Ensemble-based Active Learning for Parse Selection

Jason Baldridge and Miles Osborne

School of Informatics, University of Edinburgh
{jbaldrid,miles}@inf.ed.ac.uk

December 15, 2003
Quick summary: 1

- **Active learning** is concerned with minimising the amount of annotated training material necessary to achieve a given performance level.

- With less training material:
 - We can create trainable speech and language technologies faster.
 - . . . and save money.

- Labelling more training material will also lead to better results.
Quick summary: 2

Active learning results:

- Introduce multiple-model uncertainty sampling.
 - This easily outperforms (single-model) uncertainty sampling.

- Introduce a very simple active learning method – lowest best probability selection (LBP).
 - LBP is competitive with improved uncertainty sampling.
Quick summary: 3

Active learning results:

- Show that an ensemble trained \textit{without} active learning can beat a single model trained \textit{with} active learning.

- . . . but that this ensemble can itself be outperformed by an ensemble trained \textit{with} active learning.
Quick summary: 4

Parse selection results:

- For HPSG, an ensemble of three log-linear models achieves the best reported parse selection performance.

- Ad-hoc selection methods based upon superficial characteristics (sentence length, ambiguity rate etc) perform no better than random selection.

- Annotating sentences in the order they appear in the corpus is much worse than random selection.
Talk outline

- The English Resource Grammar (ERG) and the Redwoods Treebank.
- Parse selection for the ERG.
- Active learning (AL) methods.
- Experimental results.
- Comments
The English Resource Grammar

The ERG:

- . . . is a broad-coverage manually written HPSG grammar.
- . . . also provides semantic analyses of in-coverage sentences.
The Redwoods Treebank: 1

- Redwoods is a treebank of derivation trees for in-coverage sentences.

- Each such sentence has a distinguished preferred derivation tree.

- Derivation trees can be used to recover either parse trees or associated semantic interpretations.

- Latest version (3) statistics:

<table>
<thead>
<tr>
<th>Sentences</th>
<th>Length</th>
<th>Parses</th>
</tr>
</thead>
<tbody>
<tr>
<td>5302</td>
<td>9.3</td>
<td>58.0</td>
</tr>
</tbody>
</table>

- Only ambiguous sentences.
The Redwoods Treebank: 2

An example derivation tree
Talk outline

- The English Resource Grammar (ERG) and the Redwoods Treebank.

- Parse selection for the ERG.

- Active learning (AL) methods.

- Experimental results.

- Comments
A conditional log-linear model:

\[P(t \mid s, M_k) = \frac{1}{Z(s)} \exp \left(\sum_{i=1}^{n} f_i w_i \right) \]

Weights for model \(M_k \) are determined using the LMVM algorithm (Malouf 02).

(We also use a perceptron model)
Parse selection: 2

- **Product model:**

\[
P(t \mid s, M_1, \ldots, M_n) = \frac{\prod_{i=1}^{n} P(t \mid s, M_i)}{Z}
\]

- Based upon a **Product of Experts** formulation (Hinton 99).
 - ... averages the contribution of each submodel.
 - ... is an ensemble of log-linear models.
Parse selection: 3

- We treat the distribution of parses over a sentence in a binary manner.

- Three sets of features over derivations:
 - **Configurational**: loosely based on (Toutanova and Manning 02) – grandparent, local trees etc.
 - **Ngram**: derivations are flattened and treated as strings; ngrams are then extracted from these strings.
 - **Conglomerate**: features over phrase structure and Minimum Recursion Semantics (MRS).
Parse selection results

- Ten-fold cross-validation.

- Exact match evaluation.

- Unambiguous sentences are not counted.

<table>
<thead>
<tr>
<th>Method</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>22.7</td>
</tr>
<tr>
<td>Log-linear (config)</td>
<td>74.9</td>
</tr>
<tr>
<td>Log-linear (ngram)</td>
<td>74.0</td>
</tr>
<tr>
<td>Log-linear (conglom)</td>
<td>74.0</td>
</tr>
<tr>
<td>Product (all)</td>
<td>77.8</td>
</tr>
</tbody>
</table>
Talk outline

- The English Resource Grammar (ERG) and the Redwoods Treebank.
- Parse selection for the ERG.
- Active learning (AL) methods.
- Experimental results.
- Comments
Active learning

- The error of a model can be decomposed into a sum of:
 - **Noise**: intrinsic errors in the training set.
 - **Bias**: systematic errors a learner makes.
 - **Variance**: how much parameter estimates vary as a function of training set choice.

- Active learning methods generally select examples which reduce the variance of a model.
Active learning methods: 1

- Sample selection is one AL method.

- Basic idea:
 - Putatively **automatically label** all examples in a pool and **select** a subset of examples according to some method.
 - **Manually label** selected examples.
 - Remove labelled examples from the pool.
 - **Retrain** the model(s) and iterate.
Active learning methods: 2

- Sample selection for parse selection:
 - An example is a sentence.
 - Labelling an example means distinguishing one parse from the other parses for that sentence.

- **Annotation cost** is in terms of selecting the best parse (and not drawing parses from scratch).
Active learning methods: 3

- Selecting the best parse means navigating through a set of choice points.

- Each choice point (a discriminant) partitions the set of parses.

- A typical sentence requires 5 choices.

- Much more efficient than drawing a parse.
 - . . . implies that the best parse is present.

- Active learning annotation cost is in terms of the number of discriminants per sentence.
Uncertainty sampling: 1

- Tree entropy (Hwa 2000):

\[f_{us}(s, \tau) = - \sum_{t \in \tau} p(t \mid s, M_i) \log p(t \mid s, M_i) \]

- Basic idea: selects examples with parses that are most uniformly distributed.

- Tree entropy has been applied to training CFG treebank parsers.

- We do not need to normalise tree entropy.
Uncertainty sampling: 2

- We can improve uncertainty sampling as follows:

\[f_{us}^{es}(s, \tau) = -\sum_{t \in \tau} p(t \mid s, M_1, \ldots, M_n) \log p(t \mid s, M_1, \ldots, M_n) \]

- The single model has been replaced with a product (ensemble) model.

- We call this Product Uncertainty Sampling.
Lowest best probability selection

- LBP:

\[f_{lbp}(s, \tau) = \max_{t \in \tau} p(t \mid s, M_i) \]

- Basic idea: selects examples with least discriminated parse.

- LBP is similar to uncertainty sampling.

- Generalising to an ensemble is trivial.
Query-by-committee

- Select examples when individual models predict different parses as being the preferred analysis.

- Basic idea: labelling uncertainly manifests as labelling disagreement.

- QBC is an ensemble method.
Talk outline

- The English Resource Grammar (ERG) and the Redwoods Treebank.

- Parse selection for the ERG.

- Active learning (AL) methods.

- Experimental results.

- Comments
Baselines

- For comparison we used the following baselines:
 - Select n examples randomly.
 - . . . and label using a single model (config-random).
 - . . . and label using a product model (product-random).

- All experiments are averages over 10-fold cross-validation.

- Use $2k$ sentences.
Baseline results: 1

Random selection for a product model, Random selection for a single model
Baseline results: 2

- Random selection for our product model is better than random selection for a single model.

- Shows that improving the model can reduce annotation cost.
Main result: 1

US using a Π model, Random selection using a Π model, US using a single model
Main results: 2

- Random selection for our product model can outperform a single model with examples selected by active learning.

- ... but ensemble-based active learning, for an ensemble model, outperforms random selection for an ensemble model.

- (A single model active learning method selecting examples for an ensemble model performs worse)
Heuristic selection

- Selecting shortest / longest / least ambiguous / most ambiguous sentences all performed no better than random selection.

- Selecting examples in the order they appeared in the corpus required 45% more labelling decisions than for random selection.
 - Most likely because Redwoods contains two domains.
Cross method comparison: 1

<table>
<thead>
<tr>
<th>Method</th>
<th>Cost</th>
<th>Reduction</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>rand-config</td>
<td>3700</td>
<td>n/a</td>
<td>(46.2%)</td>
</tr>
<tr>
<td>rand-Π</td>
<td>1990</td>
<td>46.2%</td>
<td>N/A</td>
</tr>
<tr>
<td>US-config</td>
<td>2600</td>
<td>29.7%</td>
<td>(25.2%)</td>
</tr>
<tr>
<td>QBC</td>
<td>1300</td>
<td>64.9%</td>
<td>34.7%</td>
</tr>
<tr>
<td>LBP-Π</td>
<td>1280</td>
<td>65.4%</td>
<td>35.7%</td>
</tr>
<tr>
<td>US-Π</td>
<td>1300</td>
<td>64.9%</td>
<td>34.7%</td>
</tr>
</tbody>
</table>

Annotation cost needed to achieve an average 70% parse selection performance.
Cross method comparison: 2

<table>
<thead>
<tr>
<th>Method</th>
<th>Cost</th>
<th>Reduction 36%</th>
<th>Reduction rand-Π</th>
</tr>
</thead>
<tbody>
<tr>
<td>rand-config</td>
<td>13000</td>
<td>n/a</td>
<td>(36.2%)</td>
</tr>
<tr>
<td>rand-Π</td>
<td>8300</td>
<td>36.2%</td>
<td>N/A</td>
</tr>
<tr>
<td>US-config</td>
<td>7700</td>
<td>40.8%</td>
<td>7.2%</td>
</tr>
<tr>
<td>QBC</td>
<td>3820</td>
<td>70.6%</td>
<td>54.0%</td>
</tr>
<tr>
<td>LBP-Π</td>
<td>3660</td>
<td>71.9%</td>
<td>55.9%</td>
</tr>
<tr>
<td>US-Π</td>
<td>3450</td>
<td>73.5%</td>
<td>58.4%</td>
</tr>
</tbody>
</table>

Annotation cost needed to achieve an average 75% parse selection performance.
Cross method comparison: 3

<table>
<thead>
<tr>
<th>Method</th>
<th>Cost</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>rand-config</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>rand-Π</td>
<td>13800</td>
<td>N/A</td>
</tr>
<tr>
<td>US-config</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>QBC</td>
<td>6780</td>
<td>50.9%</td>
</tr>
<tr>
<td>LBP-Π</td>
<td>7320</td>
<td>47.0%</td>
</tr>
<tr>
<td>US-Π</td>
<td>6410</td>
<td>53.6%</td>
</tr>
</tbody>
</table>

Annotation cost needed to achieve an average 77% parse selection performance.
Active learning can dramatically reduce the annotation effort involved with training HPSG parse selection mechanisms.

Ensemble methods can improve both parse selection and active learning.

Further reductions should follow from only considering n-best parses.

Ongoing work is concerned with bootstrapping a semantic interpretation system based on the ERG (Rosie Project).