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Abstract. We present a new tool for segmenting multiple sclerosis le-
sions that can take advantage of the complementary modalities we usu-
ally use for this purpose. Based on the integration of multi channel in-
formation in a scale-space paradigm, its optimization by graph cuts pro-
vides a powerful and accurate tool. After presenting the mathematical
and physical background on which is based the spectral gradient, we
introduce its computational optimization by the graph cuts approach.
The validation on synthetic and real data shows both its accuracy and
reliability on di�erent sets of standard MRI of sequences.

1 Introduction

Taking advantage of the various protocols that acquire images using multiple
modalities is a current issue (typically T1, T2, PD, DTI or Flair sequences in
MR neuroimaging). The data are becoming more and more multi-channel data
and their unique and complementary information should be merged together
before segmentation in order to get rid of the inconsistencies one can encounter
when segmenting each modality separately. Today, reliable registration methods,
using di�erent resolution and time, are available, nevertheless, a simple, robust,
fast and reliable segmentation approach still does not exist for such kind of
problem especially when dealing with pathologies.

Multichannel segmentation usually relies on clustering or classi�cation. In the
current work, we propose a new and original scale-space approach for segmenting
multiple sclerosis lesions from multidimensional Magnetic Resonance Images. We
propose a technique that can perform a joint segmentation of three MRI volumes
at a time with a supervised approach.

As the intensity distribution of the interesting tissues follows a Gaussian law
in each sequence, by merging three volumes into a single �color� MRI - each
volume becoming a color channel - the color distribution, thus created, follows
also a multidimensional Gaussian law. Each tissue being characterized by a 3-
dimensional signature, discriminating each tissue from one another is easier. The
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main idea, presented here, to segment MS Lesions from multi-dimensionnal MRI
sequences is to use a scale-space color invariant edge detector - i.e. the spectral
gradient - in a graph cut optimisation framework.

Among all the various energy minimization techniques for segmentation,
Greig et al. [1] proposed a method based on partitioning a graph by a mini-
mum cut / maximum �ow algorithm inherited from Ford [2]. Then, Boykov et
al. [3, 4] enhanced this approach by improving its computational e�ciency ; their
method is now referred as Graph Cuts.

In the following sections, we will �rst present the spectral gradient and its
graph cuts optimization that make it possible to exploit the intensity consisten-
cies and the inter-intensities gradient. Then, we will show validation on various
sets of MRI sequences for the segmentation of MS lesions. Finally, we will discuss
on the contributions and future improvements to be made.

2 Methods

The framework we've designed is as follow : from three grey-level MRI sequences,
we build a color MRI by assigning each red, green or blue channel to a sequence.
Then we compute the spectral gradient and use it in a graph cut framework which
requires seeds as input. In the end of this framework, we obtain the segmented
structures (e.g. brain, MS lesions). Figure 1 summarizes this framework.

Fig. 1. Our framework

In the following sub-sections, we will explain the two main methodological
steps of this framework which are the Spectral Gradient and the Graph Cuts.

2.1 Spectral Gradient

Based on Koenderink's Gaussian derivative color model [5] and the psycho-visual
color theory, we propose to use a scale-space approach, �rst introduced by Geuse-
broek in [6] to build a color-edge detector. This color edge detector can then be
applied to MRI by merging three gray-level MRIs into a single MRI.

The spectral intensity (e) that falls onto the retina depends on the spectral
re�ection function r of the surface material and the light spectrum l - a function
of the wavelength λ - falling onto it. It also depends on the shading s that is
only position-dependent. Hence :

e(x, y, z, λ) = r(x, y, z, λ) · l(λ) · s(x, y, z) (1)
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In order to de�ne color invariants, we need an expression that is independent
to l(.) and s(.), as r is the only �true� color we are searching for. By taking the
derivative with respect to λ and normalizing, we get the following expression :

1
e(x, y, z, λ)

∂e(x, y, z, λ)
∂λ

=
lλ
l

+
rλ

r
(2)

Finally, a di�erentiation to the spatial variable (x, y or z) makes an expres-
sion, which suits all of our constraints :

∂( 1
e(x,y,z,λ)

∂e(x,y,z,λ)
∂λ )

∂x
= 0 ⇐⇒ e · exλ − ex · eλ

e2
= 0

The last equation is fully expressed by spatial and spectral derivatives of e,
the observable spatio-spectral intensity distribution.

Geusebroek et al. [7] have proven that these terms can be very well approxi-
mated by simply multiplying the RGB values (seen as a column vector) by two
matrices : e

eλ

eλλ

 =

−0.019 0.048 0.011
0.019 0 −0.016
0.047 −0.052 0


︸ ︷︷ ︸

XY Z to e

·

 0.621 0.133 0.194
0.297 0.563 0.049
−0.009 0.027 1.105


︸ ︷︷ ︸

RGB to XY Z

·

R
G
B

 (3)

The �rst matrix transforms the RGB values to the CIE 1964 XYZ basis for
colorimetry and the second one gives the best linear transform from the XYZ
values to the Gaussian color model. These two matrices can be merged in a 3×3
matrix M that characterises the transformation from RGB values to e and its
derivatives.

Once the spectral intensity and its derivatives are computed, we can use the
following di�erential properties of the invariant color-edge detector :

ε =
1
e
· ∂e

∂λ
=

eλ

e
(4)

As stated in [7], yellow-blue transitions can be found with the �rst order
gradient, which magnitude is:

Γ =
√

(∂xε)2 + (∂yε)2 + (∂zε)2 (5)

The second order gradient detects the purple-green transitions. Its magnitude
can be computed as follows :

Υ =
√

(∂x,λε)2 + (∂y,λε)2 + (∂z,λε)2 =
√

(∂xελ)2 + (∂yελ)2 + (∂zελ)2 (6)

with : ελ =
∂ε

∂λ
=

e · eλλ − e2
λ

e2
(7)
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Fig. 2. Upper row : Color MRI (from T1, T2 and Flair sequences) and spectral intensity
e. Lower row : �rst order derivative of spectral intensity eλ and second order derivative
of spectral intensity eλλ.

Finally, the detection of all color edges can be performed with :

ℵ =
√

Γ 2 + Υ 2

=
√

(∂xε)2 + (∂yε)2 + (∂zε)2 + (∂xελ)2 + (∂yελ)2 + (∂zελ)2 (8)

2.2 Graph Cuts Optimization of Spectral Gradients

In the Graph Cuts framework, the image is represented by a weighted graph
G = 〈V, E〉 where each image voxel p is represented by a node and each edge links
the voxel p to each of its neighboring voxels q. The binary graph cut associates
each node to one of two special nodes, called the 'source' node S and the 'sink'
node T . These two nodes (the terminal nodes) represent the labels (i.e. �object�
or �background�).

4
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Fig. 3. Left : Color MRI - Right : Spectral gradient.

Let the set P contain all the voxels p of the image, the set N be all the pair
{p, q} of the neighboring elements of P and V = (V1, V2, ..., V|P|) be a binary
vector where each Vp can be one of the two labels �object� or �background�.
Therefore, the vector V de�nes a segmentation. The energy we want to minimize
by the graph cut has the form given by :

E(V) = α ·
∑
p∈P

Rp(Vp) +
∑

{p,q}∈N
Vp 6=Vq

B{p,q} (9)

The term Rp(·), commonly referred as the regional term, expresses how the
voxel p �ts into given models of the object and background, in [8] these models
are the intensity distribution models (e.g. histograms) of the source and sink.
The term B{p,q}, known as the boundary term, re�ects the similarity of the
voxels p and q. Hence, it is large when p and q are similar and close to zero when
they are very di�erent. It is often based on local intensity gradient or Laplacian
zero-crossing. The coe�cient α is used to adjust the importance of the region
and boundary terms.

In the construction of the graph, the regional term is used to compute the
edge weight between each voxel and the terminal nodes (t-links) whereas the edge
weight between neighboring pixels (n-links) is calculated using the boundary
term.

The object (O) and background (B) seeds placed by the user at the beginning
of the process are used to compute spectral intensity distribution models. In
order to build this spectral intensity of the source (resp. sink), we consider
a 3-components vector Ψ = (e, eλ, eλλ) in each voxel labeled as source (resp.
sink) and we compute the mean vector Ψ and the covariance matrix Σ. The
probability for a voxel v to be in the source is computed with the multivariate
normal distribution formula :

5
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P (Ψv|O) = exp−1
2
(Ψv − Ψ)T ·Σ−1 · (Ψv − Ψ) (10)

Thus, it allows us to compute the t-links and n-links as follows :

Edge Case Weight

{p, q} {p, q} ∈ N B{p,q}
p ∈ B 0

{p,S} p ∈ O ∞
p /∈ O ∪ B α ·Rp(B)

p ∈ B ∞
{p, T } p ∈ O 0

p /∈ O ∪ B α ·Rp(O)

The t-link weight of a voxel p is then the negative log-likelihoods:

Rp(B) = − lnP (Ψp|B) and Rp(O) = − lnP (Ψp|O)

To compute the n-links, we use an ad-hoc function :

B{p,q} ∝ exp
(
− (ε(p)− ε(q))2 + (ελ(p)− ελ(q))2

2σ2

)
· 1
dist(p, q)

(11)

where ε and ελ are the quantities de�ned in equations (4) and (7). The two terms
in the exponential (11) refer respectively to the yellow/green edge local detector
and the purple/green edge local detector described in the previous section.

3 Application to Multiple Sclerosis Lesions segmentation

In order to correctly classify the Multiple sclerosis lesions, we followed a hier-
archical segmentation scheme. A �rst Graph Cut with source seeds mixing all
the tissues and sink seeds on the background gives us the brain mask ; then
inside this mask, we perform a graph cut with source seeds inside lesions - the
sink seeds being the background seeds and the other tissues seeds. The whole
computation time is between 50 to 80 seconds on a laptop (Dual core at 2.16
Ghz and 2 GB of RAM for 3 MRI volumetric sequences). Since we can observe
that changing the channels assignment doesn't change the segmentation results,
no information about which sequence is used for which channel are necessary.

3.1 Validation on BrainWeb

An important data in the evaluation of this tool is the amount of seeds needed
to correctly segment the lesions. We run experiments in order to quantify the
similarity between the obtained segmentation and the ground truth. As input to
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our algorithm, we used the ground truth randomly decimated. We then computed
the Dice Similarity Coe�cient (DSC) as follows :

S = 2 · Card(R ∩ V )
Card(R) + Card(V )

(12)

R being the segmentation result and V the ground truth.
In order to assess this algorithm, we used synthetic data from BrainWeb [9].

We built the color MRI from simulated T1-weighted, T2-weighted and PD se-
quences. All the images belong to the same subject and are constituted of 217
slices of 181 x 181 isometric 1 mm voxels with 3% noise (relative to the bright-
est tissue in the images) and 20% non-uniformity �eld. Results of this test are
presented on �gure 4.

Fig. 4. Dice Similarity Coe�cient versus relative number of seeds (in percentage of
the ground truth). Blue line : DSC obtained after running our algorithm accordint to
the number of seeds used at the initialisation step. Black line : DSC from initialisation
seeds only. Red Line : di�erence of the preceding two curve, showing the e�ency of the
proposed method

As stated in [10], a DSC score above 0.7 is generally considered as very
good, especially when the segmented structures are small. Here, this threshold
is reached when the input seeds are around 5% of the ground truth. The per-
formance of our algorithm was compared to Van-Leemput's [11], Freifeld's [12]
and Rousseau's algorithm [13] on moderate MS lesions. For the optimal value
(8% of relative number of seed), our DSC is 0.83 when Van-Leemput scores 0.80
(calculated by Freifeld in [12]), Freifeld 0.77 and Rousseau only 0.63.
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3.2 Quanti�cation of the accuracy on various sequences

As we aim to use this new tool in a clinical context, we evaluated the results on
di�erent clinical data sets. Those sets are the ones that are most likely to be used
for diagnosis purpose. Three combinations of sequences were considered relevant
with our goal : T1-weighted, T2-weighted and Flair (which will be referred as
TTF), T1-w, T2-w and PD (which will be referred as TTP) and T1-w, T1-w
injected with Gadolinium and Flair (which will be referred as TGF). The data
covers a large range of lesion load and clinical grades (from RR to SP).

The following table summarizes the di�erent parameters of the color MRIs
we built in order to assess our tool:

Type of Number of Number of Size of Size of

MRI Subjects slices slices voxels

TTF 6 138 256× 256 isometric 1 mm
TTP 8 217 181× 181 isometric 1 mm
TGF 5 160 256× 256 isometric 1 mm

We run similar experiments than those for BrainWeb validation with an ad-
dition : we also used a ground truth decimated by successive erosions as input,
hence simulating the classical behavior of the users which would preferably take
seeds in the center of the bigger lesions and forget smaller lesions.

Fig. 5. Dice Similarity Coe�cient versus relative number of seeds (in percentage of
the ground truth). Red lines : TTF MRIs, green lines: TTP MRIs, blue lines : TGF
MRIs, black line : DSC from input data without applying our algorithm ; solid line :
randomly decimated ground truth as input, dash dotted line : ground truth decimated
by successive erosions as input.

8
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The �gure 5 presents the results of this experiment. One can notice that
the behavior of the curves are quite similar, however, the TTF sets seem to be
more suitable for segmenting MS lesions, with an average 0.972 DSC score for
a number of seeds around 6% of the ground truth; TTP being second best with
a 0.777 average DSC score for the same relative number of seeds and TGF only
scoring 0.593.

The other important fact showed by this experiment is that a random dec-
imation performs better than the successive erosions as the DSC is lower by
about 10% when the erosions are used. We can interpret that from two hypoth-
esis : this may come from keeping small lesions in the initial stage in the random
decimation (those small lesions being the �rst to disappear in the decimation
method) or the Gaussian multivariate law computed from the seeds has a lower
variance than the real one as we only keep the centers of lesions whose intensities
are not fully representative of the normal intensity distribution of all lesions.

Fig. 6. Dice Similarity Coe�cient Enhancement versus relative number of seeds (in
percentage of the ground truth). Red lines : TTF MRIs, green lines: TTP MRIs, blue
lines : TGF MRIs ; solid line : randomly decimated ground truth as input, dash dotted
line : ground truth decimated by successive erosions as input. The variation is shown
as an error bar on the optimal point of each curve and is about ±2% for TTF,±1.5%
for TTP and ±1% fot TGF.

The �gure 6 shows the di�erence between the DSC score of the initial portion
of the ground truth retained from initialisation alone and the DSC score obtained
after running our algorithm from the same initialisation. It somehow computes
the enhancement given by our tool with respect to the DSC. From top to bottom
of the curves in �gure 6, the maximum enhancement is obtained respectively for
6, 8, 11, 14, 16 and 18% of relative number of seeds. This gives our optimal range
for initialisation constraints with respect to the expected lesion load.

Results and seeds of the algorithm are shown on �gures 7, 8 and 9.
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Fig. 7. Results on TTF images. Upper row from left to right : T1-w, T2-w and Flair
Sequence. Lower left : initialisation from randomly decimated ground truth. Lower cen-
ter : initalisation from ground truth decimated by erosion. Lower right : segmentation
results (green : correctly classi�ed ; blue : false positive ; yellow : false negative)

Fig. 8. Results on TTP images. Upper row from left to right : T1-w, T2-w and PD
Sequence. Lower left initialisation from randomly decimated ground truth. Lower center
: initalisation from ground truth decimated by erosion. Lower right : segmentation
results.

10

in
ria

-0
03

23
04

2,
 v

er
si

on
 1

 - 
17

 O
ct

 2
00

8



Fig. 9. Results on TGF images. Upper row from left to right : T1-w, Flair and T1-w
injected with Gadolinium Sequence. Lower left initialisation from randomly decimated
ground truth. Lower center : initalisation from ground truth decimated by erosion.
Lower right : segmentation results.

4 Conclusion

In this paper, we have introduced the spectral gradient in the �eld of 3D medi-
cal images. This new, fast and robust multiple images segmentation framework
allows us to process multichannel data from scale-space derivatives.

Its optimization by a hierarchical graph cuts has proven to be accurate with
very e�ective results. It combines intensity processing and scale-space approach
in a new way. With such little computational time, it allows the user to interac-
tively correct the results.

We've built our work on an analogy between RGB channels and multi-modal
MRIs. This method may be not optimal, especially the transform matrix M
(cf eq. 4). To �nd the optimal matrix, we could learn its parameters from a
supervised procedure.

We propose here a semi-automatic but supervising the intensity model of
lesions could give an automatic initialisation. Such models could be given by the
STREM algorithm from Ait-Ali et al. [14]

The next steps of this work will be to run more advanced validation studies
and particularly on longitudinal data sets in order to quantify the evolution of
multiple sclerosis lesions and to study the in�uence of the parameter of the M
matrix parameters.
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