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ENVIRONMENTAL JUSTICE (EJ)

is defined broadly as the dispro-
portionate distribution of envi-
ronmental ‘‘goods’’ and ‘‘bads,’’
with the burden of the bads and
the dearth of the goods falling
mainly on racial and ethnic mi-
norities, lower income popula-
tions, and other vulnerable
groups. Since the 1980s, a large
body of literature on EJ has
emerged, mainly focused on areas
in the United States and often
using geographic information sys-
tems (GIS) to assess the proximity
of vulnerable subpopulations to
environmental hazards as a proxy
for exposure and the potential for
deleterious health impacts.1---11 GIS
technology is well suited to EJ
research because it allows for the
integration of multiple data sources,
cartographic representation of data,
and the application of various spa-
tial analytical techniques for prox-
imity analysis.11,12 Although maps
are effective in visually demon-
strating the disproportionate spatial
distribution of environmental haz-
ards, researchers have commented
on the challenges and limitations
inherent in spatial analysis and
questioned GIS’s efficacy in dem-
onstrating pollution’s health im-
pacts. Spatial and attribute data
deficiencies and methodological
problems, especially those related to
geographical considerations, have
been well documented.6,11,13---23

However, development of meth-
ods for producing more meaning-
ful spatial analyses is feasible, and
health geographers and other re-
searchers have been using GIS to
demonstrate the correspondence
among factors such as proximity to

hazards, disproportionate expo-
sure, and health disparities.

We reviewed methods com-
monly used by EJ researchers in
articles that were selected to pro-
vide a comprehensive overview
and synopsis of quantitative re-
search on EJ and disproportionate
proximity to environmental haz-
ards over the past 2 decades. We
searched these databases for rele-
vant published literature: Socio-
logical Abstracts, Social Science
Citation Index, Science Citation
Index, and the National Library of
Medicine’s PubMed. We initially
selected studies by using the
search terms environmental justice,
environmental equity, and environ-
mental racism. We attempted to
find studies exhibiting as wide
a range as possible in terms of
geographic extent studied, variety
of hazards examined, and analyti-
cal techniques used. We excluded
literature review articles and those
using purely theoretical or quali-
tative approaches. The final list of
references selected for our critical
review of EJ research methodol-
ogy consisted of quantitative case
studies (n = 80) that examined
racial---ethnic and socioeconomic
disparities in the distribution of,
or proximity to, environmental
health risks, pollution sources,
and undesirable land uses. Most
of these studies indicated a
disproportionate distribution of
environmental burdens with re-
spect to both race and socioeco-
nomic status (SES). Although SES
variables pointed to more sig-
nificant risks of exposure than
race,17,24---27 race tended to be
significant even when controlling

for SES.28---31 We summarized the
most frequently cited and signif-
icant studies (n = 55) reviewed in
Online Supplemental Table 1
(available at www.ajph.org),
which includes the study param-
eters and scope, pollution indi-
cators used, methodology used,
and findings.

We provide a historical over-
view and critical assessment of (1)
analytical approaches used to
spatially define the boundaries of
areas potentially exposed to envi-
ronmental hazards, (2) methods
for estimating population charac-
teristics of such areas, and (3)
emerging geostatistical techniques
that address limitations of con-
ventional approaches.

SPATIAL DEFINITION OF
PROXIMITY AND
EXPOSURE TO HAZARDS

Spatial coincidence, in the con-
text of EJ research, is a technique
that assumes potential exposure
to environmental hazards is con-
fined to the boundaries of pre-
defined geographic entities or
census units containing such
hazards.

Spatial Coincidence Analysis

Although its implementation
has changed over time, the most
widely used and traditional
method of spatial coincidence
analysis, known as unit---hazard
coincidence,32 uses the presence
of a hazard source within an
analytical unit as a proxy for en-
vironmental exposure. Sociode-
mographic characteristics of spatial
units containing a hazard (host
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units) are compared with those that
do not contain such hazards (non-
host units) to determine dispro-
portionate proximity or exposure.
Several influential national-level
EJ studies have used the location
of hazardous facilities within zip
codes33,34 or census tracts35,36 to
represent risk burdens. Some
studies have even used the county
as a spatial unit for coincidence
analysis.37,38

The choice of analytical unit to
represent the host area for EJ re-
search has been the subject of
considerable debate because dif-
ferent units potentially lead to
different conclusions regarding
the role of race---ethnicity or in-
come.8,17,39---41 Regardless of the
analytical unit selected, the unit---
hazard coincidence method is
problematic for 3 reasons. First,
most applications do not draw
a distinction between spatial units
that host 1 hazard source and
those that contain several sources.
Second, this approach ignores
boundary effects that deal with
the possibility that a facility could
be so close to the edge of a host
unit that a neighboring nonhost
unit could be equally exposed
to pollution. Third, this method
assumes that exposure to hazards
is distributed uniformly within
host units and restricted only to
their boundary. Predefined geo-
graphic entities or census units,
however, are unlikely to repre-
sent the actual size or shape of
the area exposed to adverse
health effects.

Figure 1a illustrates a typical
application of the unit---hazard co-
incidence method, based on the
distribution of 12 hazardous facil-
ities across census tracts. Most
facilities are located near the
boundaries of multiple tracts and
closer to adjacent nonhost tracts
than to the far end of their own
host tract. Their adverse impacts

are unlikely to be confined only to
their host tracts. Additionally, all
tracts with facilities are catego-
rized as host tracts, although the
number of facilities within each
host tract varies.

The inability to distinguish
between host units on the basis
of the magnitude of hazards can
be addressed by summing the

number of facilities or the volume
of pollutants released within each
unit. Instead of treating all host
units equally, several EJ studies
have extended the basic coinci-
dence approach by enumerat-
ing the frequency of hazardous
facilities within block groups,40

tracts,3,42,43 zip codes,44 and
counties.45,46 Databases such as

the Toxic Release Inventory (TRI),
which provides detailed data on
annual quantities of toxic chemicals
released at each TRI facility, allow
a more refined assessment of
emission volume within each host
unit. Although some EJ studies
have relied on the total pounds of
TRI pollutants,2,37,44,45,47,48 others
have used toxicity indicators such

FIGURE 1—Spatial definition of proximity to environmental hazards using (a) spatial coincidence to select

host census units, (b) circular buffers of uniform radius around facilities of concern, and (c) plume

footprint for a hypothetical chlorine release scenario using the Areal Locations of Hazardous Atmospheres

model.
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as threshold limit values to weight
annual emissions of each chemical
in each spatial unit.2,17,47,49,50 Ap-
plications of spatial coincidence
analysis that use emissions and
toxicity data, however, are still
limited by the inability to consider
the exact geographic location of the
hazard within the host unit and
accurately determine the spatial
extent of toxic exposure.

Distance-Based Analysis

To address the limitations of the
spatial coincidence approach, EJ
studies have analyzed proximity
by measuring the distance from
environmental hazard sources.
Although several distance-based
techniques have been suggested,
the most widely used method is
buffer analysis. Buffer generation
is an analytical technique pro-
vided by GIS software for creating
new polygons around point, line,
or area features on a map (Figure
1b). Since the mid-1990s, GIS-based
circular buffers of various sizes
have been used in EJ studies to
identify areas and populations at

risk.4,7,9,11,32,47,51---65 Sociodemo-
graphic characteristics of areas
lying inside buffer zones are typi-
cally compared with the rest of the
study area to determine dispro-
portionate proximity or exposure
to the hazards of concern. The
radii of circular buffers in EJ re-
search have ranged from 100
yards11 to 3 miles,10,32 but distances
of 0.5 and 1.0 mile are used most
frequently.4,7,9,32,47,52---59,62,65 In-
stead of using a single radius or
buffer, several studies have con-
structed multiple circular rings at
increasing distances from hazard
sources.9,11,51,60,61,64

Circular buffers provide a more
accurate geographic representation
of potential exposure to hazards
than spatial coincidence because
the adverse effects are not assumed
to be restricted to the boundaries of
the host spatial unit. However, spe-
cific limitations are associated with
their application in EJ research. The
radius of the circle is often chosen
arbitrarily, and buffers around all
hazards in a study area usually
have the same radius (Figure 1b).

The properties and quantities of
substances stored or released at
each individual facility or the envi-
ronmental fate and transport of
emitted pollutants are rarely incor-
porated in the determination of
buffer radii to represent the spatial
extent of exposure. Another prob-
lem is the assumption that the ad-
verse effects of a hazard are limited
only to the specified circular area
and the areas outside remain
unaffected. Although this binary
assumption makes comparisons
convenient, the results are highly
sensitive to the choice of buffer
radius, as demonstrated in studies
using multiple circles around facili-
ties of concern. A discrete mea-
surement is also unlikely to reflect
a more continuous or gradual re-
duction in exposure with increasing
distance from the hazard.12,66

Continuous distances, based on
the calculation of the exact dis-
tance between each hazard and
the location of the potentially ex-
posed population, are an alternative
to the discrete distances commonly
used for buffer analysis. Several

EJ studies used the distance from
the centroid of each census tract
or block group to the nearest
hazard source as an indicator of
proximity.8,67---72 The analysis of
continuous distances can be en-
hanced by using a cumulative dis-
tribution function. A cumulative
distribution function is essentially
a graph that depicts the cumulate
percentage of observations falling
below every threshold value.
Applied to any set of hazardous
facilities, a cumulative distribution
function plot can illustrate how
the relative size of the exposed
population increases with distance.
Several EJ studies demonstrated
that cumulative distribution func-
tions are well suited to assessing
disproportionate proximity because
they overcome the limitations of
choosing arbitrary and discrete
buffer distances.12,66---68

Although most proximity-based
analyses of EJ assume that the
adverse effects of a hazard decline
with distance in a linear fashion,
a few studies have used curvilin-
ear functions to model proximity.
One study hypothesized 3 func-
tional forms of exposure to ana-
lyze proximity to TRI facilities
in Florida and used the natural
logarithm of the distance to the
nearest facility as a proxy for ex-
posure.71 A GIS-based distance
decay modeling technique was
also developed and applied to
evaluate TRI proximity in Detroit.73

Although this technique was flex-
ible enough to incorporate any
distance decay function, several
curvilinear and reverse curvilinear
functions were used to estimate
neighborhood proximity to TRI
facilities.

Although distance-based ap-
proaches to EJ analysis have
evolved from the use of discrete
buffers to continuous functions,
they are still limited by the fact
that the actual extent of toxic

FIGURE 1—(Continued).
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exposure may not be a simple
function of distance. Additionally,
distance-based analyses ignore di-
rectional biases in the distribution
of environmental hazards by as-
suming that their adverse effects
are equal and uniform in all di-
rections. Although physical pro-
cesses rarely operate in a perfectly
symmetrical (isotropic) manner,
distance-based methods assume
that exposure is invariant to pre-
vailing wind direction and other
factors that influence the movement
and dispersal of emitted pollutants.

Pollution Plume Modeling

To delineate the boundaries of
airborne toxic exposure more ac-
curately, EJ studies have used data
on chemical emissions and local
meteorological conditions to
model the environmental fate and
dispersal of pollutants released
from hazard sources. Geographic
plume analysis is a methodology
that integrates air dispersion
modeling with GIS to estimate
areas and populations exposed to
airborne releases of toxic sub-
stances.4,74 Dispersion models
typically combine data on the
quantity and properties of a re-
leased chemical with data on site
characteristics, release parameters,
and atmospheric conditions to
delineate the boundaries of the
area potentially exposed to the
chemical’s spreading plume (plume
footprint). The footprint represents
the area in which ground-level
concentrations of the pollutant are
predicted to exceed a user-speci-
fied threshold level (Figure 1c).
Most applications of geographic
plume analysis for EJ research have
relied on Areal Locations of Haz-
ardous Atmospheres (ALOHA), an
air dispersion model designed for
short-duration chemical releases.
This model has been used to gen-
erate a single plume footprint,74

composite footprints reflecting

historical weather patterns,4,75 or
circular buffers based on worst-
case accident scenarios.70,75---77

Other EJ studies have used the
Industrial Source Complex Short
Term air dispersion model,78---80

ash deposition models,81 and noise
pollution models.5,82 Exposure to
ground and water contamination,
however, has received limited at-
tention in EJ research.

The application of geographic
plume analysis allows the concen-
tration of toxic pollutants released
from a hazard source and their
health risks to decline continu-
ously with increasing distance
from the emitting source and to
vary according to compass direc-
tion. Plume-based buffers thus
address the problems of previous
approaches that assume that re-
siding either in a census unit con-
taining a hazard (spatial coinci-
dence) or within a specific distance
from a hazard (distance based)
results in toxic exposure. How-
ever, plume modeling has certain
limitations. First, dispersion models
typically require large volumes of
data on chemical properties, oper-
ational parameters of each release,
and local meteorological condi-
tions. Second, some dispersion
models such as ALOHA assume
that topography is flat and are
unable to provide accurate con-
centration estimates when the at-
mosphere is stable or wind speeds
are low. Third, the creation of
plume modeling data to encompass
all facilities and chemical emissions
in a large study area is a time-
consuming and expensive pro-
cess.73 Consequently, few national
or regional plume model data sets
have been constructed, and exist-
ing data sets are limited to specific
types of hazards.

Data sets derived from pollut-
ant fate-and-transport modeling
that cover the entire United
States include the Risk-Screening

Environmental Indicators (RSEI)
and National-Scale Air Toxic As-
sessment (NATA). These national
databases developed by the US
Environmental Protection Agency
are particularly appropriate for
EJ research because they allow
researchers to estimate potential
health risks associated with spe-
cific pollutants and spatial units.
Additionally, the plume modeling
and risk assessment techniques
used to derive these data consider
various factors such as wind
speed, wind direction, air turbu-
lence, smokestack height, and rate
of chemical decay and deposition.
The RSEI model is used to esti-
mate chronic health risks on the
basis of toxicity and atmospheric
dispersion of chemicals emitted by
TRI facilities. EJ studies have used
RSEI risk scores to analyze expo-
sure to TRI pollutants in the entire
United States83,84 and in Phila-
delphia, Pennsylvania,85 and
Tampa Bay, Florida.86 Because
the pollution plumes used to ob-
tain the risk estimates can extend
in any direction for up to 44 miles
from a TRI facility, the RSEI
modeling technique has the ad-
vantage of allowing emissions in
a spatial unit to affect people living
in other units. The NATA has also
emerged as an important tool for
estimating exposure concentra-
tions and public health risks asso-
ciated with inhalation of hazard-
ous air pollutants from multiple
emission sources. Census tract---
level estimates of cancer risk from
the 1996 NATA have been used
for EJ analysis in Maryland,24

California,31 and 309 US metro-
politan areas.29 The 1999 NATA
has been used to evaluate cancer
and respiratory risks in Florida87

and the metropolitan areas of
Houston, Texas,27 and Tampa
Bay.28 The NATA allowed EJ
analysis to extend beyond major
stationary sources and include

smaller emitters, as well as on-
road and nonroad mobile sources.

Although plume modeling
techniques represent a significant
improvement over spatial coinci-
dence and distance-based ap-
proaches, they are often based on
default assumptions and may not
be as accurate as many research-
ers think. More important, their
use is limited to particular re-
search questions (those having to
do with specific public health risks)
and pollutant types (those covered
by the plume models).

POPULATION ESTIMATION
TECHNIQUES

Spatial analytical techniques
used in EJ research to determine
the sociodemographic characteris-
tics of residents proximate to
a hazard can be classified into 2
categories, depending on the level
of aggregation of the population
data. When addresses of all in-
dividuals or households relevant
to the study are available and can
be located on a map, point inter-
polation is the appropriate method.
Street address information is used
with a digital street network to
determine an accurate location for
each individual, using the GIS’s
geocoding capabilities. The num-
ber and characteristics of individ-
uals potentially exposed to a haz-
ard can be estimated by counting
points that fall inside a buffer zone
(point-in-polygon overlay). The
earliest application can be found
in a study on waste facilities in
Detroit88 that used survey data to
determine whether the racial and
economic status of respondents
living within circular buffers
differed from those of respondents
residing outside these buffers.
Subsequent EJ studies have used
point interpolation to estimate the
special needs population in Cedar
Rapids, Iowa;77 characteristics of
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survey respondents in Fort Lau-
derdale, Florida; 81 racial and ethnic
status of children in Orange County,
Florida;67 and sociodemographic
characteristics of respondents to
a national survey residing near TRI
facilities.59

Although point interpolation
is easier to implement, a key re-
quirement is availability of street
addresses of all individuals relevant
to the study. Because individual- or
household-level data on residents’
sociodemographic characteristics
are not publicly available, EJ stud-
ies have relied mainly on informa-
tion collected by the US Census,
available at the level of predefined
geographic entities. If the area po-
tentially exposed to a hazard is
represented by a distance-based or
plume-based buffer, the shape and
size of the buffer zone is unlikely
to match the underlying census
units containing population data.
A method of areal interpolation
(polygon-on-polygon overlay) is
necessary to transfer data from
census units to the buffer zone
boundary (Figure 2).

The simplest method is polygon
containment,4 also referred to as
boundary intersection,32 in which
characteristics of a buffer zone are
derived through a simple aggre-
gation of census units that are
intersected or entirely enclosed by
the buffer. A variation of this
method includes a cut-off criterion
to limit the inclusion of partially
enclosed units. The most common
practice is to include census units
that have more than half of their
area within the buffer zone, re-
ferred to as the 50% area con-
tainment method.32,58 The centroid
containment method,4,89 in con-
trast, only selects census units
whose geographic centers (cen-
troids) are located within the buffer
zone. This method is less likely
to provide accurate estimates if
the actual residences of people in

census units intersected by the
buffer are not concentrated near
the centroid. The effective buffer
zone obtained through either
polygon or centroid containment,
however, will not resemble the
original buffer (circle or plume
footprint) because these zones are
based on the boundaries of the
selected census polygons.

The most widely used interpo-
lation technique is buffer contain-
ment,4 also known as areal ap-
portionment.32,57 This method
includes all census units lying
within the buffer and a fraction of
the population from units that are
intersected by the buffer. This
approach has the advantage of
retaining the geometry of the
original circle or plume used to
delineate the buffer. The popula-
tion of each census unit is typically
weighted by the proportion of its
area that falls inside the buffer
zone.89 The population and char-
acteristics of each unit are as-
sumed to be distributed uniformly
within its boundary. This tech-
nique, however, could lead to in-
accurate estimates when the resi-
dences of people within the unit
are concentrated in specific areas
instead of being evenly dispersed.

Although no single best tech-
nique has emerged, the applica-
tion of dasymetric mapping in
combination with areal interpola-
tion has been suggested as a
promising approach.7,12,90 This
technique uses ancillary data (e.g.,
land use or land cover) to provide
a more accurate distribution of
the population residing within
census units.8 Studies have sug-
gested that cadastral dasymetric
mapping represents a substantial
improvement over the use of the
aggregated census data.89,91 In this
method, property tax lots (e.g.,
cadastral data) are used as the unit
of data aggregation instead of
census tracts or block groups, to

achieve a much finer resolution of
the population data. Census data
are disaggregated to the tax-lot
level by means of an expert system
that determines which of several
population-related variables most
accurately capture the actual spa-
tial distribution of people. For
example, New York City has ap-
proximately 2200 census tracts
but nearly 850 000 tax lots;

disaggregating the tract popula-
tion to the tax lot thus provides
a considerably more detailed
depiction of where people live,
which is particularly important
in hyperheterogeneous urban
environments in which the popu-
lation distribution can be signifi-
cantly different even within 1
block. Figure 3 illustrates how
land parcel boundaries can be

FIGURE 2—Use of areal interpolation to select census units within

a circular buffer using (a) polygon containment, (b) centroid

containment, and (c) buffer containment.
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used to estimate households
within 0.5 mile of a facility. Addi-
tional details such as housing ten-
ure, ownership, and values can
be used to assess SES for proximate
households.

EMERGING
GEOSTATISTICAL
TECHNIQUES

Most EJ studies have used linear
correlation or regression to deter-
mine the significance of the associ-
ation between environmental risk
indicators and population charac-
teristics such as race---ethnicity or
income. Although least squares
regression is an effective and
popular technique for measuring
relationships between dependent
and explanatory variables, it re-
lies on 2 assumptions (indepen-
dence and homogeneity) that are
rarely met by spatially distributed
data.

The independence assumption
ignores the notion that locational
proximity often results in value sim-
ilarity when most sociodemographic

variables are mapped. This concept
is often referred to as the first law
of geography92: Everything is re-
lated to everything else, but near
things are more related than distant
things. This law implies that obser-
vations from nearby locations are

more similar than what one can
expect on a random basis. This
phenomenon is known as spatial
dependence and more formally as
spatial autocorrelation.93---95 The
presence of such autocorrelation
can be problematic for classical sta-
tistical tests such as regression that
assume independently distributed
observations and errors. Although
EJ analysis is based on spatial
data, most studies have assumed
observations and residuals to be in-
dependent, thus violating one of
the key regression assumptions and
ignoring spatial effects that could
lead to incorrect inferences and bi-
ased results. Spatial regression
models, such as simultaneous auto-
regressive models, are statistical
models that consider spatial depen-
dence as an additional variable in
the regression equation and estimate
its effect simultaneously with that
of other explanatory variables. The
use of spatial regression has in-
creased since the availability of
GIS and user-friendly software
such as GeoDa,93 which is capable
of implementing underlying

spatial econometric techniques.
EJ researchers have recently begun
to use simultaneous autoregres-
sive models that explicitly consider
the effects of spatial autocorrela-
tion.28,31,96

The classical regression model
also assumes a generating process
that is considered to be stationary
(homogeneous) and uses a single
set of parameters for an entire
study area. The use of a single or
global regression model assumes
that model parameters do not vary
spatially and ignores local differ-
ences in statistical associations
between the dependent and inde-
pendent variables. Because con-
ventional regression does not ac-
count for spatial variability within
a study area and provides only
global results, it can mask impor-
tant geographic differences in
statistical relationships relevant to
EJ.42 Geographically weighted
regression is a local statistical
technique for analyzing spatial
nonstationarity, defined as when
the measurement of relationships
among variables differs from

FIGURE 2—(Continued).

FIGURE 3—Cadastral dasymetric mapping: using land parcels to estimate households within a circular

buffer zone.

TOWARDS ENVIRONMENTAL JUSTICE AND HEALTH EQUITY

S32 | Environmental Justice | Peer Reviewed | Chakraborty et al. American Journal of Public Health | Supplement 1, 2011, Vol 101, No. S1



location to location.97 Instead of
generating a single global regression
equation (one set of regression
parameters) for the study area,
geographically weighted regres-
sion produces a separate re-
gression equation (unique set of
parameters) for each individual
spatial unit. Maps generated from
geographically weighted regres-
sion have recently been used to
examine how statistical associa-
tions between environmental risk
and sociodemographic factors
vary across census tracts in New
Jersey42 and Florida.87 Figure 4
illustrates how tract-level relation-
ships between cancer risk from air
toxics and specific explanatory
factors could be significantly pos-
itive in some areas, significantly
negative in other areas, and non-
significant at other locations, all
within the same state.

CONCLUSIONS

We have demonstrated how the
analysis of proximity and exposure
to environmental health hazards
in EJ research has evolved from
simple coincidence analysis and
discrete buffer zones to more so-
phisticated techniques that are
based on precise distances be-
tween hazards and people, quan-
tity and quality of emitted pollut-
ants, fate-and-transport modeling,
and estimates of chronic health
risk from toxic exposure. In spite
of these improvements, quantita-
tive EJ research remains con-
strained by several limitations.

First, by using US Census data,
most studies have focused exclu-
sively on nighttime exposure. Be-
cause census variables represent
residences, or people’s nighttime
locations, they cannot be used to
assess daytime risk. An exception
is the NATA, which uses census
home-to-work commuting and
employment data to estimate

people’s daytime locations. Future
EJ research should explore the
use of additional data sources to
construct temporally sensitive
models that examine the daytime
distribution of various vulnerable
groups. In addition to commuting
and employment, information on
people in daytime institutions (e.g.,
schools and daycare centers) can be
used to develop an independent
model of the population distribution
for the hours between 7:00 AM

and 5:00 PM to complement census
residential data.

A second limitation is the diffi-
culty in obtaining data at a spatial
resolution that is sufficiently de-
tailed to reliably demonstrate the
connection between environmen-
tal exposure and sociodemo-
graphic characteristics of people at
risk. The lack of address-specific
and individual-level information
forces most EJ researchers to use
aggregated health or census data
and make simplistic assumptions
about the residential population
distribution. Local household sur-
veys and cadastral dasymetric
mapping should be used to en-
hance areal interpolation and
more accurately estimate charac-
teristics of at-risk populations.

Finally, it is important to con-
sider that although conventional
statistical methods such as corre-
lation or regression are used ex-
tensively to analyze EJ and health
disparities, these techniques may
not be appropriate for analyzing
spatial data. Instead of relying
only on traditional statistical
methods, future research needs to
incorporate geostatistical tech-
niques that are more suitable for
analyzing spatial data and rela-
tionships. Increased education in
techniques such as simultaneous
autoregressive or geographically
weighted regression modeling is
necessary to encourage new re-
search incorporating these methods

FIGURE 4—Using geographically weighted regression to explore

the relationship between cancer risk from non–point (area)

sources of air toxics (1999 National-Scale Air Toxic Assessment)

and various explanatory variables (2000 Census) in Florida:

Distribution of local t statistic by census tract.
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and assist researchers in developing
new analytical techniques that
address limitations of conventional
approaches.

Current methodological and
data deficiencies may be miti-
gated by providing more targeted
funding to correct some of these
problems and ensure that future
EJ research is not constrained by
such limitations. This funding
would lead to more reliable re-
sults, stronger evidence, and im-
proved understanding of the re-
lationships among hazard
proximity, exposure, and health
disparities, as well as better solu-
tions to environmental health in-
justices. j
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