A 1.2V Low-Power 2.4GHz 0.18μm CMOS Quadrature VCO

X. Redondo, J. Pallarés, F. Vila, L. Terés
and F. Serra-Graells

System Integration Department
Institut de MicroeleCTRònica de Barcelona
Centre Nacional de MicroeleCTRònica - CSIC
Spain
November 2008
1 Introduction
2 VCO Topology
3 Quadrature Generation
4 Bias Control
5 Capacitive Bench
6 Physical Design
7 Experimental Results
8 Conclusions
1 Introduction

2 VCO Topology

3 Quadrature Generation

4 Bias Control

5 Capacitive Bench

6 Physical Design

7 Experimental Results

8 Conclusions
Scenario

- Very Low-Power Superheterodyne TX/RX
- PLL with Sigma-Delta Modulation
- QVCO specs:
 - Frequency BandWidth: 2.40-2.48GHz
 - Phase noise at 1Mhz: -72dBc/Hz
 - Phase noise at 2Mhz: -95dBc/Hz
 - Phase noise at 3Mhz: -105dBc/Hz
 - Quadrature 90°
 - Low-Gain < 30MHz/V
 - Very Low-Power < 1mW at 1.2V Power Supply
 - Technology: 0.18μm 1poly 6 metal 1.8V
1 Introduction

2 VCO Topology

3 Quadrature Generation

4 Bias Control

5 Capacitive Bench

6 Physical Design

7 Experimental Results

8 Conclusions
VCO

- **Ring Oscillator**
- **Relaxation Oscillator**
- **LC Oscillator**

Avantatges:
- Low phase noise
- One transistor Oscillators
- High frequency resonators
- High spectral purity

Drawbacks:
- Low Q factor
3 Quadrature Generation
Active quadrature

Simulation Results

- **Output Voltage** = 550 mVpp
- **Stabilization Time** = 90 ns
- **Quadrature Error** = 0.2º
- **Phase noise (3MHz)** = -120dBc/Hz
- **Harmonic difference** = 50 dB
- **Mismatch immunity** ↑

![Circuit Diagram](image_url)
DCIS’08: A 1.2V Low-Power 2.4GHz QVCO

1 Introduction
2 VCO Topology
3 Quadrature Generation
4 Bias Control
5 Capacitive Bench
6 Physical Design
7 Experimental Results
8 Conclusions
Double current source

Polarization control using reference follower

Modified follower

Simulation Results
5 Capacitive Bench
Switch plus Transistor

Transistor’s operation region

MIM plus Switch

CMIM↑↑
1 Introduction

2 VCO Topology

3 Quadrature Generation

4 Bias Control

5 Capacitive Bench

6 Physical Design

7 Experimental Results

8 Conclusions
Full-Custom Layout Design

- **Reference QVCO**
- **QVCO2 No-bias control**
- **QVCO3 Varactor**
- **QVCO4 N-Well Inductor**
- **QVCO5 Optimized Layout**
- **QVCO6 Standard Cells**
7 Experimental Results
Test bench
Reference QVCO Results

- **Power:** 700μA at 1.2V; **Freq.:** 2.45GHz

PN 3MHz
-131 dBc/Hz

Jitter ~ 2ps

I/Q Error < 1°

KVCO
20 MHz/V
Output Power

- Test bench attenuation: 5.5 dB; Buffers gain: -18 dB.

Output Voltage = 500 mVpp
Comparison with different versions

- Phase noise in QVCO2.
 - PN 3MHz -131 dBc/Hz

- Coarse Gain in QVCO3.
 - KVCO 200 MHz/V

- Phase noise in QVCO4.
 - PN 3MHz -126 dBc/Hz

- Quadrature Error in QVCO5.
 - I/Q Error < 1°
Parametric results

- Phase noise vs Current.

- Quadrature Error vs Current.

- Phase noise vs Frequency.

- Quadrature Error vs Frequency.
State of art comparison

Figure of Merit:

\[
FOM = -L(\Delta f) + 20 \log \left(\frac{f_{\text{osc}}}{\Delta f} \right) - 10 \log(P_d)
\]

<table>
<thead>
<tr>
<th>Referência</th>
<th>(V_{DD}) [V]</th>
<th>(I_{DD}) [mA]</th>
<th>(P_d) [mW]</th>
<th>(F_{osc}) [GHz]</th>
<th>(\Delta f) [MHz]</th>
<th>(L(\Delta f)) [dBc/Hz]</th>
<th>FOM [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>1.20</td>
<td>0.70</td>
<td>0.84</td>
<td>2.50</td>
<td>3.00</td>
<td>-131.68</td>
<td>190.85</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>5.00</td>
<td>5.00</td>
<td>6.00</td>
<td>1.00</td>
<td>-120.3</td>
<td>188.87</td>
</tr>
<tr>
<td></td>
<td>1.30</td>
<td>16.00</td>
<td>20.80</td>
<td>2.27</td>
<td>3.00</td>
<td>-140.00</td>
<td>184.40</td>
</tr>
<tr>
<td></td>
<td>1.80</td>
<td>3.20</td>
<td>5.76</td>
<td>5.50</td>
<td>1.00</td>
<td>-115.00</td>
<td>182.20</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>15.00</td>
<td>30.00</td>
<td>1.57</td>
<td>0.60</td>
<td>-133.50</td>
<td>187.08</td>
</tr>
<tr>
<td></td>
<td>2.50</td>
<td>8.00</td>
<td>20.00</td>
<td>1.85</td>
<td>3.00</td>
<td>-143.00</td>
<td>185.79</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>1.74</td>
<td>2.18</td>
<td>2.01</td>
<td>1.00</td>
<td>-124.00</td>
<td>186.69</td>
</tr>
<tr>
<td></td>
<td>1.20</td>
<td>4.40</td>
<td>5.28</td>
<td>6.00</td>
<td>1.00</td>
<td>-117.00</td>
<td>185.34</td>
</tr>
<tr>
<td></td>
<td>1.80</td>
<td>9.70</td>
<td>17.46</td>
<td>5.00</td>
<td>1.00</td>
<td>-125.60</td>
<td>187.16</td>
</tr>
<tr>
<td></td>
<td>2.50</td>
<td>8.75</td>
<td>21.88</td>
<td>5.20</td>
<td>1.00</td>
<td>-124.00</td>
<td>184.92</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>7.40</td>
<td>5.18</td>
<td>2.40</td>
<td>1.00</td>
<td>-124.90</td>
<td>185.36</td>
</tr>
<tr>
<td></td>
<td>1.80</td>
<td>6.00</td>
<td>10.80</td>
<td>2.60</td>
<td>0.10</td>
<td>-105.00</td>
<td>182.97</td>
</tr>
<tr>
<td></td>
<td>1.80</td>
<td>1.60</td>
<td>2.88</td>
<td>2.40</td>
<td>3.00</td>
<td>-131.50</td>
<td>184.97</td>
</tr>
<tr>
<td></td>
<td>1.20</td>
<td>12.25</td>
<td>14.70</td>
<td>2.45</td>
<td>1.00</td>
<td>-120.00</td>
<td>176.11</td>
</tr>
</tbody>
</table>
1 Introduction
2 VCO Topology
3 Quadrature Generation
4 Bias Control
5 Capacitive Bench
6 Physical Design
7 Experimental Results
8 Conclusions
Conclusions

- Great results on **phase noise**.

- **Remarkable** results in **FOM**

- **Low-current** and **Low-Power Supply**.

- Varactor vs **capacitors bench**.

- Importance of **mismatch** in **quadrature** generation.

- **Amplitude noise** appears in **very-low** amplitude **output**.

- **Effective bias control** improvement.
Thank you for your attention!!!