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Abstract 

 
This paper describes a novel importance sampling method with applications in multimodal optimi-
zation. Based on initial results, the method seems suitable for real-time computer vision, and en-
ables an efficient frame-by-frame global search with no initialization step. The method is based on 
importance sampling with adaptive subdivision, developed by Kajiya, Painter, and Sloan in the con-
text of stochastic image rendering. The novelty of our method is that the importance of each kd-tree 
node is computed without the knowledge of its neighbours, which saves computing time when 
there’s a large number of samples and optimized variables. Our method can be considered a hybrid 
of importance sampling, genetic algorithms and evolution strategies. 
 

1 Introduction 
Model-fitting in real-time computer vision is often a 
difficult multimodal, multivariable optimization 
problem. It is common to only search a portion of 
the parameter space based on prior knowledge, such 
as a Kalman filter that predicts the next solution 
based on the previous solutions (Sonka et al., 1999). 
In cases where the tracked shape moves in an un-
predictable and rapid manner, e.g., when tracking 
the user in gesture-controlled software, the predic-
tion may not be accurate. In this case, the tracker 
may need to be re-initialized.  

From the point of view of usability, initialization 
and too strong priors should be avoided so that the 
user controls the software instead having to adapt to 
the limits of technology. For example, Pfinder ini-
tializes the tracking only if the user assumes a pose 
in which the body parts can be reliably labelled 
based on the user’s silhouette (Wren et al., 1997).  

To avoid re-initialization, more efficient global 
optimization strategies need to be developed. This 
paper describes a novel optimization method that we 
call mutated kd-tree importance sampling. The 
method is a hybrid of importance sampling, genetic 
algorithms (GA) and evolution strategies (ES). It is 
based on the following design principles: 
 
Principle 1: Optimization as sampling 
To inspect all peaks of the objective function (fit-
ness function) carefully without neglecting any part 
of the parameter space, the density of samples at a 

given location should be proportional to the fitness 
of the location. In other words, we inspect optimiza-
tion as importance sampling, treating the fitness 
function as a probability distribution function.   
 
Principle 2: Make every sample count 
Evaluating the fitness of generated samples is often 
time-consuming. For maximum efficiency, the deci-
sion of where to place the next sample should be 
supported by all past samples. Each new sample 
increases the resolution of the perceived fitness 
function shape.  
 
Principle 3: Simple user interface 
An optimization method should have as few pa-
rameters as possible for it to be easy to use. How-
ever, parameters are necessary to incorporate prob-
lem-specific prior knowledge to the optimization. 
The No Free Lunch (NFL) theorems for optimiza-
tion state that on average, all optimization methods 
are equal when applied to all possible cost functions 
without problem-specific adjustments (Wolpert and 
MacReady, 1997). 
 
Based on the design principles, we have developed a 
novel variant of kd-tree based importance sampling 
introduced by Kajiya (1986) and developed further 
by Painter and Sloan (1989). 

2 Description of the method 
Our method uses a kd-tree to adaptively subdivide 
the search space. With N optimized variables, each 



node of the tree represents an N-dimensional hyper-
cube in the search space. Each node has two chil-
dren. The children are created by bisecting the par-
ent along a coordinate axis. There’s one sample in-
side each leaf node.  

Samples are generated so that a leaf node is 
sampled from a discrete probability distribution 
where the relative probability of leaf node k equals a 
single point estimate of the integral of the fitness 
inside the node, pk=fkvk, where fk is the fitness of the 
sample inside the node and vk is the volume of the 
node.  

Contrary to previous kd-tree importance sam-
pling methods, we do not generate a sample uni-
formly inside the selected hypercube, which would 
correspond to using the kd-tree as a piecewise con-
stant approximation of the fitness function. Instead, 
we mutate the existing sample of the selected hyper-
cube using a multivariate normal distribution cen-
tered at the sample or the hypercube center. The 
covariance matrix is diagonal and the standard de-
viations are proportional to the dimensions of the 
hypercube. This way, the kd-tree approximates the 
fitness function as an additive mixture of Gaussians.  

A new Gaussian is created for each mutated 
sample by finding the leaf node (hypercube) inside 
which the sample is located, and splitting the node 
into two new hypercubes, one containing the old 
sample and the other containing the mutated one. In 
optimized kd-trees for databases, the splitting di-
mension is often chosen to be that whose distribu-
tion exhibits the most spread (Yianilos, 1993). In 
our case this corresponds to the dimension of maxi-
mum distance between the old and new sample.  

The Gaussians could also be stored in some 
other data structure than a kd-tree. The benefit of 
using a kd-tree is that the node selection time grows 
logarithmically as a function of the number of sam-
ples. After a new sample is stored in a leaf node, the 
probabilities are updated recursively by traversing 
from the leaf to the root and setting p parent= pchild1 + 
pchild2. When selecting a leaf, the tree is traversed 
from the root to a leaf so that at each node, a uni-
formly distributed pseudorandom number r is gen-
erated in the range 0…pchild1+pchild2. Child 1 is visited 
if r< pchild1. If r= pchild1, the child is selected ran-
domly.  

The sampling is not prone to getting stuck inside 
a local optimum. A sample with high fitness attracts 
more samples, and if a sample belongs to a peak 
much smaller than the cube containing the sample, 
the fitness function approximation is inaccurate and 
the peak attracts disproportionately many samples. 
However, as the cubes get split to smaller and 
smaller ones, the approximation gets more accurate.   

    

    
Figure 1. Top-left: 2d fitness function. Top-right: 
the distribution of samples with low mutation vari-
ance. Bottom-left: the distribution of samples with 
high mutation variance. Bottom-right: decreasing 
the high-fitness area reduces blurring. 
 

 

 
Figure 2. An example of the adaptive subdivision of 
space. 
 

The normally distributed mutations provide a 
crucial improvement compared to a piecewise con-
stant approximation of the fitness function: The 
spreading of samples beyond node boundaries en-
sures that a node can get split even if the fitness of 
its sample is initially zero (pk=fkvk=0). The normally 
distributed sampling propagates the selection prob-
abilities so that if the fitness of a cube is high, it will 
attract more samples both inside it and its 
neighbours.   

Figure 1 illustrates the effect of the mutation 
variance. The 2d fitness function is a 256x256 pixel 
bitmap, sampled using 10000 samples (0.16 samples 
per pixel). The fitness function is zero except along 
the edges of the triangle, so that there’s no gradient 
information to guide the search. With low variance, 
samples are highly concentrated on the triangle 
edges, but regions of the space remain unexplored 
due to zero samples. Increasing the mutation vari-
ance adjusts the compromise between greediness 
and thoroughness of the search. With high variance, 
the whole space gets searched, but the samples also 
fall on the zero areas due to a Gaussian blurring 
effect.  



Thanks to the mutation variance proportional to 
the dimensions of the selected hypercube, the blur-
ring is adaptive considering the number of samples 
and the size of the high-fitness area. The bottom-
right image in Figure 1 shows how there’s less blur-
ring when the high-fitness area is smaller. The muta-
tion variances at the bottom-left and bottom-right 
images are equal.  

Figure 2 illustrates the adaptive subdivision re-
sulting from the sampling. 

3 Related work 

3.1 Genetic algorithms   
 In multimodal, multivariable optimization, sto-

chastic methods are generally a safer choice than 
hill-climbing methods that use the gradient of the 
objective function to direct the search. The hill-
climbing (or descent) methods are prone to ending 
up in a local optimum instead of the global one.  

Genetic algorithms (GA) are a vast family of 
stochastic optimization methods. GA methods gen-
erate samples (individuals) and evaluate their fit-
ness. After an initial population has been generated 
by random sampling or based on prior knowledge, 
the population is evolved, which consists of selec-
tion, cross-over and mutation operations (e.g., Gold-
berg, 1989). In model-fitting, fitness can be formu-
lated as a function of fitting error so that smaller 
error yields greater fitness. The optimized variables 
are formulated into a genome, e.g., a binary string or 
a vector of real values. 

Our sampling method is related to GA in that, 
the corners of a kd-tree node can be thought as par-
ents that produce offspring samples by cross-over. 
The structured subdivision provides the benefit of 
knowing that there’s only one previous sample in 
the same space as the offspring. Even if the parents 
are fit, they should not be selected for cross-over if 
there already are several samples in the same space 
as the offspring. In this case, the offspring does not 
provide much additional information about the fit-
ness function shape.  

3.2 Evolution strategies 
Evolution strategies (ES) are another big family 

of stochastic optimization methods. In contrast to 
GA, ES view the optimized variables not as single 
genes but as the features that are function of several 
genes, e.g., musical or mathematical talent (e.g., 
Beyer, 2001). Such features are often normally dis-
tributed in real populations. ES exploit this, e.g., by 
generating samples by sampling from a normal dis-
tribution centered at a selected individual.  

Our method is related to ES in that we also select 
a sample and mutate it using a normal distribution. 

Our main difference to ES is the structured subdivi-
sion of space. The variance of the normal distribu-
tion is relative to the size of the selected hypercube, 
which focuses the search based on how much reso-
lution there already is in fitness function approxima-
tion. 

3.3 Importance sampling 
Population based optimization can be sometimes 

replaced by importance sampling, and vice versa, 
although importance sampling is perhaps more typi-
cally used in Monte Carlo integration, i.e., estimat-
ing integrals of difficult integrands based on random 
samples. There are various importance sampling 
methods, of which overviews can be found in text-
books (e.g., Dutré, 2003). Borrowing ideas from 
computational chemistry, Sminchisescu (2002) has 
investigated hyperdynamic importance sampling for 
computer vision model-fitting. In computer graph-
ics, both genetic algorithms and importance sam-
pling have been used to minimize the number of 
light paths that need to be evaluated in image ren-
dering (Szirmay-Kalos, 1999). 

A simple way to estimate a definite integral is to 
compute the mean of random samples of the inte-
grand within the integrating bounds. However, the 
estimate has a high variance, and much of the litera-
ture is devoted to variance reduction techniques.  

Variance can be reduced by importance sam-
pling, which means that more samples are produced 
in areas that contribute more to the integral. The 
relation to optimization is clear when considering a 
fitness function as the integrand: Areas of high fit-
ness contribute more to the integral, and concentrat-
ing samples there makes it more probable to gener-
ate a sample close to the optimum.  

Importance sampling is also related to stochastic 
optimization in that simulated annealing is an adap-
tation of Metropolis Monte Carlo (MMC) impor-
tance sampling. In MMC, a new sample is generated 
by displacing the previous one randomly. The 
change of the energy of the system, ∆E, is then 
computed and the new location is accepted if ∆E<0 
or if ξ<exp(-∆E/kT), where ξ is a random number 
between 0 and 1, and T is the temperature of the 
system. In the original Metropolis case, the sample 
is formed as a vector of the locations of the particles 
of a substance (Metropolis et al., 1953).  

In simulated annealing, energy is replaced by an 
arbitrary cost function, and T is gradually decreased 
so that the system freezes in a (near) optimal con-
figuration (Kirkpatrick et al., 1983). Although simu-
lated annealing has been found powerful in many 
problems, it violates our principle 2 in that new 
samples are not based on all previous samples. The 
method is prone to get trapped inside a local opti-
mum, especially if the temperature is decreased too 



rapidly. Variants of simulated annealing have been 
developed to improve transitions between optima, 
e.g., using gradient and curvature information to 
find saddle points representing ‘mountain passes’ 
connecting adjacent cost basins (Sminchisescu and 
Triggs, 2005). To our knowledge, none of the vari-
ants have exploited the adaptive subdivision of 
space that is characteristic to our method.  

3.4 Sampling and adaptive subdivision 
using kd-trees 

In Monte Carlo integration, variance can be re-
duced through stratification. This means that the 
sampling space is divided into equal size strata, and 
samples are generated inside each stratum. This en-
sures that the samples don’t get cluttered up in some 
portion of the space. Unfortunately, this is impracti-
cal in high-dimensional problems, because the num-
ber of strata grows exponentially as a function of 
dimensionality. 

Crucial to this paper is the unification of impor-
tance sampling and stratification via adaptive subdi-
vision using a kd-tree. This was first proposed by 
Kajiya (1986) in context of 3d image rendering. He 
writes that “So far, our experiments in finding adap-
tive criteria have not been terribly successful”, 
adaptive criteria denoting the means to decide which 
node to split and generate a new sample in. Al-
though he outlined the use of the kd-tree to divide 
the space, he didn’t use the adaptive subdivision in 
generating the images in the paper.  

Painter and Sloan (1989) were successful in de-
veloping the approach further. They were able to 
considerably reduce the number of light paths that 
need to be evaluated to provide an anti-aliased im-
age.  

Comparing Painter and Sloan to Kajiya, a major 
improvement is that the selection priority of a node 
equals the product of external variance and the vol-
ume of the node. External variance is computed 
from the means of the samples of the node and its 
neighbour nodes. This ensures that even if the prior-
ity of a node is initially zero, the priority grows 
along with the priorities of its neighbours and no 
part of the space is left unexplored. The effect is 
similar to the mutation in our method, but it is im-
practical in high-dimensional problems. The number 
of neighbours of a node grows exponentially as the 
number of dimensions increase. In high-dimensional 
spaces, updating the priorities may require thou-
sands of operations for each new sample. This may 
be why Painter and Sloan apply their method in only 
two dimensions. 

Compared to the randomized selection in our 
method (sampling from the approximated fitness 
distribution), Painter and Sloan always select the 
node with the highest priority. We also tried this, but 

it seems to increase the exploring of local optima 
and the time needed to find the global optimum. 
Randomized selection enhances the parallel explora-
tion of several optima. 

In our method, the concept of external variance 
can be implemented so that instead of fitness times 
volume, the relative probability of node k is com-
puted as pk=|fk-fs|vk, where fs is the fitness of the 
sibling of the node. This improves sampling of, e.g., 
images with areas of constant colour, but so far we 
have not observed a clear difference in optimization. 

There’s been quite some time since Painter and 
Sloan’s paper, but the ideas have recently had re-
vived interest. SUAVE, a method similar to Painter 
and Sloan’s has been implemented as a part of the 
CUBA library for multidimensional numerical inte-
gration (Hahn, 2005 and 2006). SUAVE improves 
previous methods by global estimation of Monte 
Carlo integration error and stops sampling automati-
cally when desired precision has been reached. 

4 Test results 
Figure 1 demonstrates the ability of our method to 
concentrate samples in areas of high fitness, even 
when the gradient of the fitness function is either 
zero or infinite. In the following, we present the 
results from optimization in the case of two multi-
dimensional test functions and a real-world com-
puter vision problem with three optimized variables. 

4.1 Multidimensional test functions 
Figures 3 and 4 illustrate the average convergence 
of 100 test runs of our method with 1 to 10 dimen-
sional test functions. In the figures, the Euclidian 
distance between the true optimum and the best 
sample so far is plotted as a function of samples 
generated. The distance curves are normalized so 
that they start at 1, independent of the number of 
dimensions. In Figure 3, the fitness is defined as 

∏=
i

ixf )sinc()(x ,  (1) 

where xi denotes optimized parameter i. The pa-
rameter range is -4π≤xi≤4π. In Figure 4, the fitness 
is an exponential peak, 

xx 10)( −= ef .   (2) 
 
Because the samples are distributed according to the 
fitness, convergence is rapid if high fitness is con-
centrated close to the optimum, as in the case of the 
exponential peak. In general, exponentially peaked 
fitness functions work better than, e.g., quadratic 
peaks, since the convergence slows down if the gra-
dient of the fitness approaches zero near the opti-
mum. 
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Figure 3. Convergence when finding the maximum 
of a multimodal test function in 1 to 10 dimensions. 
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Figure 4. Convergence when finding the maximum 
of an exponential peak in 1 to 10 dimensions. 
 

4.2 Exploiting spatiotemporal coher-
ence in computer vision 

Considering practical applications, we have tested 
our method in a recent version of a computer vision 
based user interface, originally presented by Mäki-
Patola et al. (2006). Figure 5 shows the view of a 
camera placed inside a djembe drum. The shadows 
of the player’s hands control musical synthesis. The 
hands don’t need to be fully tracked, because mo-
ment-based image features provide enough informa-
tion. However, the moments should only be com-
puted at the drum membrane, for which a circular 
mask is needed. The mask is obtained by fitting a 
circle to the drum membrane, shown in Figure 5. 
This is an optimization problem with the circle co-
ordinates and radius as the variables. The drum 
membrane stays mostly still in the camera view, but 
it may move when the drum is hit hard. 

 

 
Figure 5. The view of a camera placed inside a 
djembe drum, showing the shadows of the player’s 
hands on the drum membrane, and the circle fitted 
to the outline of the membrane. 

 
We formulate the fitness function as 
 

reef i
i

i
i II )255( 21 ∑∑

=
−−−

,  (3) 
 
where I1i denotes the intensity of pixel i of the 

circle, and I2i denotes the intensity of pixel i of a 
circle with radius 1.05r. The intensity values are in 
the range 0...255. The circle is sampled uniformly 
with 14 points. In a good solution, the circle is on 
the drum membrane, but a slightly larger circle falls 
outside the drum. Multiplying by r favours large 
circles.   

According to our tests, 1000 samples are enough 
when optimizing the circle parameters at each new 
video frame with 30 frames per second. However, 
the performance can be boosted considerably by 
exploiting both spatial and temporal coherence.  

The basic version of our sampling method ex-
ploits spatial coherence, that is, samples are likely to 
be generated in the vicinity of regions that are al-
ready known to yield high fitness. Temporal coher-
ence can be utilized so that instead of initializing the 
optimization at each video frame, the kd-tree gener-
ated at the previous frame is pruned to only contain 
a number of best samples. The fitness of the samples 
is then re-evaluated in the context of the new video 
frame, after which optimization is continued nor-
mally. When preserving 10 best samples, we only 
need about 100 new samples for each frame. The 
computational and memory costs are considerably 
less than, e.g., those of Hough transform.  

In effect, we initialize the optimization with 
guesses based on the previous optimization results, 
which is a common technique in computer vision. 
What makes our case special is that thanks to the 
adaptive subdivision and the sampling based on all 



previous samples, erroneous initial guesses do not 
prevent the optimization from converging.  Sudden 
movements of the djembe only cause a few frames 
of confusion, after which the optimization converges 
again without any additional initialization.   

5 Conclusion and future work 
We have described a novel importance sampling 
method that improves previous methods by combin-
ing kd-tree adaptive subdivision with stochastic 
blurring of the sample distribution. The blurring is 
implemented via mutations that make it unnecessary 
to find and evaluate neighbours in the kd-tree. This 
can save computation time, especially in multi-
parameter optimization.  

The method satisfies all the three design criteria 
defined in the introduction: optimization as sam-
pling from the fitness distribution, utilization of 
every past sample in the generation of a new sam-
ple, and a simple user interface. Besides the formu-
lation of the fitness function, which typically re-
quires skill and insight, the only user-adjustable 
parameters are the number of samples and the muta-
tion variance that adjusts greediness. The sampling 
can also be initialized with a number of initial 
guesses, and it recovers from erroneous guesses.  

We find the method promising especially in the 
following aspects that we are investigating for future 
publications: 
• Light transport in image rendering. This is natu-

ral, as the roots of our method are in importance 
sampling of light paths.  

• Improving the utilization of temporal coherence 
by incorporating ideas from particle filters, such 
as Condensation (Blake and Isard, 1998). It 
seems that using the kd-tree may ensure global 
sampling so that the particles don’t get trapped 
inside a single mode of the estimated distribu-
tion. 
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