justified on the lowest shelf of appropriate height instead of on the highest shelf
of appropriate height.

The best fit shelf (BFSr) algorithm [12] with parameter 0 < r < 1 is a modification of the
best fit decreasing height (BFDH) algorithm [11]. The difference between the FFSr and
BFSr algorithms is that once the parameter r has been selected and different values of
k determined, the latter procedure packs a rectangle on the lowest shelf of appropriate
height with minimum residual horizontal space.

As shown in Figure 1(d), a total packing height of 45.27 units is obtained via all three of
the NFS0.6, FFS0.6 and BFS0.6 algorithms for our example instance in Table 1.

3.2 The Harmonic Shelf algorithm

Csirik and Woeginger [14] combined a one dimensional bin packing algorithm, called the
harmonicM algorithm and proposed by Lee and Lee [19], with the principles of shelf
algorithms. The harmonicM algorithm is used to partition the interval (0,1] non-uniformly
into M intervals I1, . . . , IM , where Ip = (1/(p + 1), 1/p], 1 ≤ p < M and IM = (0, 1/M ].
A reasonable value of M is considered to be in the range 3 ≤ M ≤ 12. This harmonic
partition allows a rectangle to be classified according to the interval into which it fits
width-wise.

The harmonic shelf (HSMr) algorithm does not only aim to pack rectangles of similar
heights on the same shelf; over and above this objective the rectangles should also have
similar widths. Before rectangle Li is packed, two decisions have to be made. The first
decision is to determine the appropriate shelves onto which a rectangle may be packed in
terms of its height by selecting a value for r and computing a value of k for which rk+1 <
h(Li) ≤ rk. The second decision is to determine the interval Ip into which the rectangle
belongs width-wise, by computing the value of p for which 1/(p + 1) < w(Li) < 1/p. Only
rectangles belonging to Ip, with rk as the appropriate height may be packed onto such a
shelf. If no shelf of appropriate height exists or if there is insufficient horizontal space on
all shelves of appropriate height, then a new shelf of appropriate height is created above
the current top-most shelf. In our example instance in Table 1, a total packing height of



162 N Ntene & JH van Vuuren

77.60 units is obtained via the HS120.6 algorithm, as depicted in Figure 1(e). Values of
M = 12 and r = 0.6 were used in this example for illustration purposes.

4 Packings observing the tetris constraint

In all the algorithms reviewed thus far, it was assumed that a rectangle may be packed
onto any shelf inside the strip as long as it fits. However, there are applications, such as
packing boxes from the back of a delivery vehicle, where rectangles have to be transferred
through all succeeding levels before being packed (for example, in order to reach the lower
levels of the strip which model the front of the vehicle). This constraint is also found in
the game Tetris where rectangles drop from the top of the strip to reach lower levels and
the player has to avoid being blocked by rectangles already packed in other levels. Three
existing algorithms in the literature, taking this additional constraint into consideration,
are reviewed in this section.

4.1 The AzarY algorithm

This algorithm is from a paper by Azar and Epstein [1]. In the AzarY algorithm, the
rectangle widths are assumed to be in the range (0,1] and the strip has width 1, without
loss of generality. However, there is no restriction on the rectangle heights. The AzarY

algorithm partitions the strip into horizontal levels by means of a real threshold constant
0 < Y < 1

2 . Rectangles of particular heights (2j−1 < h(Li) ≤ 2j) and widths (2−x−1 <
w(Li) ≤ 2−x) are packed on the same level, referred to as an (x, j) level (where j ∈ Z and
x ∈ N).

A rectangle whose width is at least Y is referred to as a buffer. When the next rectangle to
be packed arrives, it is classified either as a buffer or non-buffer, depending on its width. If
it is a buffer, a new level, whose height is equal to the height of the buffer, is created above
the top-most level and the rectangle is packed there, left justified. This means that buffers
are packed on their own within levels. If the rectangle is a non-buffer, it is classified as
an (x, j) rectangle, for some j ∈ Z and some x ∈ N. The first non-buffer rectangle packed
on a level determines the height of the level as 2j and this level becomes an (x, j) level.
If a rectangle fits on an (x, j) level and it can reach such a level without being blocked by
any of the buffers, then it is placed on that level. However, if no such level exists, if the
rectangle does not fit on a particular (x, j) level or if the rectangle is blocked, then a new
level of height 2j is created above the top-most level. For our example instance in Table 1,
a total packing height of 66 units is obtained via the Azar0.25 algorithm, as depicted in
Figure 1(f), where the value of Y = 0.25 was chosen for illustrative purposes.

4.2 The Bi-level Next Fit algorithm

The Bi-level next fit (BiNFL) algorithm [9] is a modification of the NFL algorithm de-
scribed in §2. As the name suggests, the algorithm packs two levels at a time, referred to
as the lower and upper levels. The height of the lower level is determined by the height of
the tallest rectangle packed on it.
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The first rectangle Li to be packed on a bi-level is placed on the lower level, left justified.
If the next rectangle Li+1 to be packed fits on the lower level, it is placed there, right
justified. All other rectangles that follow and fit on the lower level are placed there, right
justified, next to the previous rectangle packed. If there is not enough room for a rectangle
to be packed on the lower level, packing proceeds on the upper level. A horizontal line is
drawn along the top-most edge of the tallest rectangle on the lower level and this becomes
the lower boundary of the upper level.

If, on the upper level, rectangle Li+1 is the first rectangle to be packed (because it failed to
fit on the lower level), it is packed left justified on top of Li since it is the only rectangle on
the lower level. Subsequent rectangles are packed left justified on this level provided there
is sufficient space (see Figure 2(a)). If, on the other hand, Li+2 is the first rectangle to
be packed on the upper level, it is packed above the shorter of Li and Li+1 (because these
are the only two rectangles on the lower level), justified against the same strip boundary
as the shorter of rectangles Li and Li+1; this scenario is depicted in Figures 2(b) and (c).
If there are more than two rectangles on the lower level, the first rectangle packed on the
upper level is packed above the shorter of the first left justified or the first of the right
justified rectangles on the lower level. If a rectangle does not fit on the upper level, a new
bi-level is created above the top-most level and similar steps are carried out as defined for
the lower and upper levels until all rectangles are packed.

A total packing height of 46 units is obtained for our example instance in Table 1, as
shown in Figure 1(g), with the lower and upper levels within each bi-level separated by
dashed lines.

On-line Strip Packing 7

justified rectangles on the lower level. If a rectangle does not fit on the upper level, a new
bi-level is created above the top-most level and similar steps are carried out as defined for
the lower and upper levels until all rectangles are packed.

A total packing height of 62 units is obtained for our example instance in Table 1, as
shown in Figure 2(e), with the lower and upper levels within each bi-level separated by
dashed lines.
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Figure 3: (a)–(c) Examples of patterns resulting from a BiNFL packing. (d) In the CA algorithm

the second rectangle packed on the upper level is right justified provided only one rectangle is

packed on the lower level. Ul and Ll represent the lower boundaries of the upper and lower levels

respectively.

4.3 The Compression algorithm

The compression algorithm (CA) [9] is an extension of the BiNFL algorithm. It exploits
certain patterns (when only one or two rectangles are packed on the lower level) that
result from a BiNFL packing. In the CA algorithm, packing on the lower level proceeds
in a manner similar to a BiNFL packing. However, if rectangle Li (i ≥ 3) is the first
rectangle to be packed on the upper level, it is justified according to the shorter of the first
left justified or first right justified rectangles on the lower level, and it is slid down onto
the lower level provided there is sufficient space (see Figures 3(a) and (b)). If rectangle
Li (i ≥ 3) is the second rectangle to be packed (i.e. if there is one rectangle on each
level, each of them left justified), it is right justified and if there is sufficient room on the
lower level, this rectangle is slid down onto the lower level. Subsequent rectangles that fit
on the lower level may also be shifted next to previously compressed rectangles. Packing
continues on the upper level as in the BiNFL algorithm for rectangles that may not be
slid down. A rectangle that fails to fit on the upper level is placed in a new bi-level that is
created above the top-most level and previous bi-levels are never revisited. In our example
instance in Table 1, a total packing height of 62 units is obtained via the CA algorithm,
as shown in Figure 2(f).

5 Proposed Modifications

A number of modifications to some of the algorithms reviewed in §2–4 are proposed in
this section.

Figure 2: (a)–(c) Examples of patterns resulting from a BiNFL packing. (d) In the CA

algorithm the second rectangle packed on the upper level is right justified provided only one

rectangle is packed on the lower level. Ul and Ll represent the lower boundaries of the upper and

lower levels respectively.

4.3 The Compression algorithm

The compression algorithm (CA) [9] is an extension of the BiNFL algorithm. It exploits
certain patterns (when only one or two rectangles are packed on the lower level) that
result from a BiNFL packing. In the CA algorithm, packing on the lower level proceeds
in a manner similar to a BiNFL packing. However, if rectangle Li (i ≥ 3) is the first
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rectangle to be packed on the upper level, it is justified according to the shorter of the first
left justified or first right justified rectangles on the lower level, and it is slid down onto
the lower level provided there is sufficient space (see Figures 2(b) and (c)) — this process
is called compression. If rectangle Li (i ≥ 3) is the second rectangle to be packed (i.e. if
there is one rectangle on each level, each of them left justified), it is right justified and
if there is sufficient room on the lower level, this rectangle is compressed down onto the
lower level (see Figure 2(d)). Subsequent rectangles that fit on the lower level may also be
shifted next to previously compressed rectangles. Packing continues on the upper level as
in the BiNFL algorithm for rectangles that may not be compressed down. A rectangle that
fails to fit on the upper level is placed in a new bi-level that is created above the top-most
level and previous bi-levels are never revisited. In our example instance in Table 1, a total
packing height of 46 units is obtained via the CA algorithm, as shown in Figure 1(h).

5 Proposed Modifications

A number of modifications to some of the algorithms reviewed in §2–4 are proposed in
this section.

5.1 The Modified Next Fit, First Fit and Best Fit Level algorithms

As the name suggests, the modified next fit level (MNFL) algorithm is a newly proposed
variation on the NFL algorithm described in §2. In the MNFL algorithm, the first rectangle
packed on a level determines the height of that level. If a rectangle is encountered that
does not fit onto the current level, that level is closed off in both these algorithms and a
new current level is created above it. The NFL algorithm is expected to perform poorly if
the rectangles are presented in an order in which they tend to increase in height. However,
if the rectangles are presented in an order in which they tend to decrease in height, then
the algorithm is expected to perform well. The MNFL algorithm differs from the NFL
algorithm in that in the latter procedure, level heights are determined by the tallest
rectangle packed on a level, while in the former procedure, level heights are determined
by the first rectangle packed on the level. For our example instance in Table 1, a total
packing height of 44 units is obtained via the MNFL algorithm, as shown in Figure 5(a).

In the modified first fit level (MFFL) algorithm, the height of each level corresponds to the
height of the first rectangle packed on that level. The MFFL and FFL algorithms differ
in a manner analogous to the difference between the MNFL and NFL algorithms. A total
packing height of 41 units is obtained via the MFFL algorithm for our example instance
in Table 1, as illustrated in Figure 5(b).

The modified best fit level (MBFL) algorithm is similar to the BFL algorithm, except that in
the BFL algorithm the height of a level is determined by the height of the tallest rectangle
packed on the level, while in the MBFL algorithm the height of a level is determined by
the first rectangle packed on the level. A total packing height of 40 units is obtained via
the MBFL algorithm for our example instance in Table 1, as illustrated in Figure 5(c).
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5.2 The Compression Part Fit algorithm

Downey [15] mentions that the CA algorithm (described in §4.3) is far from optimal,
because it only takes a few patterns into consideration (where it may be possible to
compress rectangles from the upper to the lower level). The compression part fit (CPF)
algorithm is proposed to accommodate more patterns occurring within a bi-level. An idea
originally introduced by Burke et al. [7] of using a linear array whose size equals the width
of the strip is employed. Each element of the array is used to store the height of rectangles
packed at that coordinate of the array. However, the drawback of using such an array is
that it requires the dimensions of the rectangles and the strip to be integers. Two versions
of the CPF algorithm are proposed for use when dealing with floating point data. The
first version involves rounding the dimensions (up or down) to the nearest integer, which
may not necessarily represent a true packing, but it maintains the characteristics of the
data. On the other hand, the second version wastes space by rounding up the dimensions
to the nearest integer, thereby creating a feasible packing for the original rectangles.
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Figure 3: Examples of how a linear array is populated when a new bi-level is created. (a) The

upper linear array containing zeros represents a new bi-level with no rectangles packed. The lower

linear array stores the height of the rectangle packed on the lower level from coordinates 0 to 5.

(b) The upper linear array stores the heights of the first and second rectangles packed. The lower

linear array stores height of the third rectangle and the vertical space is indicated by the dashed

arrows at certain coordinates of the linear array. (c) The fifth rectangle has been compressed down

onto the lower level by the CFF algorithm. The horizontal space is indicated by the horizontal

dotted arrow.

Bi-level Stage. Packing on the lower level proceeds exactly as in the BiNFL algorithm,
except that a linear array is used to represent the various heights of rectangles packed on
the lower level only. Before any packing takes place on a bi-level, the linear array contains
only zeros. On the upper level, the CPF algorithm differs from the BiNFL algorithm
in that rectangles are always packed left justified. A vertical space on the lower level is
defined as the space between the lower boundary of the upper level and the upper edge of
rectangles packed on the lower level (or sometimes the lower boundary of the lower level)
at each coordinate of the linear array. Three vertical spaces of heights 2, 4 and 3 units are
indicated by dashed vertical arrows in Figure 3(b) at coordinates 1, 6 and 8 respectively. A
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horizontal space on the lower level, on the other hand, is defined as the space between the
left-hand edge of a rectangle being considered for compression downwards and the nearest
left-hand edge of a rectangle packed on the lower level at a height given in the linear array
at the coordinate corresponding to the left-hand edge of the rectangle. A horizontal space
of 7 units is shown in Figure 3(c) by the horizontal dotted arrows, computed from the
coordinates 2 to 8 at a height of 3 (given in the lower linear array, at coordinate 2 which
corresponds to the left-hand edge of the sixth rectangle).

Compression Stage. For a rectangle to be compressed down onto the lower level, two
conditions must be satisfied:

1. The height of the rectangle must exceed the height of the vertical space. The width
of a rectangle may be covered by a single value (Figure 4(a)) or different values of the
vertical space (Figure 4(b)). If more than one value of the vertical space covers the
entire width of the rectangle, the height of the rectangle must exceed the smallest
value of the vertical spaces.

2. The width of the rectangle must not exceed the width of the horizontal space.

Provided that the two conditions above are satisfied, the rectangle in question is com-
pressed down so that its bottom edge rests on the top edge of a rectangle on the lower
level. The algorithm is expected to perform better if the tallest rectangle on the upper level
may be compressed onto the lower level. A total packing height of 35 units is obtained
when the CPF algorithm is applied to our example instance in Table 1, as shown in Figure
6(a).
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(a) (b)

Figure 4: Example of how the width of a rectangle is covered by: (a) one value of vertical

space, or (b) more than one value of vertical space.

5.3 The Compression Full Fit algorithm

The steps of the compression full fit (CFF) algorithm and the CPF algorithm are similar
in all respects, except for condition 1 of the compression stage. In the CFF algorithm,
a rectangle is compressed down onto the lower level provided its height is less than or
equal to the vertical space covering the entire width of the rectangle. The advantage of
doing this is that the residual vertical space (the vertical space remaining after a rectangle
is compressed down) may be considered again when packing the next rectangle. Before
rectangle 5 was compressed down in Figure 3(c), there were vertical and horizontal spaces
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Figure 5: Packings produced by the modified algorithms described in §5.1 for the example

instance of the strip packing problem in Table 1. Rectangle Li is denoted by i in the figure, for all

i ∈ {1, . . . , 10}.

of 2 and 7 units respectively at coordinate 2. After rectangle 5 was compressed down onto
the lower level, a vertical space of 1 unit resulted. If rectangle 6 had a height of 1 unit,
then it would be compressed down onto the lower level. The idea in the CFF algorithm is
to increase the probability of packing more rectangles on the upper level by utilising the
space remaining after compression of a rectangle onto the lower level. Once a rectangle is
compressed onto the lower level, the space it was supposed to occupy on the upper level
may be used to pack other rectangles. The algorithm is expected to perform better if the
tallest rectangle on the upper level may be compressed onto the lower level and if more
rectangles fit onto the upper level. The latter implies an increased probability of creating
fewer levels, hence possibly leading to a decrease in the overall strip height. When the
CFF algorithm is applied to our example instance in Table 1, a total packing height of 46
units is obtained, as illustrated in Figure 6(b).

5.4 The Compression Combo algorithm

The compression combo (CC) algorithm is a combination of the first conditions of the
compression stages of the CPF and CFF algorithms. In the CC algorithm, any rectangle
may be compressed down onto the lower level regardless of whether it fits fully or partially
onto the lower level, as long as the second condition is satisfied, namely that the width of
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the rectangle to be compressed down is at most the width of the horizontal space. When
the CC algorithm is applied to our example instance in Table 1, a total packing height of
35 units is again obtained, as illustrated in Figure 6(a).

6 Two New Shelf Algorithms

In this section two new shelf algorithms are suggested. The algorithms highlight two
different methods of creating free space in between shelves, based on the packing history,
so as to cater for the volatility in heights of rectangles still to be packed.

6.1 The Shelf Deviation algorithm

In the newly proposed shelf deviation (SDev) algorithm the notion of a shelf type refers to
a collection of shelves of equal height and the objective is to increase these fixed heights
as more types are created. A type1 shelf only accommodates rectangles of height 0 <
h(Li) ≤ h(L1) where L1 is the first rectangle to be packed (i.e. the height of the first
rectangle determines the height of the first shelf type). A rectangle whose height fits
within this range is referred to as a type1 rectangle. The height of a subsequent shelf of
typej (j ≥ 2) equals the height of the first rectangle packed on the shelf together with a
certain proportion, referred to as the shelf height increase proportion. This proportion is
computed as the standard deviation (stdev) of the rectangle heights already packed on all
shelves, i.e. h(typej) = h(Li+1) + stdev(h(L1), . . . , h(Li+1)). In general, typej shelves can
accommodate rectangles of height h(typej−1) < h(Li) ≤ h(typej), where j ≥ 2.

Rectangles are classified according to the shelf type to which they belong and are packed
onto the lowest shelf of that type. New shelf types are created above the top-most shelf
each time the next rectangle has a height exceeding the height of all existing shelf types.
It is not necessary for two consecutive shelves to be of the same type — the shelf types
may be interspersed, as long as rectangles are placed onto appropriate shelf types. If there
is insufficient horizontal space to accommodate a rectangle, a new shelf of the appropriate
type is created above the top-most shelf for that rectangle. In our example instance in
Table 1, a total strip height of 90.80 units is obtained via the SDev algorithm, as shown in
Figure 6(c). A pseudocode listing of the steps of this algorithm is given in the appendix.

6.2 The Shelf Difference algorithm

The shelf difference (SDiff) algorithm differs from the SDev algorithm only in the way
the shelf height increase proportion is computed. In the SDiff algorithm, a type1 shelf
is still determined by the height of the first rectangle packed. For a subsequent shelf
of type typej (j ≥ 2), instead of computing the standard deviation, the shelf height
increase is taken as the difference between the height of the rectangle to be packed and
the previous shelf height added to the height of the previous shelf type, i.e. h(typej) =
(h(Li+1)−h(typej−1)) + h(Li+1). A total packing height of 86 units is obtained when the
SDiff algorithm is applied to our example instance in Table 1, as shown in Figure 6(d). A
pseudocode listing of the steps of this algorithm is also given in the appendix.
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Figure 6: Packings produced by the algorithms described in §5.2 –6.2 for the example instance

of the strip packing problem in Table 1. Rectangle Li is denoted by i in the figure, for all i ∈
{1, . . . , 10}.
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7 Comparison of algorithmic results

The efficiencies of and solution qualities obtained by the algorithms presented in §2–6 were
compared by applying them to the 542 benchmark instances of Beasley [4, 5], Burke et
al. [7], Christofides and Whitlock [8], Hopper and Turton [16, 17] and Mumford-Valenzuela
[21]. For a full description on how these benchmark data sets were generated, the reader is
referred to [22]. Each algorithm’s performance was measured by means of the mean packing
height obtained as well as by the mean execution time, computed over all benchmark data
sets. Statistical tools used in the comparison of each algorithm’s performance include the
student’s t-test, ANalyses Of VAriance (ANOVA) and the chi-squared test. All these tests
were carried out at a 5% level of significance. The t-test and ANOVA were used to compare
the mean packing heights obtained by the algorithms over the 542 instances, while the
chi-squared test was used to compare the frequencies with which the various algorithms
obtained the smallest packing height and to determine whether, statistically, there were
any significant differences between these frequencies. Where the results from the ANOVA
indicated significant differences, the method of Least Significance Difference (LSD) was
employed to determine between which algorithms these differences arose.

While testing the algorithms, it was observed that in most of the 542 data sets, the initial
rectangles have larger heights than the rectangles towards the ends of the packing lists.
Hence each algorithm was tested three times on each data set, by changing the order in
which rectangles enter the system from the data set list—either in the normal or forward
order, in the reverse order and in a random order.

7.1 Level algorithms

The level algorithms from the literature for online packing problems described in §2 were
compared with the suggested modifications in §5. The results shown in the first section
of Figure 7 indicate that the mean packing height obtained in the forward traversal order
of the data sets is smaller than in the reverse order. This is because in the forward order,
packing typically begins with rectangles of greater height and for those algorithms that
allow revisiting of existing levels, the smaller rectangles may be inserted on any available
level with sufficient space—thus decreasing the probability of creating new levels. An
ANOVA was carried out separately for each order and in all instances the results revealed
that there are significant differences between the mean packing heights obtained. In all
three traversal orders, the newly suggested MFFL algorithm obtained the smallest mean
packing height, although the LSD indicated that there were no significant differences be-
tween the mean packing heights obtained by the MFFL, BFL, FFL and MBFL algorithms
(indicated “5” by entries in Table 2). There were significant differences between the mean
packing heights obtained by algorithms that do not revisit existing levels (NFL, MNFL,
BiNFL) and those allowing existing levels to be revisited (FFL, BFL, MFFL, MBFL), as
expected.

In terms of the algorithmic frequencies of obtaining the smallest packing height (which
may be seen in the first section of Figure 9) the results of the chi-squared test revealed
that there were significant differences between those frequencies achieved by the various
algorithms. The MFFL algorithm has the largest frequency in all traversal orders—hence
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this is statistically the best algorithm within this class of level algorithms, at a 5% level
of significance.

Further tests were also carried out to determine whether the data set traversal order
plays a significant role in each algorithm’s performance measured. The results shown
in Table 4 indicate that, in terms of the mean packing height obtained, order does not
play a significant role in the NFL and BiNFL algorithms. However, when it comes to a
frequency analysis, it is only for the MNFL algorithm that traversal order is unimportant
(see Table 4).

The class of FFL, MFFL, BFL and MBFL algorithms considered to have achieved better
performances in terms of smallest mean packing height obtained, have correspondingly
longer execution times than the poorer performing class of NFL, MNFL and BiNFL algo-
rithms (see Table 4). This is an expected result, because in the former class of algorithms
the strip has to be searched from the bottom upwards for a level with sufficient space
and this is time consuming — particularly for a large number of levels. Ideally the best
performing algorithm should achieve the smallest packing height in the quickest time.
However, the results indicate that a trade-off exists between algorithms that yield better
solutions, but which take longer to execute, and algorithms yielding solutions of lesser
quality, but which exhibit faster execution times.

Another investigation was carried out in terms of the aspect ratios of the 1 626 data sets (a
combination of all three traversal orders for all 542 benchmark data sets). From the 1 626
instances, only instances where an algorithm obtained the smallest packing height were
selected and the standard deviation (stdevAR) and mean (meanAR) of the aspect ratios of
the rectangles in these instances were computed. The fraction stdevAR/meanAR, known
as the coefficient of variation (CV), was used to reflect the variation of rectangle aspect
ratios relative to the mean. The numbers of data sets for which each algorithm obtained
the smallest height associated with values of the CV are shown in Figure 8. If, for instance,
a value of 3 is selected for the CV, it may be seen in the figure that the BFL, MBFL, FFL
and MFFL algorithms were all able to obtain the smallest packing height, on average. Of
these algorithms, the MFFL algorithm obtained the smallest packing height for the largest
number of data sets (825).

An interesting question is the following: Given a data set with a known CV value, which
level algorithm should be recommended to give the best solution, on expectation? To
answer this question, the CV values for test instances where each algorithm obtained the
smallest height were analysed. The objective was to determine a threshold CV value
beyond which significant differences occur between frequencies in obtaining the smallest
packing height by each level algorithm and below which any of the level algorithms may be
used. This was achieved by starting with the smallest value and iteratively determining the
frequency with which each level algorithm obtained the smallest packing height for that
particular CV value. At each iteration, before the CV value was increased, a chi-squared
test was performed to determine whether there were any significant differences between
the frequencies obtained by each level algorithm. As the value of CV was increased, a
point was reached where a slight increment results in significant differences between the
frequencies obtained by each level algorithm. We call such a point the threshold CV value,
and this value was found to be 0.438 in the case of level algorithms. This means for data
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Figure 8: Aspect ratio analysis for level algorithms: a – MNFL, b – NFL, c – BiNFL, d –

MBFL, e – BFL, f – FFL and g – MFFL.

sets with CV values below the threshold, any of the algorithms may be used, but for values
greater than the threshold, the MFFL algorithm is recommended.

7.2 Shelf algorithms

When comparing the shelf algorithms, the algorithms discussed in §3 pose a problem,
because they depend on a parameter 0 < r < 1. Over and above this, the HSMr algorithms
also depend on the value of a parameter 3 ≤ M ≤ 12. Hence each of the algorithms
was implemented with the representative parameter values r = 0.2, 0.5, 0.8 and M =
4, 8, 12 resulting in six classes of the algorithms (NFSr, FFSr, BFSr, HS4r , HS8r , HS12r).
An ANOVA was performed on each of these six classes for the three different traversal
orders and the results are shown in Table 3. In the NFSr class, no significant differences
were observed between the NFS0.5 and NFS0.8 algorithms. However, the NFS0.5 algorithm
was selected for further comparisons since it achieved a smaller mean packing height over
all benchmark sets. For algorithmic instances whose mean heights showed no significant
difference, a selection of algorithms to be used for the purposes of further comparison was
simply based on the algorithmic instance achieving a smaller mean packing height. Hence
the following algorithms were selected in all traversal orders: FFS0.5, BFS0.5, HS40.8 , HS80.5

and HS120.5 .

The selected shelf algorithms and the two new shelf algorithms were compared in terms
of the mean packing height obtained and the results are shown in the second section of
Figure 7. The results indicate that, in terms of the mean packing height obtained, the
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NFS0.5, FFS0.5 and BFS0.5 algorithms achieved the best performance, followed by the new
SDev and SDiff algorithms.

Considering the algorithms individually and comparing the mean packing heights obtained
per traversal order, results from the ANOVA indicated that there were no significant
differences, except with the SDev and SDiff algorithms. The results shown in Table 4
indicate that the two algorithms perform better in the reverse order. This was an expected
result, because the SDev and SDiff algorithms rely on the first rectangle packed and ideally
this rectangle must have the smallest height possible. As mentioned, the majority of
the benchmark data sets in reverse order start with rectangles of relatively small height,
hence leading to small increments of each shelf height with an overall smaller total packing
height. The mean packing heights obtained by the NFS0.5, FFS0.5 and BFS0.5 algorithms
were not expected to be similar, because a rectangle is classified according to its height,
but depending on the widths of the rectangles that are packed first, it may sometimes
be necessary to create an additional shelf of appropriate height due to insufficient space
on existing shelves of appropriate height. The HS algorithmic instances, on other hand,
were expected to yield similar mean packing heights regardless of the order, because the
algorithm takes both height and width of the rectangles into consideration before packing
on a level.

The results of the chi-squared test indicated that only the HS algorithmic instances display
no significant difference with respect to the frequency with which they achieve the smallest
packing heights, as illustrated in Table 4 (columns 14–16). The shelf algorithms with
parameter r achieve the largest frequency, followed by the SDev and SDiff algorithms
(see Figure 9). Based on the results in Table 4 the SDev and SDiff algorithms require
shorter execution times than the known shelf algorithms from the literature. A threshold
value of 0.456 was computed for the class of shelf algorithms. The FFS0.5 algorithm
is recommended for use when dealing with data sets with a CV value larger than this
threshold.

7.3 Special case algorithms obeying the tetris constraint

Because the AzarY algorithm depends on the threshold constant 0 < Y < 1/2, three rep-
resentative values Y = 0.2, 0.25, 0.3 were selected in order to determine only one value that
may be used for further comparisons with other algorithms obeying the tetris constraint.
An ANOVA was carried out and the results revealed that there were no significant dif-
ferences between the mean packing heights obtained by these three algorithmic instances.
The Azar0.25 algorithm was selected, because upon carrying out a chi-squared test, sig-
nificant differences were found between the frequencies in obtaining the smallest packing
heights, showing that the Azar0.25 algorithm achieved the largest frequency (297).

The results shown in the third section of Figure 7 indicate that the newly proposed CC
algorithm obtained the smallest mean packing height in the class of algorithms obeying
the tetris constraint. An ANOVA was carried out separately for each algorithm to decide
whether the traversal order in which rectangles enter the system affects the performance of
an algorithm. The results shown in Table 4 indicate that there are no significant differences
between mean packing heights obtained per traversal order by each algorithm.
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Figure 10: Aspect ratio analysis for shelf algorithms: a – HS80.5 , b – HS120.5 , c – HS40.8 , d –

SDiff, e – SDev, f – NFS0.5, g – FFS0.5 and h – BFS0.5.

Comparing the frequencies of obtaining the smallest packing height separately for each
algorithm, the results of the chi-squared test (see Table 4) showed that only the CPF
algorithm is affected by the order in which rectangles enter the system, achieving the
largest frequency in the reverse traversal order.

When comparing all the algorithms obeying the tetris constraint, the results of the ANOVA
indicate that there are significant differences in terms of their mean packing heights ob-
tained by the various algorithms over all 542 test instances. The results from the LSD
(see Table 2) suggest that the newly proposed CC and CFF algorithms are the best per-
forming algorithms with no distinguishable difference between the mean packing heights
obtained. However, in terms of the frequency of obtaining the smallest packing height, the
two algorithms are distinguishable with the CC algorithm achieving the largest frequency,
as may be seen in the results of the chi-squared test.

A CV threshold value of 0.443 was computed, implying that for data sets with CV values
smaller than the threshold, any of the special case algorithms may be used. However, for
CV values larger than the threshold, the CC algorithm is recommended.

8 Final Remarks

We have investigated a number of on-line algorithms from the literature and classified
them into the three classes of level, shelf and special case algorithms. For each class, we
were able to find a threshold value for the coefficient of variation (CV) such that, given
a data set with CV value above this threshold, certain heuristics are recommended above
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Figure 11: Aspect ratio analysis for special case algorithms: a – BiNFL, b – NFL,

c – CCF, d – CA, e – CPF and f – CC.

others. In particular, for level (resp. shelf) algorithms, data sets with CV values beyond
0.438 (resp. 0.456), the MFFL (resp. FFS0.5) algorithm is recommended. For special case
algorithms obeying the Tetris constraint, the CC algorithm is recommended for CV values
beyond a threshold value of 0.443.

Two new shelf algorithms (SDev and SDiff) were introduced with an entirely different
way of generating additional space within shelves. Instead of using a parameter value (as
in some of the classical shelf algorithms from the literature), the new algorithms use the
history of the rectangles packed to determine how much free space to create. In the SDev
algorithm, the standard deviation of the heights of the rectangles already packed is used
while in the SDiff algorithm, the difference in height between the previous shelf and the
rectangle to be packed is used. The advantage of the new algorithms is that they do not
rely on the selection of any parameter value which, if badly chosen, may lead to poor
performance of the algorithm. The new algorithms achieve a better performance than the
HSMr algorithm and can even perform better than the NFSr, FFSr and BFSr algorithms
for certain values of the parameter r.

Three modifications (CPF, CFF and CC algorithms) to the CA algorithm [9] have also
been proposed, which take more patterns into consideration. When tested on benchmark
data sets, the CC algorithm obtained the smallest packing height with the highest fre-
quency.

Finally, it is worth mentioning that in terms of execution time, all algorithms were able
to provide a solution to any benchmark instance within 1 second on a 2.00 GHz processor
with 224 MB of RAM.
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Appendix

Algorithm 1: Shelf Deviation and Shelf Difference algorithms
Input: Dimensions of the rectangles 〈w(Li), h(Li)〉 and the strip width W .
Output: The height H of the packing obtained in the strip.

1: h(type0,1)← 0, h(type1,1)← h(L1), H ← h(type1,1)
2: w(type1,1)←W − w(L1)
3: i← 1, j ← 1, k ← 1, NumTypes← 1, NumShelfType1 ← 1
4: while there is a rectangle to be packed do
5: i← i + 1 (going to the next rectangle)
6: while j ≤ NumTypes Or rectangle is not packed do
7: k ← 1
8: if h(typej−1,k) < h(Li) ≥ h(typej,k) then
9: while k ≤ NumTypesj do

10: if w(typej,k) ≥ w(Li) then
11: pack rectangle
12: else {w(typej,k) < w(Li)}
13: k ← k + 1 (move on to the next shelf of the same type)
14: end if
15: end while
16: if k > NumShelfTypej then
17: NumShelfTypej ← NumShelfTypej +1 (increase the number of shelves

of this particular type)
18: w(typej,k) = W − w(Li)
19: H ← H + h(typej,k)
20: end if
21: else {h(typej−1,k) ≥ h(Li) or h(Li) < h(typej,k)}
22: j ← j + 1 (move on to the next type)
23: end if
24: end while
25: if j > NumTypes then
26: create a new shelf type
27: NumTypes← NumTypes + 1, k ← 1
28: proportion← stdev(h(L1), . . . , h(Li)) SDev algorithm
29: proportion← (h(Li)− h(typej−1,k)) SDiff algorithm
30: h(typej,k)← proportion + h(Li)
31: H ← H + h(typej,k)
32: end if
33: end while
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Abstract

The study of spanning trees and Steiner trees arises naturally in applications, such as in the
design of integrated circuit boards, communication networks, power networks and pipelines
of minimum cost. In such applications the Steiner ratio is an indication of how badly a
minimum spanning tree performs compared to a Steiner minimal tree. In this paper a short
proof is presented for the Steiner ratio for points on a triangular lattice in the Euclidean
plane. A Steiner tree in two dimensions is “lifted” to become a rectilinear tree in three
dimensions, where it is altered. The rectilinear tree is then projected back into the plane
and the result readily follows. A short note at the end of the paper compares our three-
dimensional rectilinear trees to “impossible objects” such as Escher’s “Waterfall.”

Key words: Spanning tree, Steiner tree, Steiner ratio, rectilinear Steiner tree, hexagonal Steiner tree,

equilateral triangular lattice, Escher.

1 Introduction

Let V be a finite, non-empty set of points in the real space Rd. Let an arc be a finite
union of straight line segments in Rd which is homeomorphic to the closed unit interval
[0, 1]. Let E be a finite set of arcs such that both endpoints of each arc are elements of
V . The set of vertices V together with the set of edges E are called a topological graph
(which naturally defines a graph) in general, and a spanning tree of V if it is furthermore
connected and acyclic. If c is a vector in Rd and G is a topological graph in Rd, then the
topological graph G+ c = {x+ c : x ∈ G} is called a translate of G. A Steiner tree of V is
a spanning tree of some finite vertex set V ∪ S in Rd where all vertices in S have degree
at least 3. The vertices in V are called terminals and those in S are called Steiner points.

The length ‖T‖ of a tree T is defined as the total length of all its segments. A minimum
spanning tree (MST) of V is a spanning tree of V of smallest length. A Steiner minimal
tree (SMT) of V is a Steiner tree of V of smallest length. To see that a SMT exists, note
that a Steiner tree with n terminals and m Steiner points has n + m − 1 edges. Since
terminals have degree at least 1 and Steiner points have degree at least 3, there are at least
n/2+3m/2 edges, and thus n+m−1 ≥ n/2+3m/2. It follows that there are at most n−2
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Steiner points, and thus a finite number of possible graph structures for the Steiner trees
of V . A shortest Steiner tree with a specific graph structure will have edges which are
straight line segments and Steiner points which are all within a closed ball containing V .
If we consider the Steiner points to be variable within such a ball, then the length of the
tree is a continuous function defined on a compact set, which has to achieve a minimum.

The Steiner ratio ρ is defined as

ρ = sup
any V in R2

‖MST(V )‖
‖SMT(V )‖

,

where MST(V ) is an MST of V and SMT(V ) is an SMT of V .

The study of spanning trees and Steiner trees has obvious practical value related to the
design of power networks, communication networks and pipelines of minimum cost. It
also aids in the design of integrated circuit boards, where shorter networks require less
time to charge and discharge, making the circuit boards faster. The Steiner ratio is an
indication of how badly a minimum spanning tree will perform compared to a Steiner
minimal tree. In practice a spanning tree may indeed sometimes be used instead of a
Steiner tree, because a minimum spanning tree can be constructed in polynomial time [9],
whereas no such algorithm is known to exist for Steiner minimal trees. (The Euclidean
Steiner problem is NP-hard [4].)

In 1968 Gilbert and Pollak [5] conjectured the Steiner ratio to be 2/
√

3. The fact that
2/
√

3 is a lower bound for the Steiner ratio follows from Figure 1, which shows three
equidistant vertices, an SMT with edges meeting at 120◦, as well as three dotted lines,
any two of which form an MST.

Figure 1: A Steiner minimal tree.

It is natural to consider not only three, but also more vertices on an equilateral triangular
lattice. It was shown by Du and Hwang [2] that the Steiner ratio for any number of vertices
on an equilateral triangular lattice is indeed 2/

√
3. The original proof is quite long and

incorporates a complicated case analysis. In what follows a shorter proof is presented
which is conceptually rather interesting: A Steiner tree in two dimensions is “lifted” to
become a rectilinear tree in three dimensions, where it is altered. The rectilinear tree is
then projected back into the plane and the result readily follows. The paper closes with
a short note which compares three-dimensional rectilinear trees to “impossible objects”
such as Escher’s “Waterfall.”

In 1992 Du and Hwang published a paper [2] and a chapter in a book [3] confirming
the correctness of the Gilbert-Pollak conjecture. (The proof for vertices on an equilateral
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triangular lattice forms an important part of these works.) It has since been shown (see [1]
and [7]) that there are fundamental gaps in their argument. The author plans to comment
on this extensively in a later paper, but might mention that the general method of Du
and Hwang can be adapted for a proof of the Gilbert-Pollak conjecture for 7 points. In
this regard their result for vertices on an equilateral triangular lattice has an important
consequence.

2 Rectilinear Steiner trees and diagonals

In this section the segments which make up the arcs of a Steiner tree are assumed to be
parallel to the x-, y- or z-axis of the space. We refer to such arcs as rectilinear arcs. The
length of the shortest rectilinear arc between two points is called the rectilinear distance
between the points. (The norm with which this distance measure is associated is known as
the L1 norm or taxicab norm.) A Steiner tree consisting only of rectilinear arcs is called
a rectilinear Steiner tree, and a shortest such tree is called a rectilinear Steiner minimal
tree (RSMT).

Given n vertices in the plane, a grid can be created by constructing a horizontal line and
a vertical line through each vertex. This network is commonly called the grid graph of the
vertices. The following is a result of Hanan [6], but a new proof is provided.

Lemma 1 Given n terminals in the plane, then there exists an RSMT with all segments
on the grid graph of the terminals. Furthermore, each maximal segment (consisting of a
maximal sequence of adjacent collinear segments) contains at least one of the terminals.

Proof: First consider an RSMT for which the number of horizontal maximal segments
that do not contain a terminal is a minimum, and assume it to be greater than zero.
Consider the topmost of these maximal segments. Since we have an RSMT, this maximal
segment can be moved up or down by a sufficiently small amount ∆x without decreasing
(or increasing) the length of the tree (Figure 2).

∆x

Figure 2: A maximal segment of an RSMT.

We move the maximal segment upwards until a terminal or horizontal segment is reached,
thus decreasing the number of horizontal maximal segments not containing terminals and
providing a contradiction. It follows that there is an RSMT in which each horizontal max-
imal segment contains a terminal. Among all such RSMTs one may be distinguished in
which the number of vertical maximal segments not containing terminals is a minimum. As
above, it follows that this number is 0. Hence the RSMT obtained lies on the grid graph. �
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The result of Lemma 1 may be generalized to three dimensions: Given n vertices in R3

a plane may be constructed perpendicular to each of the axes through each vertex. The
intersection of any two planes, with distinct normals, forms a line. The collection of all
such lines is known as the grid graph of the vertices. By a maximal planar tree is meant a
tree which lies in a plane perpendicular to one of the axes such that no other tree in the
same plane contains it. (See [10] for more on Steiner points in higher dimensions.)

Lemma 2 Given n terminals in R3, then there exists a RSMT with all segments on the
grid graph of the terminals. Furthermore, each maximal planar tree of the RSMT contains
at least one of the terminals.

Proof: First consider an RSMT for which the number of maximal planar trees in planes
perpendicular to the z-axis which do not contain a terminal is a minimum, and assume
it to be more than zero. Consider the topmost of these maximal planar trees (i.e. with
largest z-coordinate). Since we have an RSMT, this maximal planar tree can be moved up
or down by a sufficiently small amount ∆z without decreasing (or increasing) the length
of the tree.

The maximal planar tree may be moved upwards until a terminal or horizontal maximal
planar tree is reached, thus decreasing the number of horizontal maximal planar trees not
containing terminals and providing a contradiction. It follows that there is an RSMT for
which each maximal planar tree which is perpendicular to the z-axis contains a terminal.
Among all such RSMTs one may be distinguished in which the number of maximal planar
trees perpendicular to the y-axis not containing terminals is a minimum. As above, it
follows that this number is 0. Finally the same is done for the x-axis. �

If a horizontal and a vertical line is constructed through each integer coordinate pair in
the plane, an infinite grid graph is obtained. Any translate of this grid graph is called a
square grid. For three dimensions a cube grid is defined similarly, by constructing three
lines, parallel to the coordinate axes, through all points with integer coordinates and by
considering translates.

Figure 3: A square grid.

In the plane all lines parallel to y = x (i.e. parallel to the vector (1, 1)) through all integer
coordinate pairs, are collectively called diagonals. A vertex on one of these diagonals
naturally defines a square grid in the plane if an intersection of the square grid coincides
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with this vertex (see Figure 3). Similarly, diagonals in three dimensions pass through
all points with integer coordinates and are parallel to the vector (1, 1, 1). A vertex on a
diagonal now naturally defines a cube grid. Note that two points on diagonals in the plane
(three dimensional space) define the same square grid (cube grid) if they have the same x
or y (x or y or z) coordinate.

Consider the following problem: Given n different diagonals, each with a terminal on it,
where should the terminals be for the RSMT to have minimal length? For two dimensions
it is not difficult to see that the result of the following lemma is true.

Lemma 3 Given n terminals on diagonals in the plane, the terminals may be slid along
the diagonals to new positions so that they all have the same y-coordinate and so that the
new RSMT is not longer than the initial one. �

In three dimensions the problem is more complex. Note that the RSMT of (0, 0, 0), (1, 0, 0),
(0, 1, 0) and (0, 0, 1) has minimal length and that the result of Lemma 3 is not true if the
points are moved along diagonals to lie in the same plane. To see why this is so, consider
the three diagonals which go through (1, 0, 0), (0, 1, 0) and (0, 0, 1). Fix one terminal at
(0, 0, 1) while allowing the other two terminals to be moved on their respective diagonals.
Next construct around each terminal an octahedron such that all points on the surface of
the octahedron are at rectilinear distance 1 from the terminal, as shown in Figure 4.

Figure 4: Octahedrons. Diagonals, as projected onto a plane perpendicular to the vector

(1, 1, 1), are indicated by means of dots.

The only positions for the two terminals not yet fixed which will ensure that the union of
the three octahedra is connected, are (1, 0, 0) and (0, 1, 0). Now since any RSMT for the
three terminals will for each terminal contain a path connecting the terminal to the surface
of the octahedron, the RSMT cannot be shorter than 3, and this is only achieved when
(0, 0, 0) is a Steiner point. Finally, the RSMT will at best remain the same if another
terminal is introduced, so that the RSMT remains the same after introduction of the
terminal (0, 0, 0).
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Lemma 4 Given n terminals on diagonals in three dimensional space, then we can slide
the terminals along the diagonals to new positions so that they all define the same cube
grid and so that the new RSMT is not longer than the initial one.

Proof: Assume that the result of the lemma is false. This implies that if the positions of
the terminals on the diagonals are such that the length of the RSMT is minimal, then the
terminals define more than one cube grid. Assume that the number of cube grids defined
is as small as possible and that the RSMT is in the form described by Lemma 2.

Consider the set A of all terminals which define a particular cube grid. Each horizontal
maximal planar tree which contains a terminal or terminals from A may be moved up or
down (together with the terminals) by a sufficiently small amount ∆z so that the change
in the length of the RSMT is linear. If all horizontal maximal planar trees with terminals
from A are moved upwards simultaneously, then the change in the length of the RSMT
remains linear until some terminal in A has the same z-coordinate as a terminal which is
not in A. Let Z be the length of the upward movement for this to happen.

The maximal planar trees which are perpendicular to the x-axis and which contain termi-
nals in A may similarly be moved in a positive direction until some terminal in A has the
same x-coordinate as a terminal which is not in A. Let X be the length of this movement
and let Y be the length of the corresponding movement in the positive y-direction. The
three movements can be combined to achieve movement of the elements of A along the
direction of vector (1, 1, 1) with linear change in the length of the RSMT if this ∆d is
sufficiently small. Since the RSMT has minimal length, the length of the RSMT has to
stay constant. Let D = min(X,Y, Z). If the elements of A are moved by a distance D
in the positive x-, y- and z-directions, then an RSMT with the same length is obtained,
with all terminals on diagonals, and for which the number of cube grids defined by the
terminals is one fewer, providing a contradiction and showing that it is possible for all
terminals to define the same cube grid. �

3 Hexagonal Steiner trees

Given three directions, each two of which form an angle of 120◦, a Steiner tree on n
points in the plane for which all line segments are parallel to these directions, is called
a hexagonal Steiner tree. A shortest such tree is called a hexagonal Steiner minimal tree
(HSMT). A junction is either a Steiner point or a non-terminal point where two segments
join at different angles. The example in Figure 5 has four junctions. For terminals on an
equilateral triangular lattice, the following result holds. (The result is known [2], but a
novel proof is provided.)

Lemma 5 Consider any set of n terminals on an equilateral triangular lattice. Let the
three directions for hexagonal Steiner trees be parallel to the edges of the equilateral trian-
gles of the lattice. Then there exists an HSMT for which all junctions are lattice points.

Proof: The proof proceeds by using Lemma 4. The projection of all diagonals in R3

onto a plane perpendicular to the vector (1, 1, 1) forms an equilateral triangular lattice.
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Figure 5: A hexagonal Steiner tree.

Furthermore, a hexagonal Steiner tree for n lattice points can be lifted to a rectilinear tree
in R3 with the terminals on diagonals, such that the projection of this rectilinear tree onto
the plane parallel to (1, 1, 1) returns the hexagonal Steiner tree. The desired HSMT is
now obtained as follows: Begin with any HSMT, lift this tree into R3, replace it by a tree
of equal length according to Lemma 4 (terminals now all lie on vertices of the same cube
grid), modify this tree by using Lemma 2 (all segments now also lie on the cube grid),
finally project the tree back to the plane (perpendicular to (1, 1, 1)) and note that this is
still an HSMT for which all junctions are now lattice points. �

4 Vertices on an equilateral triangular lattice

The following lemma is due to Weng [11].

Lemma 6 Given a set P of vertices in the plane together with the directions for hexagonal
Steiner trees, it follows that

‖HSMT(P )‖
‖SMT(P )‖

≤ 2/
√

3.

Proof: Note, for a triangle ABC with a 120◦ angle at B, that ‖AB‖+‖BC‖ ≤ 2/
√

3‖AC‖.
Now each line of an SMT can be replaced by two lines along the given directions, thus
forming a sufficiently short hexagonal Steiner tree for the lemma to hold. �

A set of vertices on an equilateral triangular lattice is called a cluster if the graph obtained
by connecting adjacent vertices is connected.

Theorem 1 For any cluster of vertices on an equilateral triangular lattice the Steiner
ratio is ρ = 2/

√
3.

Proof: Choose the directions for hexagonal Steiner trees parallel to the sides of a small-
est triangle in the lattice. From Lemma 5 it follows that all lines of an HSMT connect
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adjacent vertices on the lattice. It follows that the length of an HSMT is equal to that of
an MST. Lemma 6 may now be used to complete the proof. �

5 Conclusion

It was shown in this paper that it is possible to lift a two dimensional hexagonal tree to
obtain a three dimensional rectilinear tree, and that this tree may be altered so that all
edges lie on a grid. It is much easier to establish the Steiner ratio for any cluster of vertices
on an equivalent triangular lattice adopting this lifting proof technique than adopting a
direct case-analysis approach.

It is interesting to note that this lifting technique cannot be applied to a circuit, and that
this fact can be used to create an impossible object such as MC Escher’s “Waterfall,”
shown with permission in Figure 6. If any part of the circuit is covered (which turns it
into a tree), then the picture can be interpreted as an ordinary object. See [12] for a more
detailed discussion of Escher’s “Waterfall.”

Figure 6: M.C. Escher’s “Waterfall”. (©2008 The M.C. Escher Company – the Netherlands

[8]. All rights reserved. Used by permission.)
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separators — however, a choice between these separators should be made and applied consistently
by authors.

Figures and tables
Figures and Tables should be numbered consecutively, using separate numbering sequences (e.g.
Table 1, Table 2, Figure 1, Table 3, Figure 2, . . . rather than Table 1, Table 2, Figure 3, Table
4, Figure 5, . . . ). Tables and figures should be accompanied by detailed captions and should be
included in the main body of text (not on separate pages at the end of the manuscript). Authors
need not include separate high quality photographs or electronic copies of figures when submitting



manuscripts — these will be requested by the business manager (if necessary) upon acceptance of
the manuscript. All Figures and tables should be referenced in the text.

Theorems, algorithms and other numbered environments
Theorems, Algorithms and other numbered environments should be numbered consecutively, using
separate numbering sequences (e.g. Theorem 1, Theorem 2, Algorithm 1, Corollary 1, Algorithm
2, . . . rather than Theorem 1, Theorem 2, Algorithm 3, Corollary 4, Algorithm 5, . . . ). These
environments are supported by the official ORiON LATEX style sheet — further information on
how to utilise these environments in LATEX may be found at http://www.orssa.org.za → ORiON
→ Submissions → Instructions for Style Sheets.

Literature citations
Authors have a choice whether to follow the Harvard (author date) standard or the Vancouver (nu-
merical) standard for literature citations — one of these standards should be applied consistently.
Footnotes should not be used for citation purposes. All items in the bibliography should be cited
in the text.

According to the Harvard standard literature citations in the text should proceed by listing the
relevant author’s name and the year of publication (e.g. “An optimal solution exists (Dantzig
1963).” or “According to Dantzig (1963) an optimal solution exists.”). Additional information,
such as page numbers, chapter numbers, theorem numbers, etc., may be given directly after the
date, separated by a comma (e.g. “An optimal solution exists (Dantzig 1963, p. 69).” or “According
to Dantzig (1963, p. 69) an optimal solution exists.”). For literture citations involving two authors,
both authors’ names should be listed, separated by an amprasand (e.g. “An optimal solution exists
(Dantzig & Wolfson 1967, Theorem 4.2).” or “According to Dantzig & Wolfson (1967, Theorem 4.2)
an optimal solution exists.”). For literture citations involving more than two authors, only the first
author’s name should be listed in conjunction with the phrase et al. (e.g. “An optimal solution exists
(Dantzig et al. 1972, §3).” or “According to Dantzig et al. (1972, §3) an optimal solution exists.”).
In cases of more than one bibliography entry per author per year, small alphabetical characters
should be used to distinguish between references (e.g. “An optimal solution exists (Dantzig 1965b).”
or “According to Dantzig (1963b) an optimal solution exists.”).

According to the Vancouver standard literature citations in the text should proceed by listing the
number of the relevant bibliography entry (e.g. “An optimal solution exists [7].” or “According to
Dantzig [7] an optimal solution exists.”). Additional information, such as page numbers, chapter
numbers, theorem numbers, etc., may be given directly after the citation number, separated by a
comma (e.g. “An optimal solution exists [7, p. 69].” or “According to Dantzig [7, p. 69] an optimal
solution exists.”). For literature citations involving two authors, both authors’ names may be listed,
separated by an amprasand (e.g. “An optimal solution exists [9, Theorem 4.2].” or “According to
Dantzig & Wolfson [9, Theorem 4.2] an optimal solution exists.”). For literature citations involving
more than two authors, only the first author’s name may be listed in conjunction with the phrase
et al. (e.g. “An optimal solution exists [10, §3].” or “According to Dantzig et al. [10, §3] an optimal
solution exists.”).

A more comprehensive list of citation examples (using both standards) may be found at
http://www.orssa.org.za → ORiON → Submissions → Example of Paper Format by click-
ing on the link Examples of Reference Citations and Bibliography Listings.

References
Books should be listed in the bibliography by including the surnames and initials (without punc-
tuation) of all authors and/or editors (in small capitals), the date of publication, the title (in
italics, using small letters only, the only exceptions being the first word of the title and proper
nouns), the edition (if second or higher), the publisher, the city of publication (followed by the
official two-letter abbreviation of the state for cities in the United States — no country names
should be listed), and the relevant pages cited (if appropriate), such as in the examples below:



[1] Dantzig B, 1963, Linear programming and extensions, 2nd Edition, Princeton University
Press, Princeton (NJ).

[2] Gendreau M, Laporte G & Potvin J-Y, 2002, Metaheuristics for the capacitated vehicle
routing problem, pp. 129–149 in Toth P & Vigo D (Eds.), The vehicle routing problem,
SIAM, Philadelphia (PA).

Journals should be listed in the bibliography by including the surnames and initials of all authors
(in small capitals), the date of the issue, the title of the relevant paper (in italics), the title of
the journal (not abbreviated), the volume (and issue/part) number (in bold face), and the pages
of the relevant paper, such as in the example below:

[3] Norese MF & Toso F, 2004, Group decision and distributed technical support, Interna-
tional Transactions in Operational Research, 11(4), pp. 395–417.

Online resources should be listed in the bibliography by including the surnames and initials of the
web page designer (if known, in small capitals), the date of construction of the web page (if
known), the title of the web page (if known, in italics — this is typically found in the title bar
at the very top of the web page), an indication that it is an online reference, the date on which
the site was accessed, and the URL (in true type or courier fonts), such as in the example
below.

[4] Skiena SS, 1997, The algorithm design manual, [Online], [Cited September 9th, 2004],
Available from http://www2.toki.or.id/book/algdesignmanual/index.htm

Theses and dissertations should be listed in the bibliography by including the surnames and ini-
tials of the author, the date, the thesis (or dissertation) title, the university where the thesis (or
dissertation) was submitted and the city in which the university is situated, such as in the example
below [5]. An example of an unpublished technical report [6] is also shown below.

[5] Vumbi AI, 2003, Algorithmic complexity, MSc Thesis, University of Stellenbosch, Stellen-
bosch.

[6] Hamming R, 1956, On the amount of redundancy required to correct information errors,
(Unpublished) Technical Report TR 1956-371, Bell Laboratories, Murray Hill (NJ).

An example of the format in which an unpublished conference paper should be listed in the bib-
liography is given in [7] below, whilst an example of the bibliography listing format of a paper
published in conference proceedings is shown in [8] below.

[7] Lacomme P, Prins C & Ramdane-Chérif W, 2002, Fast algorithms for general arc
routing problems, Paper presented at the 16th Triennial Conference of the International
Federation of Operations Research Societies, Edinburgh.

[8] Wilkinson C & Gupta SK, 1969, Allocating promotional effort to competing activities:
A dynamic programming approach, Proceedings of the 5th Triennial Conference of the In-
ternational Federation of Operations Research Societies, Venice, pp. 419–432.

The bibliography should be arranged in alphabetical order, according to first author surnames.

Note that although authors may use either the Harvard standard or the Vancouver standard
(consistently) for citation purposes in the text, all references in the bibliography are expected to
adhere to the guidelines above — irrespective of which citation standard is utilised by authors.
A more comprehensive list of referencing examples may be found at http://www.orssa.org.za
→ ORiON → Submissions → Example of Paper Format by clicking on the link Examples of
Reference Citations and Bibliography Listings.
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