Network-centric Middleware
for Service Oriented Architectures across
Heterogeneous Embedded Systems

Andreas Wolff, Jens Schmutzler,
Stefan Michaelis, Christian Wietfeld
Andreas.Wolff@uni-dortmund.de

IEEE International EDOC conference,
Workshop on Middleware for Web-Services,
Annapolis, USA, October 2007
Overview

• Motivation & Requirements for Embedded Web-Services

• The µSOA Approach

• MORE Middleware Architecture

• Deployment Example

• Conclusions & Outlook
Exemplary End-user scenario: Environmental monitoring

Processing Level

Relay Level

Sensor Level

Mitigation Manager (Fire brigades, forest department, ...)
Subscribe information of certain sensors

Challenge: Energy, communication link and real time constraints
Requirements for embedded Web-Services

• Real-life Scenarios
 – Environmental Monitoring & Mitigation Management
 – Remote Chronic Care Support
 – ...

• Common requirements
 – Distributed and connected via Internet using integrated Web-Services
 – Heterogeneity of devices
 – Embedded system conditions

• Aims of the MORE project:
 – Generic Middleware for resource constraint scenarios
 – Reduce deployment time, Reuse of services
Resource constraints of Embedded Systems

Example Relay Level:

- **Wireless Module TC65**
 - Technical Specifications
 - **ARMSP430** (8MHz)
 - 8x ADC interfaces
 - 2x DAC interfaces
 - 2x serial interfaces with the ITU-T V.24 protocol
 - USB 1.1 full speed
 - Memory: 400 KB (RAM) and 1.7 MB (Flash)
 - Wireless Technologies
 - 25 MHz to 2.4 GHz IEEE 802.15.4 Chipcon Wireless Transceiver (CC2420)

Limited Processing power
Limited Memory
Limited Energy
Measurement of the impact of running simultaneous tasks on a Embedded System (TC65)

Execution Delay nearly doubled

One concurrent task

Exemplary Periodic operation

Measurement test cycles
Processing standard SOAP leads to unacceptable delays & energy consumption

- High Energy consumption due to long parsing times
- Reduced real-time capabilities

Exemplary SOAP Message (600 bytes)

Platform:
Siemens TC65 Wireless Module
J2ME kXML 2.0 Pull Parser
Solution Approach: µSOA

Available implementations

Network-centric Middleware for Service Oriented Architectures across Heterogeneous Embedded Systems
MORE Service Oriented Architecture

- Classical Layered View & Service Oriented View
- Core Management Service
- Different Service Connectors
MORE enabled deployment

- Processing Level
- Relay Level
- Sensor Level

Group Management Services
End users specify, which sensors are of interest to them (spatially explicit information)

Communication Services
Communication of and between nodes

μSOA Proxy Service
Low energy consumption of sensors by efficient handling of measuring / broadcasting intervals

Measurement Services
Sending measured data to the transmitting device / georeferenced information
Conclusion

• MORE middleware: development and validation of new concepts to enable Web-Services for Embedded Systems

• Service-oriented Architecture and exemplary use case scenario of a mitigation management system:
 – Fusion of sensors with Web-Services
 – Reduced deployment time and reuse of services

• Outlook:
 – Validation of experimental system by real end users
 – In-depth performance evaluation: focus on reliability and scalability
Thank you for your attention!

For further information, please contact: Andreas.Wolff@uni-dortmund.de

www.ist-more.org
Backup: MORE Acronym

Network-centric Middleware for Group communication and Resource Sharing across Heterogeneous Embedded Systems
MORE Group Management Service

- Control of dynamic groups in MORE
- Policy based Group Management
- Policies enable a higher reliability and in combination with group communication cost effective efficiency gains