Publications

  • [Show abstract] [Hide abstract]
    ABSTRACT: Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.
    Optics Express 01/2015; 23(1):61-71. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of laser-induced periodic surface structures (LIPSS) on different materials (silicon, fused silica, quartz) with linearly polarized fs-laser irradiation is studied experimentally. In dielectrics, the importance of transient excitation stages in the LIPSS formation is demonstrated by using (multiple) cross-polarized double-fs-laser-pulse irradiation sequences. A characteristic decrease of the spatial LIPSS periods is observed for double-pulse delays of less than 2 ps along with a characteristic 90°-rotation of the LIPSS orientation.
    Progress in Nonlinear Nano-Optics, 1 edited by Shuji Sakabe, Christoph Lienau, Rüdiger Grunwald, 01/2015: chapter 5: pages 85-99; Springer International Publishing., ISBN: 978-3-319-12216-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of laser-induced periodic surface structures (LIPSS, ripples) upon irradiation of silicon with multiple irradiation sequences consisting of femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied numerically using a rate equation system along with a two-temperature model accounting for one- and two-photon absorption and subsequent carrier diffusion and Auger recombination processes. The temporal delay between the individual equal-energy fs-laser pulses was varied between $0$ and $\sim 4$ ps for quantification of the transient carrier densities in the conduction band of the laser-excited silicon. The results of the numerical analysis reveal the importance of carrier generation and relaxation processes in fs-LIPSS formation on silicon and quantitatively explain the two time constants of the delay dependent decrease of the Low-Spatial-Frequency LIPSS (LSFL) area observed experimentally. The role of carrier generation, diffusion and recombination are quantified individually.
    Applied Physics A 10/2014; 117(1):77-81. · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laser-induced periodic surface structures (LIPSS, ripples) were generated on steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were opti- mized in a sample-scanning geometry for the processing of large surface areas (5 x 5 mm^2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by sub- sequent inspection of the wear tracks. For specific condi- tions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.
    Applied Physics A 10/2014; 117(1):103-110. · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration) is studied by cross-polarized two-color double-fs-pulse experiments. In order to analyze the relevance of temporally distributed energy deposition in the early stage of LIPSS formation, a Mach-Zehnder interferometer was used for generating multiple double-pulse sequences at two different wavelengths (400 & 800 nm). The inter-pulse delay between the individual cross-polarized pulses of each sequence was systematically varied in the sub-ps range and the resulting LIPSS morphologies were characterized by scanning electron microscopy. It is found that the polarization of the first laser pulse arriving to the surface determines the orientation and the periodicity of the LIPSS. These two-color experiments further confirm the importance of the ultrafast energy deposition to the silica surface for LIPSS formation, particularly by the first laser pulse of each sequence. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS characteristics (period, orientation).
    Applied Surface Science 09/2014; · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 × 5 mm2), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications.
    Applied Surface Science 08/2014; · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon by multiple (N = 100) linearly polarized Ti:sapphire femtosecond laser pulses (duration τ = 30 fs, center wavelength λ ~ 790 nm) is studied experimentally in air and water environment. The LIPSS surface morphologies are characterized by scanning electron microscopy and their spatial periods are quantified by two-dimensional Fourier analyses. It is demonstrated that the irradiation environment significantly influences the periodicity of the LIPSS. In air, so-called low-spatial frequency LIPSS (LSFL) were found with periods somewhat smaller than the laser wavelength (Λ ~ 0.7 × λ) and an orientation perpendicular to the laser polarization. In contrast, for laser processing in water a reduced ablation threshold and LIPSS with approximately five times smaller periods Λ ~ 0.15 × λ were observed in the same direction as in air. The results are discussed within the frame of recent LIPSS theories and complemented by a thin film based surface plasmon polariton model, which successfully describes the tremendously reduced LIPSS periods in water.
    Journal of Applied Physics 08/2014; 116(7):074902. · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-pulse (532 nm, 8 ns) micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by scanning electron and scanning force microscopy and reveal a good agreement with Fresnel diffraction theory. The physical mechanism is identified and discussed on basis of both thermocapillary and chemicapillary induced material transport during the molten state of the surface.
    Journal of Applied Physics 06/2014; 115(22):224309. · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The redeposited material (debris) resulting from ablation of a potassium–magnesium silicate glass upon scanning femtosecond laser pulse irradiation (130 fs, 800 nm) in air environment is investigated by means of three complementary surface analytical methods. Changes in the electronic band structure of the glass constituent Magnesium (Mg) were identified by X-ray Absorption Near Edge Structure spectroscopy (XANES) using synchrotron radiation. An up-shift of ≈0.8 eV of a specific Magnesium K-edge absorption peak in the spectrum of the redeposited material along with a significant change in its leading edge position was detected. In contrast, the surface left after laser ablation exhibits a downshift of the peak position by ≈0.9 eV. Both observations may be related to a change of the Mg coordinative state of the laser modified/redeposited glass material. The presence of carbon in the debris is revealed by micro Raman spectroscopy (-RS) and was confirmed by energy dispersive X-ray spectroscopy (EDX). These observations are attributed to structural changes and chemical reactions taking place during the ablation process.
    Applied Surface Science 05/2014; 302:286-290. · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past years, many applications based on laser-induced refractive index changes in the volume of transparent materials have been demonstrated. Ultrashort pulse lasers offer the possibility to process bulky transparent materials in three dimensions, suggesting that direct laser writing will play a decisive role in the development of integrated micro-optics. At the present time, applications such as 3D long term data storage or embedded laser marking are already into the phase of industrial development. However, a quantitative estimate of the laser-induced refractive index change is still very challenging to obtain. On another hand, several microscopy techniques have been recently developed to characterize bulk refractive index changes in-situ. They have been mostly applied to biological purposes. Among those, spatial light interference microscopy (SLIM), offers a very good robustness with minimal post acquisition data processing. In this paper, we report on using SLIM to measure fs-laser induced refractive index changes in different common glassy materials, such as fused silica and borofloat glass (B33). The advantages of SLIM over classical phase-contrast microscopy are discussed.
    Proc SPIE 05/2014; 9132:91320X-91320X.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relation between ablation threshold fluence upon femtosecond laser pulse irradiation and the average dissociation energy density of silicate based multicomponent glass is studied. A simple model based on multiphoton absorption quantifies the absorbed energy density at the ablation threshold fluence. This energy density is compared to a calculated energy density which is necessary to decompose the glass compound into its atomic constituents. The results confirm that this energy density is a crucial intrinsic material parameter for the description of the femtosecond laser ablation threshold fluence of dielectrics.
    Optical Materials Express 03/2014; 4(4):689-700. · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between -10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS frequencies.
    Applied Physics Letters 12/2013; 103(25):254101. · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonlinear optical properties such as the nonlinear refractive index and nonlinear absorption are characterized by z-scan measurements for a series of silicate glasses upon irradiation with laser pulses of 130 fs duration and 800 nm center wavelength. The stoichiometry of the silicate glasses is varied systematically to reveal the influence of the glass composition on the nonlinear optical properties. Additionally, the thermal properties such as glass–transformation temperature and thermal expansion coefficient are obtained from dilatometric measurements. It is found that the nonlinear refractive index is mainly related to the silica matrix. The nonlinear absorption is increased with the addition of network–forming ions.
    Optical Materials Express 11/2013; 3(12):2132-2140. · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The formation of near-wavelength laser-induced periodic surface structures (LIPSS) on silicon upon irradiation with sequences of Ti:sapphire femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied theoretically. For this purpose, the nonlinear generation of conduction band electrons in silicon and their relaxation is numerically calculated using a two-temperature model approach including intrapulse changes of optical properties, transport, diffusion and recombination effects. Following the idea that surface plasmon polaritons (SPP) can be excited when the material turns from semiconducting to metallic state, the "SPP active area" is calculated as function of fluence and double-pulse delay up to several picoseconds and compared to the experimentally observed rippled surface areas. Evidence is presented that multi-photon absorption explains the large increase of the rippled area for temporally overlapping pulses. For longer double-pulse delays, relevant relaxation processes are identified. The results demonstrate that femtosecond LIPSS on silicon are caused by the excitation of SPP and can be controlled by temporal pulse shaping.
    Optics Express 11/2013; 21(24):29643-29655. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Femtosecond laser pulse irradiation of inorganic glasses allows a selective modification of the optical properties with very high precision. This results in the possibility for the production of three-dimensional functional optical elements in the interior of glass materials, such as optical data storage, waveguide writing, etc. The influence of the chemical glass composition to the response upon ultrashort laser irradiation has not been studied systematically. For that, simple silica-based model glasses composed of systematically varying alkaline- and earth-alkaline components were prepared, irradiated on the surface and in the volume with single fs-laser pulses (~130 fs, 800 nm), and were subsequently analyzed by means of micro-Raman spectroscopy and quantitative phase contrast microscopy in order to account for changes in the glass structure and for alterations of the optical refractive index, respectively. The Raman spectroscopic studies of the laser-irradiated spots revealed no change in the average binding configuration (the so called Q-structure), but local changes of bond-angles and bond-lengths within the glass structure structure. Those changes are explained by structural relaxation of the glass network due to densification caused by a transient laser-induced plasma generation and the following shock wave and other thermal phenomena. Glasses with a low amount of network modifiers show changes in the Si-O network while glasses with a high amount of network modifiers react primarily via variation of the non-bridging oxygen ions. The results are discussed in terms of possible structural response mechanisms and conclusions are outlined regarding glass compositions with technical suitability for fs-laser modifications.
    Proc SPIE 11/2013; 8885:88850M.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report self-assembly of periodic surface structures in a commercial block copolymer (BCP) (Filofocon A) upon irradiation with a few tens of excimer laser pulses (20 ns, 193 nm) at fluences above the ablation threshold. This new type of structures is characterized by much larger periods than those characteristic for Laser-Induced Periodic Surface Structures (LIPSS) and features nanochains instead of ripples. We find a period of 790 nm at 400 mJ/cm2, scaling linearly with laser fluence up to a maximum of 1.0 μm. While an entangled random network of nanochains is produced for normal-incidence and non-polarized light, nanochain alignment can be achieved either by irradiation at an angle or by using linearly polarized light, forming a lamella-like structure. In both cases, the nanochains are aligned parallel to the penetrating polarization orientation and their period does not show a dependence on the angle of incidence, as opposed to the general behavior of standard LIPSS. Also, our results show that the chains are not formed by frozen capillary waves. In contrast, we show analogies of the nanochains produced to lamellar structures fabricated on a smaller scale in other BCP. We discuss the origin of the self-assembly process in terms of a combination of chemical (BCP), optical (surface scattering), and thermal (melting, coarsening, and ablation) effects.
    Journal of Applied Physics 10/2013; 114(15):153105. · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The irradiation of ∼0.9-μm-thick hydrogenated amorphous carbon (a-C:H) layers deposited on silicon substrates with single femtosecond (fs) laser pulses (35 fs pulse duration, 790 nm centre wavelength) in air is studied experimentally. Irradiation spots have been generated with different peak fluences and subsequently investigated by optical topometry, micro Raman spectroscopy and microscale mechanical indentation in order to evaluate their microscopic, topographical, structural and mechanical properties (e.g. elastic modulus). By this multi-method approach, a clear separation of different effects (delamination and graphitisation) becomes possible. The joint application of mechanical and spectroscopic techniques provides unique insights into the effects of the fs-laser radiation on the carbon layer.
    Applied Physics A 09/2013; 112(1):9-14. · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica and silicon with multiple (N_DPS) irradiation sequences consisting of linearly polarized femtosecond laser pulse pairs (pulse duration ~150 fs, central wavelength ~800 nm) is studied experimentally. Nearly equal-energy double-pulse sequences are generated allowing the temporal pulse delay Δt between the cross-polarized individual fs-laser pulses to be varied from −40 ps to +40 ps with a resolution of ~0.2 ps. The surface morphologies of the irradiated surface areas are characterized by means of scanning electron and scanning force microscopy. Particularly for dielectrics in the sub-ps delay range striking differences in the orientation and spatial characteristics of the LIPSS can be observed. For fused silica, a significant decrease of the LIPSS spatial periods from ~790 nm towards ~550 nm is demonstrated for delay changes of less than ~2 ps. In contrast, for silicon under similar irradiation conditions, the LIPSS periods remain constant ( ~760 nm) for delays up to 40 ps. The results prove the impact of laser-induced electrons in the conduction band of the solid and associated transient changes of the optical properties on fs-LIPSS formation.
    Applied Physics A 09/2013; 110(3):553-557. · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The removal of a 75- to 90-nm-thick passivating silicon nitride antireflection coating from standard textured multicrystalline silicon photovoltaic wafers with a typical diffused 90-Ω/sq-emitter upon irradiation with near-infrared femtosecond laser pulses (790 nm central wavelength, 30 fs pulse duration) is studied experimentally. The laser irradiation areas are subsequently characterized by complementary optical microscopy, scanning electron microscopy and depth profiling chemical analyses using secondary ion mass spectrometry. The results clarify the thin-film femtosecond laser ablation scenario and outline the process windows for selective antireflection coating removal.
    Thin Solid Films 09/2013; 542:420-425. · 1.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of laser-induced periodic surface structures upon irradiation of titanium, silicon, and fused silica with multiple irradiation sequences consisting of parallel polarized Ti:sapphire femtosecond laser pulse pairs (pulse duration 50–150 fs, central wavelength ∼800 nm) is studied experimentally. The temporal delay between the individual near-equal energy fs-laser pulses was varied between 0 and 5 ps with a temporal resolution of better than 0.2 ps. The surface morphology of the irradiated surface areas is characterized by means of scanning electron microscopy (SEM). In all materials a decrease of the rippled surface area is observed for increasing delays. The characteristic delay decay scale is quantified and related to material dependent excitation and energy relaxation processes.
    Applied Surface Science 08/2013; 278:7-12. · 2.54 Impact Factor

140 Following View all

114 Followers View all