Nanometer MOSFET Effects on the Minimum-Energy Point of 45nm Subthreshold Logic

David Bol, Dina Kamel, Denis Flandre and Jean-Didier Legat
Microelectronics laboratory, Université catholique de Louvain
B-1348 Louvain-la-Neuve, Belgium
{david.bol,dina.kamel,denis.flandre,jean-didier.legat}@uclouvain.be

ABSTRACT

In this paper, we observe that minimum energy E_{min} of subthreshold logic dramatically increases when reaching 45 nm node. We demonstrate by circuit simulation and analytical modeling that this increase comes from the combined effects of variability, gate leakage and DIBL. We then investigate the new impact of MOSFET parameters on E_{min} in nanometer technologies. We finally propose an optimum MOSFET selection intended for subthreshold circuit designers, which favors low-V_t mid-L_g devices in standard 45nm GP technology. The use of such optimum MOSFETs yields 35% E_{min} reduction for a benchmark multiplier with good speed performances and negligible area overhead.

Categories and Subject Descriptors
B.7.1 [Hardware]: Advanced technologies;
D.8.2 [Hardware]: Performance Analysis and Design Aids.

General Terms
Design, performance.

Keywords
CMOS digital integrated circuits, gate leakage, short-channel effects, subthreshold logic, ultra-low power, variability.

1. INTRODUCTION

Subthreshold logic is an efficient technique to drastically reduce the energy per operation in applications with moderate demand in speed performances [1]. Lowering the supply voltage V_{dd} yields a quadratic reduction in switching energy E_{sw}, at the expense of increased delay and thus execution time of the operation. This makes leakage energy E_{leak} increase, as it results from the integration of leakage power over the execution time. There is thus an optimum supply voltage V_{min} that yields minimum energy per operation E_{min} [2]. Over the last decade, minimum energy has become a popular research direction for ultra-low-power applications [3]. Moreover, operating at this minimum-energy point has recently been proposed in medium-performance applications relying on massive parallelization [4].

Beyond Silicon area savings, CMOS technology scaling yields E_{leak} reduction through capacitance reduction at the expense of increased leakage currents, short-channel effects and variability. In [5], Hanson et al. report that minimum energy level E_{min} is reduced when migrating from 90 nm to 32 nm node, when considering LSTP technology trend under typical conditions and neglecting gate leakage. They also show that E_{min} is proportional to the switched capacitance multiplied by the square of the subthreshold swing C_{LS}, a factor that decreases with technology scaling. In nanometer technologies, variability cannot be neglected, especially uncorrelated V_t variations due to random dopant fluctuations (RDF) as they cannot be compensated by adaptive body biasing. In [6], we showed using PTM models [7] that variability strongly affects E_{min} scaling trend. Additionally, as depicted in Fig. 1, when considering RDF-induced 3σ worst-case delay and mean leakage through Monte-Carlo Spice simulations of an 8-bit RCA multiplier\(^1\), we observe a dramatic E_{leak} increase in general-purpose (GP) technology E_{min}.

\(^1\)Statistical delay extraction on the critical path (logig depth is 23) and E_{tot} extraction on the full circuit with random inputs at the maximum data rate, given by the obtained worst-case delay. The input activity factor is 0.5, the duty cycle is 1 (no stand-by period) and room temperature is considered. Although these parameters do affect E_{min} and V_{min} values [2], they do not change the scaling trend.
gies from an industrial foundry. Although technology scaling reduces E_{sw} contribution (E_{tot} curves above 0.4V) and $C_L S^2$ factor as shown in the insert of Fig. 1, new effects make E_{min} deviate from $C_L S^2$ factor. E_{min} thus increases from 90nm to 45nm node, which suggests a major challenge to keep energy consumption reasonable in nanometer subthreshold circuits.

In this paper, we therefore first analyze the effects that make E_{min} rise in nanometer technologies. We then address the issue of selecting the optimum MOSFETs for minimum energy in 45nm technology, from a circuit designer point of view i.e. within a practical set of available devices. Our contributions are:

- a detailed analysis of minimum-energy point in nanometer subthreshold logic showing the new combined effects of variability, gate leakage and drain-induced barrier lowering (DIBL), that clearly outweigh the previously-reported $C_L S^2$ figure of merit;
- an investigation of the impact of V_t, T_{ox} and L_g on minimum-energy point, given these new effects;
- a study intended for circuit designers, to select the optimum MOSFETs for nanometer minimum-energy subthreshold logic circuits, in a standard CMOS technology without any process modification.

This article is organized as follows. Section 2 briefly reviews the concept of minimum-energy point and the basic impact of device parameters in submicron technologies. In Section 3, we propose a pre-Silicon MOSFET compact modeling approach for realistic nanometer subthreshold circuit simulations. We then use the generated models in Section 4 to show the impact of nanometer MOSFET effects and device parameters on minimum energy. Optimum nanometer MOSFET selection is finally addressed in Section 5.

2. MINIMUM ENERGY

Total energy comes from E_{sw} and E_{leak} contributions:

$$E_{tot} = \frac{1}{2} N_{sw} C_L V_{dd}^2 + V_{dd} I_{leak} T_{del}$$

where N_{sw} is the number of switched nodes to perform the operation, C_L the average node capacitance, I_{leak} the total leakage current and T_{del} the circuit delay, corresponding to the execution time of the operation. Minimum energy is often achieved when operating the circuit in subthreshold region [2]. Subthreshold drain current is expressed as:

$$I_{sub} = I_0 \times 10^{\frac{V_{gs}+V_{th}}{S}} \times \left(1 - e^{-\frac{V_{dd}}{\eta V_{th}}}
ight)$$

where I_0 is a reference current proportional to W/L, which exponentially depends on the threshold voltage V_t. S is the subthreshold swing, η the DIBL coefficient and U_{th} the thermal voltage. In previous works on minimum-energy point [2, 5], leakage currents are assumed to be dominated by subthreshold leakage and leakage energy is expressed as:

$$E_{leak} = V_{dd} \times I_{leak} \times T_{del}$$

$$\propto V_{dd} \times I_{sub,off} \times C_L V_{dd}$$

$$\propto V_{dd} \times I_0 \times 10^{\frac{nV_{dd}}{S}} \times \frac{C_L V_{dd}}{I_0 10^{\frac{nV_{dd}}{S}} (1+\eta) V_{th}}$$

$$\propto C_L \times \frac{V_{dd}}{V_{th}} V_{dd}^2.$$ (3)

Several works investigate the interests of new MOSFET architectures for subthreshold circuits such as double-gate SOI [8] and underlap devices [9] or post-Si devices such as super cut-off transistors [10]. In particular, we showed that fully-depleted SOI planar technology with ultra-thin body can significantly improve E_{min} at 45nm node [11]. Nevertheless, in this article we rather focus on planar bulk CMOS devices as it is today’s mainstream for circuit designers. For optimum subthreshold operation of such standard devices, it has been shown that halo doping can be reduced [5], [12] and that a high-to-low vertical channel doping profile is preferable [12]. However, to the authors’ knowledge no industrial foundry offers a technology that specifically targets minimum-energy subthreshold logic. Moreover, process modifications such as doping profile optimizations are hardly available to circuit designers. In this article, we therefore focus on the 3 main device parameters that circuit designers can usually choose within a set in a versatile yet standard technology menu: V_t, T_{ox} and L_g.

Under typical conditions, minimum energy E_{min} is shown in [5] to be proportional to $C_L S^2$. In [13], variability is shown to worsen E_{min} because worst-case delay has to be considered in order for all manufactured chips to correctly operate with the same clock frequency under a given V_{dd}.

In [2], it is suggested that V_t has no impact on E_{min}, provided that the devices actually remain in subthreshold regime. This is confirmed by E_{leak} expression from Eq. (3) where the V_t impact through I_0 parameter is canceled when multiplying I_{leak} by T_{del}. However, if V_t is too low, I_{on} is no longer a subthreshold current and Eq. (2) does not hold. The delay is thus no longer exponentially-dependent on V_{dd} and the $I_{leak} \times T_{del}$ product increases.

In [5], it is shown that there is an optimum L_g to minimize E_{min}, which results from a trade-off between S improvement from short-channel behavior mitigation and C_L increase at longer L_g. Notice that the optimum L_g is quite long as the impact of intrinsic gate capacitance C_g on C_L is small. This comes from the reduced C_g in subthreshold regime as compared to parasitic capacitances because subthreshold C_g is dominated by the channel depletion capacitance [12].

Finally, it is shown in [14] that an optimum T_{ox} also results from a trade-off between S improvement from improved channel control and C_g increase (intrinsic, fringing and overlap), at thinner T_{ox}. In Section 4, we will show that these trade-offs remain valid in nanometer technologies but are outweighed by DIBL, gate leakage and variability.

3. PRE-SILICON MODEL CARDS FOR SUBTHRESHOLD SIMULATION

Throughout this paper, we investigate circuit-level implications of MOSFET characteristics with an 8-bit multiplier as benchmark circuit. For Monte-Carlo simulation time issues, we thus use SPICE simulator based on BSIM4 compact models. In order to investigate the impact of device parameters, we need a generic yet accurate model card to define BSIM4 parameters. The methodology we use for generating these model cards is illustrated in Fig. 2 and main resulting subthreshold characteristics of baseline devices ($L_g=35nm$, $V_{t}=0.35V$, $T_{ox}=1.1nm$) are given in Table 1.

Basic parameters: we start from 45nm Predictive Technology Models (PTM) from Arizona State University [7] as

2Models are available on-line at www.eas.asu.edu/~ptm.
When considering devices with different nominal relations \[18\] while the benchmark multiplier is quite small. Devices because CD variations exhibit a strong spatial correlation \[18\] while the benchmark multiplier is quite small. We consider a single \[18\] and 1.7 nm BSIM4 model considered for the simulations of Fig. 1 at 1.1 nm technology, with BSIM4 models generated according to the methodology presented in Section 3. The circuit is first simulated with ideal devices, i.e. without variability, gate leakage nor DIBL. The same simulation is then carried out by successively adding DIBL, gate leakage and variability. The resulting \(E_{min}\) values are plotted in Fig. 3 showing the high \(E_{min}\) overhead of these effects. Let us analyze the reasons of this overhead.

4. **NANOMETER MOSFET EFFECTS ON MINIMUM ENERGY**

As shown in Fig. 1, new effects in nanometer technologies make \(E_{min}\) increase and deviate from \(C_L S^2\) trend. In order to investigate these effects, we consider the benchmark multiplier with baseline devices \((L_g=35nm, V_t=0.35V, T_{ox}=1.1nm)\) in 45 nm technology, with BSIM4 models generated according to the methodology presented in Section 3. The circuit is first simulated with ideal devices, i.e. without variability, gate leakage nor DIBL. The same simulation is then carried out by successively adding DIBL, gate leakage and variability. The resulting \(E_{min}\) values are plotted in Fig. 3 showing the high \(E_{min}\) overhead of these effects. Let us analyze the reasons of this overhead.

4.1 **Drain-Induced Barrier Lowering**

The DIBL effect, which is important in nanometer technologies, implies an exponential dependence of \(I_{sub}\) on \(V_{dd}\) as shown in Eq. (2). According to Eq. (3), DIBL should not impact \(E_{leak}\) as the \(I_{leak}\) increase from DIBL \((\eta V_{dd}^3)\) is compensated by an equal delay reduction. In this equation, the delay is assumed to be inversely proportional to \(I_{leak}\) and \(I_{on}\), i.e with \(V_{dd} = V_{dd}\). However, during a transition, the current to charge/discharge the load capacitance is not constant. In particular as \(V_{dd}\) varies, the delay depends on the integral of \(I_{sub}\) current over the transition \(S_{tr}\), that we model as:

\[
T_{del} \propto \frac{C_L V_{dd}}{\int_{S_{tr}} I_{sub}} \approx \frac{C_L V_{dd}}{I_{0} 10^{k_{DIBL} \eta V_{dd}} \times \int_{S_{tr}} 10^{k_{DIBL} \eta V_{dd}}} = \frac{C_L V_{dd}}{I_{sub,dd}} \times 10^{k_{DIBL} \eta V_{dd}},
\]

where \(k_{DIBL}\) is a fitting parameter, whose value depends on \(V_{dd}\) with \(0 < k_{DIBL} < 1\). It accounts for the DIBL-induced \(I_{sub}\) reduction during a transition, the ideal case being \(k_{DIBL} = 0\). The value of \(k_{DIBL}\) can be empirically extracted from simulation of the delay with and without the DIBL effect. Simulations of the benchmark circuit have been carried out with a large set of device parameters \((L_g, V_t, T_{ox})\) and show that the value of \(k_{DIBL}\) is pretty much independent on these parameters, provided that the devices actually stay in subthreshold regime, i.e. \(V_{ds} \leq V_t\). The value of \(k_{DIBL}\) is 0.65 at 0.2V and 0.75 at 0.5V.
This shows that the DIBL effect has a delay overhead. When injecting the DIBL-aware delay expression from Eq. (5) into E_{leak} formula from Eq. (1), the impact of DIBL effect on E_{leak} clearly appears:

$$E_{\text{leak}} = V_{dd} \times I_{\text{leak}} \times T_{\text{del}}$$

$$\propto V_{dd} \times I_{o} 10^{-\eta \frac{V_{dd}}{S}} \times \frac{C_{L} V_{dd}}{I_{o} 10^{-\eta \frac{V_{dd}}{S}}} \times 10^{\frac{k_{\text{DIBL}} V_{dd}}{S}}$$

$$\propto C_{L} 10^{-\eta \frac{V_{dd}}{S}} V_{dd} \times (1 + \frac{I_{g} \eta \frac{V_{dd}}{I_{\text{sub,off}}}}{10^{-\eta \frac{V_{dd}}{S}}}).$$

This clearly shows that I_{g} worsens E_{leak} unless it is much lower than subthreshold leakage $I_{\text{sub}} = I_{o} 10^{-\eta \frac{V_{dd}}{S}}$. Rather than having low absolute I_{g}, the important target to minimize E_{min} is to keep I_{g}/I_{sub} ratio lower than 1.

4.2 Gate leakage

When shrinking T_{ox}, gate leakage exponentially increases and becomes comparable to subthreshold leakage in nanometer technologies. Therefore, E_{leak} expression must include I_{gate} contribution to total E_{leak}, i.e. back from Eq. (3):

$$E_{\text{leak}} = V_{dd} \times I_{\text{leak}} \times T_{\text{del}}$$

$$\propto V_{dd} \times (I_{o} 10^{-\eta \frac{V_{dd}}{S}} + I_{g}) \times \frac{C_{L} V_{dd}}{I_{o} 10^{-\eta \frac{V_{dd}}{S}}}$$

$$\propto C_{L} 10^{-\eta \frac{V_{dd}}{S}} V_{dd} \times (1 + \frac{I_{g} \eta \frac{V_{dd}}{I_{\text{sub,off}}}}{10^{-\eta \frac{V_{dd}}{S}}}),$$

which are plotted vs. V_{t} for ideal devices.

4.3 Variability

Device variability has a strong impact on subthreshold circuit delay as I_{sub} exponentially depends on V_{t} [13]. Amongst variability sources, uncorrelated V_{t} variations are especially important as they cannot be compensated by adaptive body biasing. For computing the average E_{leak}, statistically-extracted 95% worst-case delay of the small benchmark multiplier has to be used as the execution time for enabling 99.99% timing yield of a full chip. This leads to 20% E_{min} increase. Moreover, RDF lead to a mean leakage current for large circuits much higher than the typical value because subthreshold leakage is a lognormal distribution (exponential dependence on V_{t} normal distribution). The total E_{min} overhead of variability is 40%, as shown in Fig. 3.

This discussion shows that there are new device targets in nanometer technologies to design/select optimum MOSFETs for minimum-energy subthreshold logic:

- low $C_{L} S^{2}$ factor [5],
- low DIBL effect,
- I_{g}/I_{sub} ratio significantly lower than 1,
- low variability [13].

5. OPTIMUM MOSFET SELECTION FOR MINIMUM-ENERGY CIRCUITS

As shown in Fig. 1, direct porting of a subthreshold circuit from 90 nm to 45 nm general-purpose technologies results in 50% E_{min} overhead. However at 45 nm node, circuit designers have new opportunities as technologies are versatile. They offer a menu of several flavors, with various speed/power trade-offs resulting from different device configurations (L_{g}, T_{ox} and V_{t}). Moreover, each technology flavor often features dual or triple-V_{t} devices and one can choose to use minimum or longer L_{g}. Circuit designers thus face the complex problem of optimum technology/device selection with multiple degrees of freedom. In this section, we address this selection problem in two steps: first by analyzing the impact of basic L_{g}, V_{t}, and T_{ox} parameters on E_{min}, given the nanometer MOSFET effects and second, by investigating the optimum MOSFET, to get the lowest E_{min}. Notice that for each device parameters, a new model card is generated according to the methodology from Section 3 to get realistic MOSFET subthreshold characteristics.

5.1 Gate length impact

Fig. 4(a) shows E_{min} vs. L_{g} for ideal to real devices by successively adding DIBL, gate leakage and variability (worst-case T_{del} and mean I_{leak}). The $C_{L} S^{2}$ factor is plotted too for comparison purpose. For ideal devices, E_{min} exhibits the same dependence vs. L_{g} as $C_{L} S^{2}$; it decreases until 55 nm L_{g} thanks to S improvement, whereas C_{L} increases slowly because it is dominated by parasitic capacitances [5].

High DIBL effect of short devices implies an important energy overhead through large η coefficient (k_{DIBL} does not vary). Long devices are affected by gate leakage due to a high I_{g}/I_{sub} ratio because I_{g} increases with L_{g} while I_{sub} decreases from DIBL mitigation. Finally, variability worsens the picture for short devices. It comes from higher RDF due to smaller channel area, as well as magnified current sensitivity against L_{g} variations because of high DIBL. The optimum L_{g} in nanometer technologies thus results from a trade-off between low variability, S and DIBL for long devices, and low I_{g}/I_{sub} for short devices. This trade-off clearly outweighs the $C_{L} S^{2}$ trade-off.

5.2 Threshold voltage impact

Minimum energy level and $C_{L} S^{2}$ factor are plotted vs. V_{t} in Fig. 4(b). Lowering V_{t} implies reducing the channel doping N_{ch}, which results in a lower channel depletion capacitance C_{dp} and in turn a better subthreshold swing at low V_{ds}. Low-V_{t} devices thus feature a low $C_{L} S^{2}$ factor. Nevertheless, lowering V_{t} does not improve E_{min} of ideal devices because the S improvement is compensated by the fact the devices leave the subthreshold regime, which results in lower I_{on}/I_{off} ratio at a given V_{dd} and in turn E_{leak} overhead.

With a reduced N_{ch} for low-V_{t} devices, the short-channel effects are increased and DIBL thus degrades E_{min}. On the other hand, higher V_{t} lowers I_{sub}, thereby degrading I_{gate}/I_{sub} ratio. Variability has an important impact on E_{min} for both high- and low-V_{t} devices. High-V_{t} devices have high $\sigma_{V_{t}}$ because of high channel doping, as shown in Eq. (4). Low-V_{t} devices suffer from an important current sensitivity against $\sigma_{V_{t}}$ due to their high DIBL. Optimum V_{t} selection thus results from a trade-off between DIBL mitigation and I_{gate}/I_{sub} ratio reduction.

5.3 Oxide thickness impact

Finally, the impact of T_{ox} on E_{min} is shown in Fig. 4(c). Notice that, for illustration purpose, we keep N_{ch} constant rather than V_{t} when varying T_{ox} because S, η and $\sigma_{V_{t}}$ primarily depend on N_{ch} rather than on exact V_{t} value.
Fig. 5 shows that, although C_L is a surprising observation because, whereas the DIBL-induced energy overhead is lower for thin-oxide devices, the outer fringing capacitance from gate to source/drain electrodes is very important [6, 16] as the gate electrode thickness is high and the spacer width is small. This capacitance component hardly depends on T_{ox} and thus sets, together with junction capacitance, a lower bound on the achievable C_L reduction.

For ideal devices, a thinner T_{ox} implies a lower V_t, which translates into an E_{min} increase as the devices leave the subthreshold regime, as explained in previous section. The DIBL-induced energy overhead is lower for thin-oxide devices, whereas the I_{gate} overhead is only important for thin-oxide devices, which feature a high I_{gate}/I_{sub} ratio despite their low V_t. Finally, variability makes E_{min} dramatically rise for thick T_{ox} because of low channel control and thus important RDF-induced v_{dd}, according to Eq. (4). Again, the trade-off between variability/short-channel behavior mitigation and low I_{gate}/I_{sub} ratio implies an optimum T_{ox} value.

5.4 Optimum MOSFET selection

Let us now consider the selection of optimum MOSFETs.

In this paper, we restrict the discussion to GP technology flavors (LOP and LSTP). Within a given flavor, circuit designers have 2 degrees of freedom for device selection: V_t and L_g. V_t can be chosen between 2 or 3 discrete values, while L_g can take any value higher than the minimum L_g. In 45 nm technologies, there are often restrictive design rules that prevent circuits designers from using any L_g for regularity issues. We therefore consider L_g values that are multiples of 5 nm. Fig. 5 shows E_{min} for the devices with 3 considered V_t vs. L_g, within the GP technology flavor.

A T_{ox} reduction yields on one hand a better channel control by the gate, which results in an improved S. On the other hand, it increases the load capacitance [14]. The resulting $C_L S^2$ factor is slightly improved for thin-oxide devices. No minimum $C_L S^2$ is seen for the considered T_{ox} range because C_L increases slowly with T_{ox} reduction. This is a surprising observation because, although C_L is dominated by parasitic capacitances, one could expect a strong C_L reduction from fringing and overlap capacitance mitigation when increasing T_{ox}. Nevertheless, in nanometer technologies the outer fringing capacitance from gate to source/drain electrodes is very important [6, 16] as the gate electrode thickness is high and the spacer width is small. This capacitance component hardly depends on T_{ox} and thus sets, together with junction capacitance, a lower bound on the achievable C_L reduction.

For ideal devices, a thinner T_{ox} implies a lower V_t, which translates into an E_{min} increase as the devices leave the subthreshold regime, as explained in previous section. The DIBL-induced energy overhead is lower for thin-oxide devices, whereas the I_{gate} overhead is only important for thin-oxide devices, which feature a high I_{gate}/I_{sub} ratio despite their low V_t. Finally, variability makes E_{min} dramatically rise for thick T_{ox} because of low channel control and thus important RDF-induced v_{dd}, according to Eq. (4). Again, the trade-off between variability/short-channel behavior mitigation and low I_{gate}/I_{sub} ratio implies an optimum T_{ox} value.

5.4 Optimum MOSFET selection

Let us now consider the selection of optimum MOSFETs.

In this paper, we restrict the discussion to GP technology flavors (LOP and LSTP). Within a given flavor, circuit designers have 2 degrees of freedom for device selection: V_t and L_g. V_t can be chosen between 2 or 3 discrete values, while L_g can take any value higher than the minimum L_g. In 45 nm technologies, there are often restrictive design rules that prevent circuits designers from using any L_g for regularity issues. We therefore consider L_g values that are multiples of 5 nm. Fig. 5 shows E_{min} for the devices with 3 considered V_t vs. L_g, within the GP technology flavor.

Figure 4: Impact of device parameters on E_{min} (V_{dd} implicitly adapted to V_{min}). Solid lines represent E_{min} from ideal devices (square markers) to real devices (circle markers) by successively enabling DIBL, gate leakage and variability. The previously-reported $C_L S^2$ figure of merit [5] is plotted with dashed lines for comparison purpose. E_{min} significantly deviates from $C_L S^2$ trend because of DIBL, variability and gate leakage.

Figure 5: E_{min} vs. gate length in multi-V_t technology (considered V_t values are 0.27, 0.35 and 0.44V).

For high-V_t devices, E_{min} is the highest because of its high I_{gate}/I_{sub}. Therefore, an L_g upsize further degrades E_{min} by worsening this ratio. For low- and std-V_t devices, E_{min} is comparable at minimum L_g. When upsizing L_g, E_{min} is first improved thanks to variability and short-channel behavior mitigation but is then degraded by higher I_{gate}/I_{sub} ratio, as detailed in Section 5.1. This ratio is lower for low-V_t devices and L_g can thus further be upszied to mitigate more efficiently variability and short-channel behavior, while keeping I_{gate}/I_{sub} low. Low-V_t devices with 45nm L_g yield 35% E_{min} reduction, as compared to baseline 35nm-Lg std-V_t devices, thereby making low-V_t mid-Lg devices the optimum choice for minimum-energy subthreshold logic.

Table 1 shows the subthreshold features of the optimum MOSFET. It features improved subthreshold characteristics at the expense of higher I_{gate}/I_{sub} ratio. This indicates that, for energy concern, it is worth tolerating higher I_{gate} to limit S, DIBL and variability. Table 2 summarizes the subthreshold circuit performances with baseline and optimum MOSFETs. At minimum energy point, optimum MOSFET selection increases T_{del} because of lower V_{min}. However, at iso-V_{dd} (V_{min} of circuit with baseline devices), T_{del} is reduced by 50% with still 20% E_{min} saving while E_{min} at iso-T_{del} is reduced by 30%. In any cases, optimum MOSFETs yield important energy reduction with a mitigation of T_{del} variability as an extra benefit.
Table 1: Subthreshold MOSFET characteristics

<table>
<thead>
<tr>
<th>Device type</th>
<th>S [mV/dec]</th>
<th>η [mV/V]</th>
<th>I_{on} var.</th>
<th>I_{gate}/I_{sub}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>92.5</td>
<td>183</td>
<td>29.7×</td>
<td>0.09</td>
</tr>
<tr>
<td>Optimum</td>
<td>81.9</td>
<td>83</td>
<td>13.1×</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Table 2: Subthreshold 8-bit multiplier performances

<table>
<thead>
<tr>
<th>Device type</th>
<th>E_{tot} [μJ]</th>
<th>V_{id} [V]</th>
<th>3σ WC T_{del} [μs]</th>
<th>T_{del} var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline @V_{min}</td>
<td>28.8</td>
<td>0.39</td>
<td>0.14</td>
<td>1.76×</td>
</tr>
<tr>
<td>Optimum @V_{min}</td>
<td>18.6</td>
<td>0.31</td>
<td>0.39</td>
<td>1.52×</td>
</tr>
<tr>
<td>Optimum @iso-V_{id}</td>
<td>22.9</td>
<td>0.39</td>
<td>0.07</td>
<td>1.36×</td>
</tr>
<tr>
<td>Optimum @iso-T_{del}</td>
<td>20.1</td>
<td>0.35</td>
<td>0.14</td>
<td>1.43×</td>
</tr>
</tbody>
</table>

We carried out the same optimum device selection in the industrial general-purpose 45 nm technology considered in Fig. 1. As this technology is a dual-V_t technology, the lowest-V_t device was already considered as the standard device in Fig. 1. Nevertheless, simulations show that an L_g upsine from 35 to 50 nm alone leads to 35% E_{min} improvement with only 5% MOSFET area overhead (at constant gate-to-contact distance). This overhead is assumed to weakly impact the Silicon area of the full circuit because interconnection area remains unchanged. As shown in Fig. 6, this optimum device selection yields an E_{min} level at 45 nm node lower than at 90 nm node with a reduced Silicon area.

6. CONCLUSION

In this article, we analyzed the minimum-energy point of subthreshold circuits in nanometer CMOS technologies. Simulations of a benchmark multiplier show that direct porting to 45 nm technology leads to E_{min} overhead. We confirmed that this overhead partly comes from high variability and subthreshold swing S. We reported and demonstrated by circuit simulation and analytical modeling that DIBL and gate leakage contribute to this overhead as much as variability. We then investigated the impact of nanometer MOSFET parameters L_g, V_t and T_{off} on E_{min} and we showed that improving E_{min} results from a trade-off between variability and DIBL mitigation vs. reduction of the I_{gate}/I_{sub} ratio. This new trade-off in nanometer technologies completely outweighs previously-reported C_L vs. S trade-off.

We showed that selecting low-V_t mid-L_g devices in a 45 nm technology leads to 35% saving in minimum energy, thereby bringing E_{min} back to the level of a 90 nm technology. It delivers good speed performances, reduced delay variability and less than 5% area overhead, as compared to baseline devices in 45 nm technology. If the application features timing constraints (e.g. in real-time applications), the proposed optimum MOSFET selection can further be combined with the technology flavor selection proposed in [19] to meet the constraints at the minimum-energy point.

This study draws a new route for device optimization towards ultimate minimum-energy subthreshold logic. It indicates that efforts should be devoted to minimizing subthreshold swing, DIBL and variability, while gate leakage increase can be tolerated provided that it remains below the subthreshold leakage level.

7. ACKNOWLEDGMENTS

This work was funded by the FNRS and the Walloon Region of Belgium under TABLOID and E.USER projects.

8. REFERENCES