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NO-1430 Ås, Norway. †Adigo AS, NO-1405 Langhus, Norway. E-mail: trygve.utstumo@adigo.no

Abstract—Vehicles which operate in agricultural row crops,
need to strictly follow the established wheel tracks. Errors in
navigation where the robot sways of its path with one or more
wheels may damage the crop plants.

The specific focus of this paper is on an agricultural robot
operation in row cultures. The robot performs machine vision
detecting weeds within the crop rows and treats the weeds by
high precision drop-on-demand application of herbicide.

The navigation controller of the robot needs to follow the
established wheel tracks and minimize the camera system offset
from the seed row. The problem has been formulated as a
Nonlinear Model Predictive Control (NMPC) problem with the
objective of keeping the vision modules centered over the seed
rows, and constraining the wheel motion to the defined wheel
tracks.

The system and optimization problem has been implemented
in Python using the Casadi framework. The implementation has
been evaluated through simulations of the system, and compared
with a PD controller. The NMPC approach display advantages
and better performance when facing the path constraints of
operating in row crops.

I. INTRODUCTION

An agricultural robot for weed control in row-crops is under
development. The weed control is done by drop-on-demand
herbicide application, where the weed is first identified by a
camera system and then targeted by a drop-on-demand nozzle
array. The focus of the project is on computer vision, robot
integration and navigation [1].

The project share its ambition of autonomous weed control
with many other research projects on robotic weed control.
The review by Slaughter 2008 presents an overview of the
field [2].

Fig. 1. The wheeled mobile robot developed for weed control in row crops.

The robotic platform has two front wheels with electro
motors and two rear castor wheels, Figure 1. The robot has a
monocular downward facing RGB camera primarily used for
two purposes: Classification of crop and weed plants as part
of the spray-on-demand system [3], and for visual odometry
measurements as input to the localization filter and crop-row
detection.

The visual crop-row estimate will be fused with a forward
looking camera for crop-row detection. This information forms
the input to the row following controller.

Crop-row following has been well explored within the field
of agricultural robotics, and similar applications can be found
in [4].

Application of Non-linear Model predictive control (NMPC)
in agriculture has been described in [5], and [6] where an
actuated trailed implement is controlled to follow field rows.

To the authors knowledge there has not been publications
on NMPC applications for robotics in row crops with specific
constraints on the wheels to minimize crop damage.

A. Minimizing crop damage

A review of autonomous navigation in agriculture is pre-
sented in [7], where the performance of various approaches
are compared.

A study of guiding principles in design of robots for
agriculture revealed that the most important factor for the end
users were minimizing crop damage [8].

Other controllers described in the review article [7], does
not incorporate the constraints on navigation directly. This
motivates our research on using an NMPC based design
where the path constraints can be directly implemented in the
controller, adding an additional barrier against damaging the
crop.

B. Wheel tracks in row cultures

The production method for most vegetables is row cultures,
where the plant rows are set with a fixed intermediate distance
between the wheel tracks. The centre to centre distance of
the wheel tracks are typically 1.65 m to 1.80 m in European
agriculture, 4.

The robots and vehicles operating in the field are restricted
to these wheel tracks to avoid damage of the crop, as illustrated
in Figure 2.

II. MODELLING AND SIMULATION

The robot can be modelled as a unicycle-like robot assuming
non-slip conditions. Differentially steered robot designs are



Fig. 2. The robot illustrated has a path-following algorithm seeking to
maintain the camera module centered over the seed row. A sideways error
will lead the controller to turn to correct the error. A small turn can easily
lead the rear castor wheels to enter the sow bed and damage the crop.

very common in many applications, and numerous publica-
tions present kinematic and dynamic models for this class of
robots.

Industrial motor controllers and commercial robot platforms
normally provide the control inputs as linear and angular
velocity set-points, not as torque or voltage set-points. A dy-
namic model with the motor controllers included and velocities
as inputs will be advantageous when it comes to implementing
the actual robot.

Such a model has been presented [9] and the formulation
has been used as the basis for modelling and simulation in
this paper. The robot in our project differs from the model
schematic presented in [9]: In contrast to the schematic, this
robot has the differential drive wheels in front, and trailing
castor wheels in rear. Consistency with the schematic is
maintained by describing relevant parameters with negative
sign, as shown in Figure 3. The camera and spray unit has
been mounted centrally at the virtual wheel axis in field
experiments, which leaves the tracking point, h, at a = 0.
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Fig. 3. The unicycle model from [9] can be applied to the robot with
differential drive and passive castor wheels. The robot tracking point is located
in h, which is the origin of the robot frame. The point h is a distance −a
behind the virtual front wheel axis. G is the center of gravity, −b behind the
virtual front wheel axis. The track width of the robot is d, and the rear castor
wheels, C, is at a distance −c from the virtual wheel axis. The robot has a
forward velocity, u, and an angular velocity ω.

The dynamic model is written as [9]:

ẋ = f(x(t),u(t),θ) + δ (1)
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where (x, y) is the position in the base frame, and ψ is the
robot orientation or heading, (u, ω) are the linear and angular
velocities and uref and ωref are the input signals of the
system: linear and angular velocity.

The two vectors are identified model parameters, and para-
metric uncertainties. The uncertainty vector

δ = [ δx δy 0 δu δω ]T (3)

represent slip velocities and effects of uneven ground with
its first two elements. The two last elements are functions of
physical parameters as mass, inertia, wheel and tire diameters,
parameters of the motors, and wheel ground interaction forces.

The parameters in the vector θ are functions of the robots
physical parameters, such as its mass m, inertia IZ about
G, the electrical resistance Ra of the DC motors with motor
constant ka, the friction coefficient Be, reduction gear inertia
Ie, radius of the wheel r, nominal radius of the tire Rt,
and the distances b and d. The model assumes a PD motor
control loop with gains kPT > 0, kPR, kDT and kDR. The
equations for θ were presented in [9], and methods for online
parameter identification and an adaptive controller has been
presented [10]. The parameter equations are reproduced here
for reference:
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(4)
For the simulations in this paper, we have used a set of

parameters identified from indoor experiments with a robot
comparable to our:

θ =


θ1
θ2
θ3
θ4
θ5
θ6

 =


0.19
0.14
0.02
1.00
0.16
1.00

 (5)

The disturbances in the δ have been left at zero for the
simulations shown here, while it does provide a possible input
for perturbing the system in simulation.

The model has been implemented in Python using the
Casadi framework [11] and a Runge Kutta 4 integrator scheme



for time simulation.
For this implementation, the robot is assumed to navigate

relative to a local coordinate frame aligned with the crop row,
as illustrated in Figure 2.

A. Reference PD controller

A PD controller has been implemented for reference and
comparison with the NMPC controller. The controller has been
tuned to stay within the constraints when operating with a
tracking error less than half the allowed region. That is y ∈
[− τw2 ,

τw
2 ].

The controller has been implemented as a P controller
driving both the sideways tracking error and the heading
to zero. For small heading angles, the time-derivative of
y approximates to the heading ψ, and the controller can
be though of as a PD controller. The velocity reference is
constant.

vref = 0.3m s−1 (6)
ωrefPD = −kpy − kdψ (7)

where the tuning constants has been set to:

kp = 0.70 kd = 0.49 (8)

III. FORMULATING THE OPTIMAL CONTROL PROBLEM

Fig. 4. The feasible wheel track area where a robot can operate without
damaging the crop, based upon experience from field test during spring 2014.

The objective for the robot is to maintain a constant velocity
while centring the camera systems over each crop row. At the
same time, the rear castor wheels should be constrained to the
wheel tracks, not to damage the crop.

The position of the rear castor wheels can be expressed in
vector notation in the BODY frame, wB , and rotated into the
ROW frame, wR, to find the wheels’ positions. The calculation
for the left rear castor wheel becomes:
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Only the y-component is of interest in the ROW frame, and
the constraint for the left castor wheel can be written with

respect to the distance between two tracks τd and the width
of each wheel track τw, illustrated in Figure 4, as:

−τd − τw
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≤ −c sin(ψ) + d

2
cos(ψ) + y ≤ τd − τw

2
(13)

If the robot track width and the row track width are equal,
τd = d, the constraint will be symmetric for the left and right
wheel, for small deviations of y, and it will be sufficient to
consider one wheel constraint.

The quadratic cost function describes the robots deviation
from the row centre line, and deviation from the reference
velocity:

minimize
x

∫ T

t0

(y − yrow)2 + (u− usetpoint)2dt (14)

subject to ẋ = f(x(t),u(t),θ)
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A. Inverse proportional limit on the feasible control space
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Fig. 5. The allowed range of steering angles ψ as a function of the tracking
error. The regions marked in red, are outside the track width. If the robot
enters the red region the front wheels are outside the wheel tracks, and the
robot will diverge from the row. The NMPC controller with constraints can
only be used within the white region. Two trajectories starting with a sideways
error of 0.1 meter are shown in the plot, one with the NMPC controller and
one with the PD controller. Note that the NMPC controller closely follows
the constraint in steering angle.

The kinematics of the system leaves us in a special case
when we apply the constraint to the rear castor wheel. An
analogy of this scenario is driving a forklift alongside a wall.
As the forklift approaches the wall, it will be increasingly
impossible to turn away from the wall, as its rear end needs
to swing out to turn.

The robot and the wheel tracks scenario leave us with the
same situation. The allowed and stable region of steering, or
vehicle angles, are shown in Figure 5.

A typical path following algorithm using a PID-type con-
troller, would proportionally increase its control input as the
error increases. The feasible control region for this problem
leaves us with a set of controls which does not fit well with
a proportional control strategy: As the tracking error increase,
say to 0.1 m, the maximum vehicle angle to counter the error is
reduced by a factor of two. This limitation on the feasible state



space can be taken as an argument for implementing a NMPC
controller to utilize the limited control space optimally.

IV. IMPLEMENTATION

The system has been implemented in Python using the
Casadi framework [11]. The chosen method for solving the op-
timization problem (14), is a direct multiple shooting method.

The infinite horizon problem is reformulated to a finite
discretized nonlinear problem. The time horizon has been
limited to 5 seconds, and the control input has been discretized
to N = 20 steps.

The second step is to parameterize the system of differential
algebraic equations (DAE) by multiple shooting. We also
exploit the quadratic form of the cost function, by using
the Gauss-Newton method to solve the sequential quadratic
program (SQP). The implementation follow the details given
in [12]. A more advanced implementation applied to auto-
mobile collision avoidance, follows the same implementation
approach [13].

The QP problem is solved at each iteration by using the
IPOPT library [14]. The QP problem is initialized with the
last state at every iteration as an aid to the QP solver.

The system has been simulated without disturbances, δ =
0, from various perturbed initial conditions to investigate
the system behaviour. The target velocity has been set to
usetpoint = 0.3m s−1 and the crop row is at the origin of
the coordinate system, yrow = 0

V. RESULTS

The NMPC controller has tested by starting the system
in several different initial conditions. Figure 7 show the
system recovering from a small tracking error, with the NMPC
controller and the reference PD controller. Note the increasing
curve of ψ as the robot gains increasingly more headroom to
navigate. Figure 8 show the states of the NMPC controller
in the time domain. This scenario is also illustrated in the
time domain in Figure 8 and with respect to the constraints in
Figure 5.

The NMPC controller use two iterations to converge to
the optimal trajectory, and steers the robot in the opposite
direction with the first control input, as shown in Figure 6.
Figure 9 and 10 show the system from an initial condition
close to the boundary constraint. The recovery of the robot is
significantly slower, and the amplitude of ψ is limited by the
path constraint.

In addition to the displayed figures, the NMPC controller
has been initialized in several infeasible initial conditions.
The trajectory then diverge from the desired trajectory for as
long as the path constraint can be met. These scenarios break
the assumption of small y deviations, which the symmetry
assumption of the path constraint relies on.

VI. DISCUSSION

Looking at Figure 7 it is interesting to see the increasing
correction in heading, as the robot approach the desired
trajectory. This is the opposite of behaviour of a PID based
controller, as illustrated by the reference PD controller. The
NMPC controller maintains the rear castor wheels on the path
constraint, until the target is reached. The PD controller is not
able to converge as quickly without violating the constraints.
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Fig. 6. With the system initialized at [x, y] = [0 0.1] the NMPC controller
use the first to iterations to converge to the optimal solution. The first
prediction can be seen as the green dotted line, and the current prediction
is shown as the red dots.

Figures 9 and 10 illustrate the characteristic of the con-
strained controller: If the tracking error is sufficiently large,
the controller is left with close to no headroom for navigation,
and the convergence is slow. If the front wheels are at, or
outside the boundary the solution will diverge. The reference
PD controller is outside its intended region of operation, and
it violates the constraint in heading angle.

For operation outside the feasible region, the constraint
should be reformulated without the symmetry assumption
for the castor wheel constraints. This assumption relies on
small deviations in angle and lateral position, and will be
increasingly inaccurate outside the wheel tracks.

Another control strategy should be implemented to handle
operation outside the feasible region. Some alternative solu-
tions may be:

• Drop the velocity reference from the cost function, and
add a quadratic term in the heading, ψ. This will allow
the robot to reverse back into the wheel tracks and correct
it’s heading and position.

• Drop or expand the path constraint to allow the robot to
quickly get back to the path, and accept damage to the
crop for a short section.

• Switch to a different type of controller with desired
dynamics and let that bring the robot back into the
feasible region.

In a real field implementation these strategies need to be
evaluated with practical considerations in mind.

The implementation of the inequality constraints are rela-
tively straight forward, within the multiple shooting method.
One can easily imagine applying such a strategy to vehicles
and robots with more complex kinematics or environments, an
example pointing in that direction is presented in [5].

The oscillations in ωref as the system reaches the trajectory
is caused by the NMPC controller exploiting its knowledge of
the motor controller and system dynamics to maximize the
system response. This behaviour may be problematic when
faced with inaccuracies in the estimated parameters θ. For
example: If the robot is significantly lighter than estimated;
this may lead to oscillations in the control. A term to dampen
control inputs can be considered in the cost function.
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Fig. 7. A comparison of the reference PD controller with the NMPC controller, with sideways error and heading angle as the robot moves along the row.
The robot was initialized at [x, y] = [0 0.1]. The NMPC controller follow the constraint in heading angle, and converge faster than the PD controller. The
same trajectories are also illustrated in figure 5.
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Fig. 8. The robot states and NMPC control inputs shown in the time domain, when initialized at [x, y] = [0 0.1]. After the robot has accelerated, the rear
castor wheel follow the edge of the constraint until the y target is reached just before t = 4s. Note that the robot heading, ψ, increase in amplitude, as more
headroom for navigation is available. When the target is reached it quickly steers the heading back to zero. The NMPC controller oscillates here to maximize
the response from the motor controllers.

The computational performance of the algorithm has not
been systematically evaluated, but the run-time is consistently
below 50 ms per iteration. Further optimizations may be
implemented for real-time applications, and there exists code
generation tools within the Casadi framework, which may be
useful, [12].

VII. CONCLUSION

A crop row following controller has been formulated with
special focus on constraining the motion of the trailing castor
wheels to the wheel tracks. The implementation uses Nonlinear
Model Predictive Control (NMPC) with a direct multiple
shooting method, and a Gauss-Newton quadratic objective.

The implementation is flexible with regards to expressing
the constraints and it can be suitable for real-time implemen-
tations. The controller needs to be expanded to operate on a
global frame with an arbitrary model of the crop row, and the
implementation needs to be verified in experiments.

The kinematic limitations of a trailed castor wheel with path
constraints has been investigated. The limited range of feasible
control inputs can be an argument for applying constrained
model based control, such as this NMPC application, over
other control methods. An NMPC approach will better utilize
the available control room, and in row crops the NMPC
controller can provide safety against damaging the crop.
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