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Rate in Independent Samples t Tests: The Power of
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Jelte M. Wicherts
Tilburg University

In psychology, outliers are often excluded before running an independent samples t test, and data are
often nonnormal because of the use of sum scores based on tests and questionnaires. This article concerns
the handling of outliers in the context of independent samples t tests applied to nonnormal sum scores.
After reviewing common practice, we present results of simulations of artificial and actual psychological
data, which show that the removal of outliers based on commonly used Z value thresholds severely
increases the Type I error rate. We found Type I error rates of above 20% after removing outliers with
a threshold value of Z � 2 in a short and difficult test. Inflations of Type I error rates are particularly
severe when researchers are given the freedom to alter threshold values of Z after having seen the effects
thereof on outcomes. We recommend the use of nonparametric Mann-Whitney-Wilcoxon tests or robust
Yuen-Welch tests without removing outliers. These alternatives to independent samples t tests are found
to have nominal Type I error rates with a minimal loss of power when no outliers are present in the data
and to have nominal Type I error rates and good power when outliers are present.
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The practical use of statistical tests in psychological research
often deviates from how the use of these tests is described in the
textbooks (Bakker, Van Dijk, & Wicherts 2012; John, Loewen-
stein, & Prelec, 2012; Simmons, Nelson, & Simonsohn, 2011;
Wagenmakers, Wetzels, Borsboom, & Van der Maas, 2011; Wich-
erts, Bakker, & Molenaar, 2011). For instance, Agresti and Frank-
lin (2007) indicated that outliers should be identified to investigate
potential recording errors and recommended that a statistical anal-
ysis be repeated with and without an outlier to “make sure the
results are not overly sensitive to a single observation” (p. 69).
Stevens (2001) stipulated that outliers should not be automatically
dropped from the analysis (unless the outlier is caused by an error)
and also recommended the reporting of analyses with and without
the outlier(s). On the other hand, several of the dozen textbooks1

that we reviewed concerning outliers (e.g., Howell, 2002; Moore,
McCabe, & Craig, 2009; Wilson & MacLean, 2011) did not give
any advice about what to do with (nonerroneous) outliers in the
data. Other textbooks recommended adjustments of the extreme

scores (Dancey & Reidy, 2007), large sample sizes and replica-
tions (Nolan & Heinzen, 2007), and transformations, nonparamet-
ric and bootstrap procedures, preferably conducted or decided on
before analyzing the data (Aron, Aron, & Coups, 2009; Field,
2013; Langdridge & Hagger-Johnson, 2009). The textbooks we
scrutinized typically did not recommend a thoughtless removal of
outliers, as outliers can be extreme yet actual values of the popu-
lation under investigation (Freedman, Pisani, & Purves, 2007).
However, Howitt and Cramer (2011) stated, “Outliers may be the
result of a wide range of different factors. One does not have to
identify what is causing such big or small values, but it is impor-
tant to eliminate them because they can be so misleading” (p. 28),
although they did mention the option to report the outcome of the
analysis both with complete data and with outliers excluded.
Unfortunately, exclusion of data is not always reported. Of the 161
psychological researchers submitting information about their stud-
ies to PsychDisclosure.org, 11.2% disclosed that they had not fully
reported all excluded observations (LeBel et al., 2013). Further-
more, John et al. (2012) recently surveyed more than 2,000 re-
search psychologists about their involvement in questionable re-
search practices (QRPs) and found that 38% admitted to having
decided to exclude data after looking at the impact of doing so on
the results. Simmons et al. (2011) called these practices research-
ers’ degrees of freedom and argued that their use can result in
strongly inflated Type I error rates. Although Simmons et al. stated

1 Although this is a convenience sample of textbooks, we think it gives
a good illustration of how the handling of outliers is (not) discussed in
recent statistical textbooks.
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that they found inconsistency in and ambiguity about the decision
of removing outliers in reaction time data in 30 Psychological
Science articles, they did not include the subjective removal of data
in their simulation study of inflated Type I error rates. Bakker et al.
(2012) studied the effect of the subjective removal of outliers and
other QRPs and found Type I error rates up to .40, substantial bias
in effect-size estimates, and distortions of meta-analytic results.

This article is concerned with the common practice of deleting
outliers in the context of the independent samples t test (from now
on referred to as t test) when data are nonnormal due to the use of
sum scores based on tests and questionnaires. We first discuss
outliers and nonnormality in psychological data. Then, we review
common practice and study by means of simulations the potential
inflations of the Type I error rate when data are nonnormal. We
also study the merits of a nonparametric and a robust statistical
alternative to outlier removal and give concrete recommendations
to improve the current practice.

Outliers

Barnett and Lewis (1994) defined an outlier in a set of data as
“an observation (or subset of observations) which appears to be
inconsistent with the remainder of that set of data” (p. 4) and
described two types of outliers. The first one is the contaminant,
which refers to a value that comes from a different distribution and
is not necessarily an extreme value. Examples of contaminants are
the score of an ill person in a study of a healthy population or a
temperature datum recorded in degrees Fahrenheit instead of de-
grees Celsius. Insofar that contaminants can be detected on the
basis of supplementary information, it is sensible both method-
ologically and substantively to correct them or delete them from
further analyses. The second type of outlier is the extreme obser-
vation, which refers to a value that is either extremely low or
extremely high but is still from the same distribution as the other
values. As contaminants can be extreme as well, it is often hard to
distinguish contaminants from extreme values. Furthermore, while
some extreme values are expected in normally distributed data,
they are part and parcel of heavy-tailed distributions. Heavy-tailed
distributions may look similar to normal distributions and so may
be hard to distinguish from them (Wilcox, 1998), especially in
small samples that are quite typical of psychological experiments
(Bakker et al., 2012). However, the variance of the heavy-tailed
distribution will be much larger, as well as its standard error of the
mean. As a consequence, the power of parametric tests like t tests
or analyses of variance (ANOVAs) will decrease dramatically
when applied to data from heavy-tailed distributions (Wilcox,
1997).

Despite the doubts that have been raised on the normal distri-
bution as the underlying distribution of much of the data from
psychological research (Micceri, 1989; Taleb, 2007), normality-
based tests like ANOVAs and t tests continue to be the predomi-
nant methods to test for differences in means between groups in
psychology. For instance, in a sample of 252 articles from Psy-
chonomic Bulletin & Review and Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, Wetzels et al. (2011)
found an average of 3.39 t tests per article. Likewise, in our recent
study of the prevalence of reporting errors in a fairly representative
sample of 281 psychological articles that involved null hypothesis

significance testing (Bakker & Wicherts, 2011), we found an
average of 4.29 t tests per article.

Dealing With Outliers

Because of their potential effects on parametric statistical tech-
niques, different methods have been developed to detect outliers.
A widely used method of outlier detection is based on computing

the absolute Z value (estimated with Z � |Xi � X� | ⁄ SD, where Xi is

the observed value, X� is the sample mean, and SD is the sample
standard deviation). A threshold k is chosen that is associated with
low probability in the standard normal distribution. Common val-
ues of k are 2 and 3. This means that from a fully random sample
from a normal distribution, the expected percentage of identified
outliers is 4.55% when k � 2 and 0.27% when k � 3. Other
outlier-detection methods are based on the median absolute devi-
ation statistic (MAD), the interquartile range (IQR), and the dis-
cordancy or slippage test (see Barnett & Lewis, 1994, for an
extensive description of different outlier-detection methods). We
restrict our attention in this article to univariate outlier detection.
We refer to Wilcox’s (2012) description of multivariate methods
like minimum volume ellipsoid, minimum covariance determinant,
minimum generalized variance, and Mahalanobis distances.

After detecting an outlier, many researchers will be inclined to
delete the outlier from the data and continue with their standard
parametric analyses. However, removing outliers from the data set
and continuing with parametric statistical analyses may be a sub-
optimal solution. After removing outliers, the observations become
dependent because the remaining data are dependent on the order
of the data, and therefore, the estimation of the standard error
becomes unsound (see Wilcox, 1998, 2012, for an illustration). As
a consequence, when applying a t test or ANOVA, the variance
will be underestimated after deleting outliers, which will inflate
Type I error rates of these parametric tests (Grissom, 2000; Huber,
1981; Wilcox, 1998). As outliers (contaminants) in the data cause
a deviation from the assumed distribution, nonparametric and
robust statistical methods are good alternatives. Nonparametric
methods do not assume that the data are from a specific distribu-
tion (usually the normal distribution). For example, the Mann-
Whitney-Wilcoxon test (MWW; also called Wilcoxon rank-sum
test or Mann-Whitney U test; Mann & Whitney, 1947; Wilcoxon,
1945) uses the order of data values instead of their actual values to
compare two independent samples. Nevertheless, the MWW still
assumes that the distributions of both groups are equal, and there-
fore, this test is sensitive to heteroscedasticity (unequal variances).
If the distributions are different, a wrong standard error is being
used, which can lead to a conservative or anticonservative Type I
error rate, especially if the group sizes differ as well (Neuhäuser,
Lösch, & Jöckel, 2007; Zimmerman, 1998). Two nonparametric
tests that control the Type I error rate reasonably well (Neuhäuser
et al., 2007) and can take ties into account are the Brunner-Munzel
procedure (Brunner & Munzel, 2000) and Cliff’s method (Cliff,
1996). On the other hand, robust statistical methods, which are
approximate parametric models (Hampel, Ronchetti, Rousseeuw,
& Stahel, 1986; Huber, 1981; Staudte & Sheater, 1990; Wilcox,
1997), can handle both nonnormal distributions and heteroscedas-
ticity and are therefore more useful than nonparametric tests if the
data are heteroscedastic and drawn from a nonnormal distribution
(Erceg-Hurn & Mirosevich, 2008; Wilcox, 1998; Zimmerman,
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1994, 1998). A robust statistical method to compare means in two
independent samples is the Yuen-Welch test (Y-W; Welch, 1938;
Yuen, 1974). Bootstrap methods do not make assumptions about
the underlying distributions and represent another alternative when
the presence of outliers results in a nonnormal distribution (Wil-
cox, 2012). The Welch-Satterthwaite test (Satterthwaite, 1946;
Welch, 1938, 1947) is an alternative of the t test when the assump-
tion of heteroscedasticity is violated and is presented together with
the t test in the software package SPSS. However, this Welch-
Satterthwaite test is not robust to possible outliers in the data
(Zimmerman & Zumbo, 1992).

When Normality Does Not Apply

In this article, we review the widespread practice of outlier
exclusion and study its ramifications for the Type I (and Type II)
error rate when data are nonnormal because of the common use of
sum scores from psychological tests and questionnaires. Previous
simulation studies (MacDonald, 1999; Sawilowsky & Blair, 1992;
Zimmerman, 1994, 1998) focused on the robustness of t tests
against violations of normality, heteroscedasticity, unequal sample
sizes, and the presence of outliers. However, we investigate the
influence of the debatable removal of extreme scores from the
sample on the Type I error rate. More importantly, previous
simulation studies did not involve data distributions that arose
from the use of sum scores, which is arguably a very common
reason for a failure of normality in psychological research. Apart
from the possibility that (underlying) latent traits are nonnormal,
there are psychometric reasons for expecting nonnormality even if
these underlying traits are normal. These reasons include (a) the
fact that sum scores from psychological tests and questionnaires
are always bounded by the number of scoring options, (b) psycho-
logical tests are typically not overly long in experimental work for
practical reasons (e.g., because experimental effects are often short
lived), and (c) the possibility that the item set is tailored to be most
informative for a particular level of the latent trait that does not suit
the study sample well. For instance, many measures of negative
moods are more informative for clinical samples (e.g., those with
depression), leading to negatively skewed distributed sum scores
in nonclinical samples (or in samples that have recovered from
depression). Similarly, a cognitive test used in an experiment may
be deliberately made more difficult to heighten its cognitive de-
mands, which leads to sum scores that are nonnormally distributed.
Such sources of nonnormality in experimental work increase the
likelihood of asymmetric and heavy-tailed distributions in which
large values (although bounded) of Z are quite common. Nonethe-
less, researchers often do not check the assumptions underlying the
t test (Hoekstra, Kiers, & Johnson, 2012) and often invoke large Z
values to exclude particular data points before running a t test or
another statistical analysis.

Below, we present the results of simulations of artificial data
and actual psychological data showing that this practice leads to an
unacceptable inflation of the Type I error rate. We also show that
the problem is aggravated when researchers are given the freedom
to choose (after having seen the data) the level of significance (i.e.,
threshold values of Z) at which they consider data points to be
outlying. The identification of outliers has been shown to be quite
subjective (Collett & Lewis, 1976), but we are not aware of any
research on the implications of such subjective rules of outlier

detection on the Type I error rate of the t test. Furthermore, we also
study the nonparametric MWW test (as we do not focus on
heteroscedasticity) and the statistically robust Y-W test as alter-
natives with a better control of the Type I error rate against a
minimal loss in power if the data do not contain outliers and an
increase in power if the data contain outliers.

Current Practice

To get an indication of the current practice of outlier handling,
we selected six journals for review: Journal of Experimental
Social Psychology, Cognitive Development, Cognitive Psychology,
Journal of Applied Developmental Psychology, Journal of Exper-
imental Cognitive Psychology, and Journal of Personality and
Social Psychology. We selected these journals because they con-
tain mainly experimental research and represent different research
fields within psychology. Furthermore, the first five journals are
available through ScienceDirect, which enabled an in-text search
for relevant studies. Journal of Personality and Social Psychology
was searched by using Google Scholar.

A total of 5,129 articles were published between 2001 and 2010.
The number of articles for each journal separately is specified in
Table 1. Subsequently, we selected the 353 (7%) articles that
contained the word outlier in the text. Note that the actual number
of studies that removed data could be larger due to the use of other
terms than outlier. From each journal, we randomly selected 25
articles that contained the word outlier for close examination.2

Results of the Review

The most commonly used method to detect outliers concerned
the use of the Z score, which was used in 63 articles (46%), where
k ranged from 1.76 to 10 (median � 3). Various authors used a
value of 3.29 with a reference to Tabachnick and Fidell (2001),
who recommended this value because it tests whether a value is
more extreme than the mean of the sample with p � .001. A
problem with this recommendation is that in large samples, some
extreme cases are to be expected. Moreover, as every value is
tested against the mean, as many tests are performed as the number
of data points in the sample, therefore involving as many hypoth-
esis tests as there are participants, which creates a multiple testing
problem (Benjamini & Hochberg, 1995). The Z score method
suffers also from masking, which means that the presence of
outliers inflates the sample mean and sample variance and there-
fore can mask the presence of (other) outliers (Wilcox, 2012).
Furthermore, in small sample sizes, the Z value will never exceed

�n � 1� ⁄ �n (Shiffler, 1988), which makes the Z score especially
unsuitable to identify outliers in small sample sizes. For example,
a Z value of 3.29 cannot be observed in a sample as small as 12
participants.

In only five articles (3.6%) were outliers identified by means of
boxplots or the IQR, which is a better method to identify outliers
than using Z scores as the IQR suffers less from masking (Wilcox,
2012). Therefore, the IQR is generally recommended in textbooks
that introduce statistics for psychology students (e.g., Agresti &

2 Cognitive Development contained only 12 articles that used the term
outlier. All these 12 articles were examined.
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Franklin, 2007; Howitt & Cramer, 2011; Moore et al., 2009). The
IQR is the range that contains 50% of the observations that are all
in the middle of the sample (75th percentile–25th percentile). This
is also the box part of the boxplot. Values that are located 1.5 (or
2) IQR outside the lower and upper quartiles are defined as outliers
by Tukey (1977). Furthermore, the 90th percentile and 95th per-
centile were used as an outlier-detection criterion. None of the
inspected articles used the MAD-median rule, where X is declared
an outlier if

�X � M�
MADN

� 2.24, (1)

where M is the median, MADN is MAD/0.6745, and MAD is the
median of the absolute difference between every value and the
median of these values. This method suffers even less from mask-
ing than the IQR (Wilcox, 2012).

In 106 articles (77%), the outliers were removed before starting
the actual analyses. Besides the removal of outliers, we came
across nine articles (6.6%) where the most extreme values were
replaced with less extreme values. Although this so-called Win-
sorization procedure is a robust method to estimate the mean,
applying statistical analysis like a t test on this adjusted data set
will not result in robust results because the estimation of the
standard error is incorrect (Wilcox, 2012). Hence, this practice is
suboptimal.

We came across additional outlier-detection and handling meth-
ods that were more specific for the analyses of interest. We found
the use of specific cutoff criteria in 14 articles (10.2%), especially
with reaction time data (e.g., remove responses longer than 6,000
ms). A problem with outliers in reaction time data is that the data
are typically positively skewed with a long tail with slow re-
sponses. Miller (1991) already showed that the mean will be biased
when the Z value outlier criterion is applied and sample sizes
differ. Van Selst and Jolicoeur (1994) described other outlier
removal procedures for reaction time data that are recursive and
insensitive to amount of skew and sample size. However, the
variances of the sample will still be reduced, and therefore, the
problem with the inflation of the Type I error rate continues to
apply. Problems with outliers in reaction time data are beyond the
scope of this article.

Additional practices of outlier detection in our set of articles
involved Mahalanobis distance, Cook’s distance, multivariate per-
centiles, and inspection of the scatterplot. In a classification study,
the RESIDAN procedure was used (Bergman, 1988). Finally, in a
few articles, outliers were removed until the data satisfied normal-

ity assumptions based on, for instance, Shapiro Wilks’s test or
certain levels of skewness and kurtosis.

In 24 articles (18%), analyses were reported both with and
without outliers. This procedure clearly lends support to the ro-
bustness of results and is for example recommended by Stevens
(2001) and Howitt and Cramer (2011). However, we also came
across some indications of subjective identification of outliers. For
example, in one article, the authors stated that a nonsignificant
effect was found, but after inspection of the data, the value of k
was changed from 3 to 2, which gave better results. Furthermore,
it was generally unclear whether authors selected their threshold
value in advance.

Thus, our review of common practice of dealing with outliers
showed that (a) the removal of outliers before starting the actual
analyses is common practice and (b) a Z value criterion (typically
with values of 2 or 3) is the most commonly used method to detect
outliers. Next, we study the implications of these practices.

Simulation Study 1: Removing Outliers and Type I
Error Rate

In this simulation study, we investigate the Type I error rate of
the t test when outliers are removed from the data. We start with
randomly generated values from a normal distribution. However,
as stated before, psychological research data are often not normally
distributed (Micceri, 1989). In psychology, variables are often
discrete and bounded because they are based on answers to ques-
tionnaires or tests. Therefore, we generated sum scores based on a
Rasch model, which is comparable to tests with true/false items,
and based on a polytomous item response model, which is com-
parable to tests with polytomous items (e.g., a 5-point Likert-type
scale). We made tests that fitted the latent (or underlying) trait of
the simulated test-takers and tested different test lengths. A test is
often too difficult or too easy for a test-taker; the difficulty of this
test may not match the latent trait of the subjects. For example,
most persons score quite low on the Symptom Check List 90–
Revised (Derogatis, 1994), which is a questionnaire that measures
psychological problems and symptoms of psychopathology.
Healthy test-takers have a low probability of responding positively
to an item with psychopathology symptoms, while persons with
severe problems (high latent trait values) will answer more ques-
tions with yes (their latent trait matches the difficulty of the test).
Therefore, we also simulated data in which tests did not fit the
latent trait distribution but were relatively difficult vis-à-vis the
latent trait distribution in the sample. Given symmetry, our results

Table 1
Descriptive Statistics of Outlier Handling Methods

Journal
Number of

articles Outlier mentioned Removed Number used k
Average value of k

(range) Double analyses

Journal of Experimental Social Psychology 1,063 127 (12%) 21 (84%) 12 (48%) 3.00 (2.00–5.05) 5 (20%)
Cognitive Development 400 12 (3%) 9 (75%) 5 (42%) 2.61 (1.76–3.29) 4 (33%)
Cognitive Psychology 349 32 (9%) 17 (68%) 8 (32%) 2.50 (2.00–3.00) 2 (8%)
Journal of Applied Developmental Psychology 542 33 (6%) 17 (68%) 9 (36%) 2.93 (2.00–3.29) 5 (20%)
Journal of Experimental Cognitive Psychology 685 63 (9%) 21 (84%) 15 (60%) 2.70 (1.96–3.29) 0 (0%)
Journal of Personality and Social Psychology 2,090 86 (4%) 21 (84%) 14 (56%) 3.82 (2.36–10.00) 8 (32%)

Total 5,129 353 (7%) 106 (77%) 63 (46%) 3.01 (1.76–10.00) 24 (18%)
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apply equally well to instances where tests are too easy for the
sample of test-takers.

Besides simulated data, we used two large actual data sets to
study Type I error rates. The first data set involved responses to the
Raven’s Progressive Matrices (Raven, Raven, & Court, 2003;
dichotomous data), and the second data set involved responses
to the Dutch (shortened) version of the Profile of Mood States
(POMS; Lorr, McNair, & Droppleman, 1992; polytomous data).
In these real-data simulations, a random variable can be used to
make artificial groups in which the null hypothesis is expected
to be true.

Method

To investigate the influence of removing outliers on the Type I
error rate, we collected 100,000 p-values of a t test comparing two
samples of the same distributions. In the first simulation, we used
scores that are normally distributed (N�0,1).

To simulate dichotomous data, we used a Rasch model,
which is an item response theory (IRT) model (Embretson &
Reise, 2000). The probability of person j answering an item i
correctly, Pr(Xij � 1), can be calculated based on the difficulty
(�) of the item i and the ability (�) of person j with the
following equation:

Pr(Xij � 1) �
exp(�j � �i)

1 � exp(�j � �i)
. (2)

Instead of sampling scores directly from a distribution (as done in
the first part), we sampled theta values from a normal distribution
(N�0,1). Furthermore, we sampled beta values from the same
distribution. This will lead to a test that fits the ability of the
participants. We used four different test lengths (5, 10, 20, and 40
items) that are typical for psychological tests (Emons, Sijtsma, &
Meijer, 2007). We calculated for each item–person pair the prob-
ability of answering the item correctly with Equation 2. If this
probability of answering the item correctly was larger than a value
sampled from a uniform distribution (value between 0 and 1), the
person has answered the item correctly, and a value of 1 is
assigned to this person–item pair. Otherwise, a 0 is assigned to
the pair. Thereafter, a sum score is calculated for each person
by adding all the item scores. Thus, a person with a high theta
value has a higher chance of answering items correctly and will
therefore have a higher sum score. To make a difficult test, we
used a normal distribution of beta with a mean of 3 (N�3,1).
The distribution of theta remains the same across the cells of the
simulation study.

In the third part, we simulated the sum scores based on a
polytomous IRT model. Samejima (1997) developed the graded
response model (GRM), with which the probability of scoring in a
specific category is modeled by the probability of responding in
(or above) this category minus the probability of responding in (or
above) the next category. Let Ck denote the number of response
categories of item k; then, there are Ck � 1 threshold values
between the response options. We chose to use equal discrimina-
tion parameters in our simulation study (a � 1). Therefore, the
threshold values can be calculated with Equation 2 (see Samejima,
1997, for the complete equations). To simulate sum scores based
on polytomous items with five answer categories, we generated

four beta values (number of answer options minus one), which
correspond to the threshold values between different answer cat-
egories. These beta values were drawn from a normal distribution
(N�0,1) and subsequently ordered. For every item–person pair,
the four probability threshold values of the item were calculated by
using Equation 2 for the four betas. Thereafter, a random value
was generated from a uniform distribution (value between 0 and
1). This value was then compared with the threshold values to
determine the answer’s category. Next, a sum score was calculated
for each person by adding all the item scores. We used five
different test lengths (2, 5, 10, 20, and 40 items). To make a
difficult test, we generated betas from a normal distribution with
mean 3 (N�3,1).

Furthermore, we used a real data set that consisted of the
answers of 2,301 first-year psychology students to the Raven’s
Progressive Matrices (Raven et al., 2003), administered (with a
time limit of 20 minutes) between 2001 and 2009 at the Uni-
versity of Amsterdam (Amsterdam, the Netherlands). This test
measures fluid reasoning and consist of 36 multiple-choice
items. In each item, the subject is asked to identify the missing
element that completes a pattern and can therefore be answered
correctly or wrongly. We used the total score (number of items
answered correctly) and the sum score of the first 10 items. As
the items increase in difficulty, the first 10 items will make an
easy test.

In the last part, we used a real data set that consisted of the
answers of 5,912 first-year psychology students to the Dutch
(shortened) POMS (Lorr et al., 1992), administered between 1989
and 2001 at the University of Amsterdam (Wicherts & Vorst,
2004). This questionnaire consists of five scales (Tension-Anxiety,
Depression-Dejection, Anger-Hostility, Vigor-Activity, and
Fatigue-Inertia). These scales consist of 6, 8, 7, 5, and 6 items,
respectively, and are answered on a 5-point Likert-type scale.

We compared different sample sizes (20, 40, 100, and 500 per
cell), which cover common sample sizes in psychology research
(Bakker et al., 2012). For each sample size, we randomly drew
100,000 samples from the real data set. From each sample, we
removed outliers with an absolute Z value larger than k. We used
different values of k (2 to 4 in steps of 0.1), performed for every
value of k an independent samples t test, and collected the p-value.
After collecting the p-values, we calculated the (two-sided) Type
I error rate by counting the number of p-values below .05 and
dividing it by the total number of collected p-values. We calculated
the Type I error rate of a two-sided t test because we did not have
specific expectations about directionality. However, approxi-
mately the same results will be expected when calculating the
Type I error of a one-sided t test. In discussing the results, we
focus on some common values of k (2, 2.5, and 3). Furthermore,
we investigated the subjective use of k. This means that a com-
parison is counted as statistically significant if the test showed a
statistically significant difference when all values were included in
the sample or when the test showed a statistically significant
difference when k is 3, 2.5, or 2. This is comparable with adapting
k until a statistically significant p-value is found. This reflects a
manner in which researchers can chase for significance (Ioannidis,
2005, 2012), which appears to be a common practice in psychol-
ogy (John et al., 2012).
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Results

Normally distributed scores. Results of the normally distrib-
uted scores are presented in Figure 1 (the tables of this result and
all the following results are given in the online supplemental
materials). Under normality, Type I error rates of the t test became
higher with decreasing k. Larger sample sizes resulted in a higher
Type I error rate than smaller sample sizes. When k equaled 3, the
Type I error rate was only somewhat higher (between .051 and
.056); when k was 2.5, it was already between .062 and .071; and
when k was 2, the Type I error rate doubled to values between .098
and .108. The effects of subjective use of k are depicted in Figure
1 on the left side of the vertical dotted line. Results indicate that
subjective use of k can result in an even higher Type I error rate
(between .108 and .125) in normally distributed data.

Rasch model–based sum scores. Next, we consider data
based on sum scores simulated with the Rasch model. We start
with a test that fitted the latent trait distribution (theta and beta
values coming from the same distribution). Again, Type I error
rates of the t test became larger as values of k decreased (see the
left panel of Figure 2). When k was 3, the Type I error rate
remained close to .05. When k equaled 2.5, the Type I error rate
increased somewhat to values between .057 and .064, with larger
values for shorter tests. However, for k � 2, we see a sharp rise in
the Type I error rate to values between .101 and .167, with larger
rates for shorter test and larger samples. Subjective use of k can
result in even higher Type I error rates (ranging from .104 to .189).

With sum scores based on the Rasch model with difficult items
(average � � 3), the Type I error rate became quite large even with
larger values of k (cf. the right panel of Figure 2 and in Table 2 in
the online supplemental materials). With k � 3, Type I error rates
already increased to values between .075 and .137, and with k �
2.5, they increased to values between .090 and .155. When k was
2, the Type I error rates lay between .103 and .173. Larger Type I
error rates are found for shorter test and larger sample sizes. We
see a somewhat irregular line for a difficult test with five items and 20
subjects. This is a simulation artifact, as the scores in this situation can
only range from 0 to 5 (so an increased number of simulations will not
smooth this line). Again, subjective use of k resulted in even higher
Type I error rates that ranged from .125 to .345.

GRM-based sum scores. Now, we consider sum scores based
on polytomous data simulated under the GRM. With a test that
fitted the latent trait (theta and beta values coming from the same
distribution), Type I error rates of the t test became larger with
smaller values of k (see left panel of Figure 3). For the different
number of items, we see comparable patterns: The Type I error rate
was still very close to .05 when k equaled 3 (between .049 and
.052) or 2.5 (between .050 and 0.059). Thereafter, we see a sharp
increase in Type I error rates, which led to Type I error rates
between .095 and .144 when k was 2. Subjective use of k resulted
in Type I error rates that ranged from .096 to .148.

With sum scores based on the GRM with difficult items (aver-
age � � 3), the Type I error rates became larger with smaller
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Figure 1. Type I error rate of a t test of sum scores directly generated from a normal distribution for different
values of k and different sample sizes, and of subjectively used values of k (sub, left side of vertical dotted line).
The horizontal gray line denotes the nominal Type I error rate (� � .05).
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Figure 2. Type I error rate of a t test of sum scores based on a Rasch model for different values of k and
different sample sizes and different test lengths for well-fitting items (left column) and difficult items (right
column). Type I error rate of subjective use of k is presented on the left side of the vertical dotted line in each
plot, and the horizontal gray line denotes the nominal Type I error rate (� � .05).
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Figure 3. Type I error rate of a t test of sum scores based on a graded response model for different values of
k and different sample sizes and different test lengths for well-fitting items (left column) and difficult items (right
column). Type I error rate of subjective use of k is presented on the left side of the vertical dotted line in each
plot, and the horizontal gray line denotes the nominal Type I error rate (� � .05).
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values of k, as can be seen in the right panel of Figure 3. With this
difficult test, the Type I error rates were already between .078 and
.175 when k � 3. When k � 2.5, the Type I error rates lay between
.092 and .226, and when k � 2, they varied from .104 to .222.
Subjective use of k resulted in even higher Type I error rates that
ranged from .126 to .452.

Real data with dichotomous scores: Raven’s Progressive
Matrices. To corroborate the results of the previous simulations
with actual data, we used a data set with scores on dichotomous
items from Raven’s Progressive Matrices. In each iteration, we
drew two random samples of the same size from the large data set
(without replacement), which enabled us to compute Z values and
t tests in each iteration. Given the randomness of the selection into
subgroups, the null hypothesis of the t tests can be assumed to be
approximately true.

The distributions of the sum scores on the Raven’s test are
presented in Figure 4, for the entire test (left panel) and the easy
test (right panel), which was based on the first 10 items. The total
scores showed a moderately skewed distribution (skew-
ness � �0.748), while the sum scores based on the first 10 items
showed a skewed distribution (skewness � �2.980).

The results of the real data simulation are presented in Figure 5,
where it can be seen that Type I error rates of the t test were largest
for smaller values of k. Some lines in this figure are somewhat
irregular because of a simulation artifact due to scores being
bounded integers. For the full test scores, removing outliers led to
increased Type I error rates between .059 and .065 when k was 3,
between .067 and .070 when k was 2.5, and between .087 and .094
when k was 2. Subjective use of k resulted in Type I error rates
between .107 and .127. Removing outliers from data in which the
sum scores were based on the first 10 items led to Type I error
rates between .082 and .086 when k was 3, between .097 and .127
when k was 2.5, and between .104 and .144 when k was 2. Again,
subjective use of k increased the Type I error rates to values
between .138 and .198.

Real data with polytomous scores: Profile of Mood States.
We used the five scales of the POMS as an example of real
polytomous data. As can be seen in Figure 6, the distributions of
the scale scores are not normal. The scores on the subscale Vigor
were closest to normal, with a skewness of �0.119. Depression
scores were most skewed (skewness � 1.030). The distributions of
subscale scores of Anger, Fatigue, and Tension were moderately
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Figure 3. (continued)
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skewed, with skewness values of 0.858, 0.523, and 0.651, respec-
tively. Figure 7 presents the Type I error rates of the different
scales. The scale score (Vigor) that aligned most with a normal
distribution showed a Type I error rate close to .050 when k was
3, but when k was 2.5 or 2, the Type I error rate rose to values
between .058 and .062 and between .102 and .125, respectively.
The other subscale distributions were more skewed, which led the
Type I error rates to range from .050 and .087 even when k was 3.
When k was 2.5, the Type I error rate ranged between .069 and
.111, and when k was 2, the Type I error rate ranged between .100
and .136. Finally, subjective use of k resulted in Type I error rates
that varied from .107 to .169.

Simulation Study 2: Type I Error Rate and Power of
Y-W and MWW

The simulations above show that removing outliers can severely
inflate the Type I error rate of the t test, especially when the level
of k is chosen subjectively. The removal of outliers is therefore not
recommended. Nevertheless, if outliers are part of the data, this
can have other undesired effects like drops in power (Osborne &
Overbay, 2004; Wilcox, 1997). As described above, the Y-W and
the MWW tests are less influenced by the presence of outliers and
enable a comparison of means in two independent samples without
the need to exclude outliers (see the Appendix for a more detailed
description of the Y-W and the MWW tests). Here, we investigate
whether these tests have a power that can match the power of the
t test when no outliers are present in the data. The t test has more
power than both the Y-W and the MWW tests when both samples
are from the same normal distribution (Yuen, 1974; Zimmerman &
Zumbo, 1992). However, with long-tailed distributions, the power
of the Y-W test is superior to the power of the t test (Yuen, 1974),
and the MWW test has more power than the t test when the
distribution is skewed, when it has heavy tails, and/or when sample
sizes are small (Zimmerman & Zumbo, 1992). Keselman, Othman,
Wilcox, and Fradette (2004) found the Y-W test to have good
control of Type I error rates even in extreme instances of hetero-
geneity and nonnormality, especially after transformation for
skewness and with bootstrapping.3 In typical psychological re-
search in which the data are derived from psychological tests, the
distribution is different than investigated thus far, as the distribu-

tion is bounded and sample sizes are small. Therefore, we study
the power of the Y-W and the MWW tests4 under more common
data patterns. Furthermore, we investigate the Type I error rate and
the power of the t test and compare them to the results of the Y-W
and MWW tests when outliers are present in the data. We do not
investigate the power of the t test after removing outliers based on
k, as we are interested in a method with both a nominal Type I
error rate and good power either with or without outliers. Our first
simulation study showed that the Type I error rate of this method
increases substantially when no outliers are added to the data.

Method

We used the same structure as in the first simulation study. We
started with normally distributed scores with a sample size of 20,
40, 100, and 500 in each sample. Both samples were drawn from
a normal distribution. The first sample was drawn from a standard
normal distribution (N�0,1), and the second sample had a popu-
lation mean of 0.0 (no effect), 0.2 (for a small effect), 0.5 (for a
medium effect), or 0.8 (for a large effect) and a population stan-
dard deviation of 1 (i.e., homoscedascity). We compared the first
sample with all the four other samples by means of the t test, the
Y-W test with 20% trimming, and the MWW test. We used the
function yuen() from the WRS package for R that can be
downloaded from http://r-forge.r-project.org/projects/wrs/ and the
function wilcox.test() for the MWW test. We did 100,000
comparisons and calculated the proportion of samples that showed
an effect at � � .05. This gives the Type I error rate if the two
samples come from the same distribution (both from N�0,1) and
the power when samples from different distributions are compared.

3 Despite small differences in coverage rates between variants of the
Y-W test, in Keselman et al.’s (2004) study, the average performance of the
standard Y-W test was quite similar to the performance of the bootstrapped
and bootstrapped plus transformed variants. Because we do not consider
scenarios of nonnormality as extreme scenarios as those by Keselman et al.
(in light of our focus on test scores), we restrict the attention to the standard
Y-W test here.

4 We also investigated a permutation test, two variants of the MWW test
that take ties into account (Cliff’s method and the Brunner-Munzel proce-
dure), and a bootstrap version of the Y-W test (see also Keselman et al.,
2004).
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Figure 4. Distribution of the sum scores of Raven’s Progressive Matrices.
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We also generated sum scores based on a Rasch model and
based on a GRM. Therefore, we used theta values from N�0,1 for
the first sample, and from N�0,1, N�0.2,1, N�0.5,1, or N�0.8,1
for the second sample. Again, we generated betas from the same
distribution of the thetas in the first sample for a more fitting test
and generated beta from N�3,1 for a difficult test. Sum scores
were further generated in the same way as in the first simulation
study and based on a model that was measurement invariant across
samples (i.e., same item parameters across the two samples).
Again, we used test lengths of 5, 10, 20, and 40 items for both the
Rasch- and the GRM-based sum scores and used an additional test
length of two items for the GRM-based sum scores. The Type I
error rate and power of the three different tests were calculated in
the same way as for the normally distributed scores.

Furthermore, to investigate the Type I error rate and the power
of the t test, Y-W test, and MWW test when contaminant outliers
are present, we did the same as above but used a mixed-normal
distribution, consisting of samples from N�0,1 (or N�0.2,1,
N�0.5,1, or N�0.8,1, for small, medium, and large effect sizes,
respectively) with probability .95, and from N�0,400 (or
N�0.2,400, N�0.5,400, or N�0.8,400, for small, medium, and
large effect sizes, respectively) with probability .05. Researchers
have used this distribution widely to simulate heavy-tailed distri-
butions with outlying data (Zimmerman, 1998).

Results

The plots on the right in Figure 8 show that the Type I error rate
(the three solid bars on the left where d � 0.0) remained close to
.05 for all three tests when no outliers were present in the normal
distributed data. The three plots on the right show the power of the
different tests for different true effect sizes. When no outliers were
present in the samples, the power of the t test was somewhat higher
than that of the MWW test, and the power of the MWW test was
somewhat higher than that of the Y-W test. However, these dif-
ferences were quite small.

The Rasch- and GRM-based sum scores show the same patterns.
As there are many simulation results, we have placed the results in

the online supplemental materials and show only one representa-
tive example (GRM-based, 40 items, and 40 subjects) in Figure 9.
Without outliers, the Type I error rates of the three tests were
comparable. Only when samples were small and data were skewed
was the Type I error rate of the Y-W test too conservative, with a
Type I error rate as low as .015 for a polytomous test with two
items and a sample size of 20. The power of the Y-W and the
MWW tests was only slightly lower than the power of the t test for
a test that fitted the samples’ latent trait distribution. Furthermore,
the power of the MWW test is again slightly superior to the power
of the Y-W test. When the sum scores are based on a difficult test
(skewed distribution of sum scores) with polytomous items, the
power of the MWW test is comparable or even slightly higher than
the power of the t test.

Results for power and Type I error rate were quite different
when outliers were present in the data. The Type I error rate
(the three bars with shading lines on the right in Figure 8) of the
t test was very low when sum scores were directly generated
from the mixed-normal distribution, especially with smaller
sample sizes. On the other hand, both the Y-W and the MWW
tests kept the Type I error rate close to .05. Moreover, the power
of the t test was also dramatically low, while the power of both
the Y-W and the MWW tests remained good (only somewhat
lower than without outliers in the data), with a small advantage
for the MWW test.

We do not see the same devastating drop in power on the t
test for Rasch- and GRM-based sum scores when outliers are
present in the data (Figure 9). The outliers in the samples from
the mixed-normal distribution were extreme and therefore had a
profound influence on the performance of the t test. In the
Rasch- and GRM-based simulations, even if the theta of the
outlying case is very high or very low, the sum scores remain
bounded by the number of questions and the number of answer
options. Still, with test lengths of over 10 items or when the test
was difficult (skewed sum scores), the Y-W and the MWW tests
outperformed the t test. Furthermore, the MWW test performed
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somewhat better than the Y-W test, although the differences are
small.5

Taken together, the simulations in Study 2 show that both the
MWW and Y-W tests perform very well compared to the t test
under most scenarios. When no outliers were present, the MWW,
Y-W, and t tests provided similar Type I error rates and power.
However, when outliers were present, both the Y-W test and the
MWW test outperformed the t test in terms of power and Type I
error rates.

Discussion

Removing outliers before starting the actual analyses will result
in smaller estimates of the standard error as opposed to not

removing them. This, then, leads to an unjust underestimation of
the Type I error rate (Wilcox, 2012). Nevertheless, our examina-
tion of articles in six psychological journals shows that the re-
moval of outliers before applying the statistical analyses is a
common practice, with 77% of reviewed articles that mentioned
the word outlier doing it. Although various outlier-detection meth-
ods are used in practice, the most popular method is based on the

5 The permutation test performed comparably to the t test. Cliff’s
method and the Brunner-Munzel procedure performed comparably to the
MWW test, with a very small advantage for the Brunner-Munzel proce-
dure. The bootstrap Y-W test performed comparably to the Y-W test.
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Z score, with Z � 3 as the most common threshold value. How-
ever, threshold values of Z � 2 were not uncommon.

We investigated the effect of outlier removal on the Type I error
rate with a simulation study in which the data were nonnormal
because of the use of sum scores. We simulated sum scores based
on both dichotomous items and polytomous items, as analyses of
sum scores on the basis of tests and questionnaires are common in
psychological research. We also simulated more difficult tests,
which result in skewed distributions, and used actual data to
empirically confirm our results. Results suggest that with a thresh-

old value of Z � 3 or larger and a not overly skewed distribution,
the Type I error rate remains around the nominal value after
removal of outliers from the data. However, when the distribution
is skewed, even a threshold value of Z � 3 will inflate the Type I
error rate substantially (to values of .175 in our simulations). Such
a threshold for outlier removal is therefore not recommended for
skewed distributions. Furthermore, as the distribution of psycho-
logical variables is often not normal (Micceri, 1989) and deter-
mining the actual form of the underlying distribution is difficult
(especially with small data samples), we do not recommend using
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this threshold value. A threshold value of Z � 2, which is quite
commonly used in practice, will inflate the Type I error rate up to
.222 in our simulations.

Furthermore, our examination of several psychology journals
suggests that thresholds for outlier deletion often appear chosen
without clear external (or a priori determined) guidelines. Together
with survey results from John et al. (2012), who found that 38% of
psychological researchers admitted to having decided to exclude
data after looking at the impact of doing so on the results, this
suggests that the subjective use of the threshold for excluding
outliers is not uncommon. Our simulation shows that subjective
use of threshold values can inflate the Type I error rate to values
as large as .452, especially when the population distribution is
skewed. Furthermore, the influence of removing outliers on the
Type I error rate could be even greater because we did not take into
account differences in sample size and heteroscedasticity, which
can also inflate the Type I error rate (Sawilowsky & Blair, 1992).
Therefore, we do not recommend removing outliers before apply-
ing the actual analyses as this will lead to an increased Type I error
rate. Moreover, when the (subjective) removal of outliers is com-
bined with other commonly used QRPs, the Type I error rate will
be inflated even more (Bakker et al., 2012; Simmons et al., 2011).
Inflated Type I error rates result in the publication of false-positive
findings. Particularly in combination with publication bias, such
false-positive findings may be difficult to correct (Asendorpf et al.,
2013; Bakker et al., 2012; Ferguson & Heene, 2012; Ioannidis,
2012; Pashler & Harris, 2012; Rosenthal, 1979).

On the other side, keeping extreme contaminants or extreme
values from a nonnormal distribution in the data can lower the
power of standard analyses, which makes it harder to detect a
genuine effect. We saw an especially profound effect on the power
of the t test when the scores were directly generated from a

mixed-normal distribution (the power did not pass .1 for a large
effect, while the power of the t test without outliers in the data lay
between .61 and 1.00, depending on the sample size). Yet, as
questionnaire data are bounded, extreme values of sum scores are
also bounded. Especially in very short tests that fit the ability of the
test-taker, the t test showed acceptable power even with the pres-
ence of outliers in the data. However, in longer tests and/or in
difficult tests, the loss in power of the t test is substantial. Alter-
natives like the robust Y-W test and the nonparametric MWW test
are less dependent on the actual distribution of the data and
therefore less influenced by the presence of outliers in the data
than the t test. Both the Y-W test and the MWW test had higher
power than the t test (except for very short tests) when outliers
were present and performed well under most conditions of the
second simulation study. Furthermore, when no outliers are part of
the data, the Type I error rate and the power of the Y-W and
MWW tests appear to be comparable to the t test’s. Therefore, both
tests are a good replacement for the t test, also when no outliers are
part of the data.

The MWW test has a somewhat higher power that the Y-W test,
and the Y-W test can be somewhat conservative. Therefore, in the
investigated situations, the MWW test is preferred above the Y-W
test (but see Footnote 5 for two other alternatives). However,
because the MWW test is sensitive to heteroscedasticity (espe-
cially when sample sizes differ; Erceg-Hurn & Mirosevich, 2008;
Wilcox, 1998; Zimmerman, 1994, 1998), the Y-W test might be a
better replacement of the t test when heteroscedasticity is expected.
Heteroscedasticity is often encountered in psychological data. For
example, Ruscio and Roche (2012) found a variance ratio between
groups larger than three in 23% of the 453 published studies that
they investigated. Heteroscedasticy is expected when groups differ
in latent trait variances, but in other cases as well. Specifically,
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Figure 9. Proportion of statistically significant p-values of the t test, Yuen-Welch test (Y-W), and Mann-
Whitney-Wilcoxon test (MWW) of graded response model–based sum scores based on a test with 40 items and
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even if latent trait variances are equal, mean latent trait differences
can lead to group differences in sum score variances if item
difficulties are better suited for one group as opposed to the other
group. For instance, if items in a test for depression are particularly
well suited to measure depression, one could expect lower sum
score variance in healthy samples for which items are relatively
difficult (see, e.g., Wicherts & Johnson, 2009, who discussed this
problem in the realm of variance decompositions). Further re-
search is needed to investigate the performance of the Y-W test
and the MWW test in the presence of outliers, combined with
different sample sizes and heteroscedasticity.

Because we simulated sum scores based on item response mod-
els, another option would be to model the data with generalized
item response models with groups as an additional predictor.
However, the typically small sample sizes in psychological re-
search will often not be large enough to estimate the parameters
accurately. In addition, for questionnaire data, new ways to detect
outliers are being developed that take into account the scores on all
the different items (Zijlstra, Van der Ark, & Sijtsma, 2007). This
will make it possible to better determine potential outliers in
questionnaire data when sample sizes are sufficiently large.

In this study, we have focused on the comparison of the means
of two groups, which is a basic and often-used research design in
psychology. In correlational research (or in other research de-
signs), the effect of outliers on the results of the statistical analyses
can be quite profound too. In further research, these other research
designs should be investigated as well. For many of these research
designs, nonparametric (Gibbons & Chakraborti, 2003) or robust
(Wilcox, 2012) statistical methods are available. However, not all
methods currently have nonparametric or robust counterparts.
Moreover, we did not consider in detail all existing alternatives to
the t test when the data are skewed or when the data include
outliers. Notably, Keselman et al. (2004) showed that the Y-W test
can also be combined with bootstrapping and a transformation for
skewness to control the Type I error rate. Other alternatives are a
permutation test and two variants of the MWW test that take ties
into account (Cliff, 1996; Brunner & Munzel, 2000; cf. Wilcox,
2012). In our additional simulations, these alternatives performed
quite similarly to the standard MWW and Y-W tests (see Footnote
5). The MWW test can be executed in standard statistical packages
like SPSS. The WRS package for R contains functions for the Y-W
test and the other discussed tests.6

One might notice that the term outlier is only used in 7% of the
articles that we examined. However, other terms and sentences like
extreme values or we removed all values with a Z value larger than
are probably also used to describe outlier identification and re-
moval. This study was not designed to provide exact estimates of
the different outlier handling methods but merely to give an
indication of the common practice of removing outliers before the
actual statistical analyses. Eighteen percent of the authors reported
that they did analyses with and without the outliers. This is a better
procedure and often recommended in statistical textbooks (e.g.,
Agresti & Franklin, 2007; Howitt & Cramer, 2011; Stevens, 2001),
but if outcomes differ substantially, it is still not clear what to do.

In many of the investigated scenarios, the rise in Type I error
rate is quite small and might therefore not be that influential.
However, when these practices are combined with other common
QRPs as described by John et al. (2012), the chance of finding a
false-positive result can be equal to .50 (Bakker et al., 2012). Since

conducting and publishing of replication studies are still not the
standard, the correction of false-positive findings remains subop-
timal and slow (Pashler & Harris, 2012). Researchers need to
become aware of the influence of common decisions in the anal-
ysis of the results and use methods that minimize both the Type I
and Type II error rates. Therefore, we present the following
recommendations.

Recommendations
• Correct or delete erroneous values.
• Based on prior research, it is not recommended to use Z scores

to identify outliers. We recommend methods that suffer less from
masking like the IQR or the MAD-median rule instead.

• Decide on outlier handling before seeing the results of the
main analyses, and if possible, preregister the study at, for exam-
ple, the Open Science Framework (http://openscienceframework
.org/).

• If preregistration is not possible, report the outcomes both
with and without outliers or on the basis of alternative methods.

• Report transparently about how outliers were handled.
• Do not carelessly remove outliers as this increases the prob-

ability of finding a false positive, especially when using a thresh-
old value of Z lower than 3 or when the data are skewed.

• Use methods that are less influenced by outliers like nonpara-
metric or robust methods such as the Mann-Whitney-Wilcoxon
test and the Yuen-Welch test, or researchers may choose to con-
duct bootstrapping (all without removing outliers).

Whenever there are likely outliers in the data or when data are
nonnormal for the typical psychometric reasons we have de-
scribed, these recommendations could help researchers properly
control Type I and Type II error rates.

6 The functions yuen(), cidv2(), bmp(), permg(), and
yuenbt() of the WRS package for R were used to execute the Y-W test,
Cliff’s method, the Brunner-Munzel procedure, a permutation test, and a
bootstrap version of the Y-W test, respectively.
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Appendix

Description of the Mann-Whitney-Wilcoxon Test and the Yuen-Welch Test

Mann-Whitney-Wilcoxon Test

A nonparametric method of testing to compare two populations
is the Mann-Whitney-Wilcoxon test (Mann & Whitney, 1947;
Wilcoxon, 1945). Both independent samples X1, X2, . . . , Xm and
Y1, Y2, . . . , Yn are put in ascending order. All values are replaced
by ranks ranging from 1 to m 
 n. When there are tied groups, take
the rank to be equal to the midpoint of the group. The ranks of each
group are added, and then the lowest of these ranks is the test
statistic W. W can be transformed in a Z score by

Z �
W � W�

SE W�
, where

SE W� ��n1n2(n1 � n2 � 1)

12
.

The null hypothesis is rejected if

�Z� 	 z1�
 ⁄ 2,

where z1��/2 is the 1 � a/2 quantile of standard normal distri-
bution.

Yuen-Welch Test

A robust method for comparing trimmed means is the Yuen-
Welch Test (Yuen, 1974). nj is the sample size associated with the
jth group, and hj is the number of observations left in the jth group
after trimming. Put the remaining observations in ascending order
yielding X(1j) � . . . � X(nj). The trimmed mean of the jth group
can be estimated with

X�tj �
1

hj
�

i�gj�1

nj�gj

X(ij),

and the Winsorized mean and variance with

X�wj �
1

nj
�
i�1

nj

Xwij, where

Xwij � X(gj�1)j if Xij � X(gj�1)j

� Xij if X(gj�1)j � Xij � X(nj�gj)j

� X(nj�gj)j
if Xij 	 X(nj�gj)j

swj
2 �

1

nj � 1�i�1

nj

(Xij � X�wj)
2.

Yuen’s test statistic is calculated with

Ty �
X�t1 � X�t2

�d1 � d2

, where

dj �
(nj � 1)swj

2

hj(hj � 1)
.

The degrees of freedom are

�Vy �
(d1 � d2)

2

d1
2

h1 � 1
�

d2
2

h2 � 1

.

The null hypothesis is rejected if

�Ty� 	 t,

where t is the 1 � a/2 quantile of Student’s T distribution with vy

degrees of freedom.

Received January 18, 2013
Revision received November 9, 2013

Accepted November 12, 2013 �

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

19OUTLIERS AND TYPE I ERROR RATE


