TRANSDISCIPLINARY SYNTHESIS AND COGNITION FRAMEWORKS

John N. Carbone, James A. Crowder
Raytheon
1200 S. Jupiter
Garland, Texas 75042, USA

ABSTRACT

Many disciplines are wrought with high levels of uncertainty and many unknowns including transdisciplinary design. Hence, to achieve some advancement within a discipline, we must provide aids in achieving mitigation of complexity and increasing understanding. We achieve this by investigating beyond the boundaries of the existing discipline’s design concepts. This means stretching the boundaries of knowledge by traditional observation and analysis known as hard work using “elbow-grease” or reviewing those methods and processes of other disciplines, which might have applicability to our discipline’s domain. Therefore, we addresses the challenge of minimizing ambiguity and fuzziness of understanding in large volumes of complex transdisciplinary information content and explore transdisciplinary synthesis via cognition based frameworks, for improving actionable decisions. Specifically, Recombinant Knowledge Assimilation (RNA) & Artificial Cognitive Neural Framework (ACNF) which recombine and assimilate knowledge based in human cognitive processes, formulated and embedded in a neural network of genetic algorithms and stochastic decision making, towards minimizing ambiguity and maximizing clarity.

Hence, we will introduce transdisciplinary concepts and apply them to the problem set, herein, to achieve a specific set of qualitative solutions. Today large volumes of complex interconnected data and applications need to be processed and understood through the use of Transdisciplinary engineering approaches. Additionally, engineering disciplines which are either more mature, or have generated solutions to similar problem sets within their domain, can provide added efficiencies and benefits because of similarities to problems in other domains. In order to understand how one might perform transdisciplinary synthesis, we must first understand the basics of what a discipline comprises and the discipline’s roots and eventual evolution into existence. Additionally, we must realize that there are many components, as well as, internal and external actors, which interact with, and within a discipline, each directly or indirectly influencing or making important decisions about facts and principles a discipline espouses, as well as, to the direction a discipline might follow.

When investigating the roots of the word, “discipline”, you find many definitions discussing the literal, conventional and metaphorical meanings of the word. Predominantly, the meanings describe the training and/or instruction of disciples in the appropriate teachings for that domain or discipline. Definitions had either, the mundane meaning of instruction or education, or the more severe meaning of instruction involving punishment. The graphical representation in Figure 1, Discipline Evolution, serves to describe the influences and essential characteristics which make-up a discipline, and how disciplines evolve their knowledge base.

Transdisciplinary Synthesis Knowledge Validation

How and why did Sir Isaac Newton decide to use the “falling apple” as a pattern to address Physics and Mathematics questions? How does any one single decision get made, in any domain? Simply stated, the answer is by the experiences and information we retain as we pass through life. Just as more experimental data can result in better or increased maturity in decision making, as in the additional number of decision points, a discipline gets more defined and mature based upon the volume of information and understanding as it evolves.
Figure 3, graphically depicts the relationships between a discipline, its components, and the process involved in bi-directional trans-disciplinary knowledge assimilation. Bi-directional refers to the directionality of knowledge assimilation of the compared objects. When two objects of information get compared and contrasted resulting in a recombinant set of knowledge, both objects will retain a recombinant bit of information resulting from the comparison.

Strength and Weakness

It also follows, that any additional number of ways objects or information are compared, the more information can be gained as to the strength or weakness of the relationship between those objects, as depicted in Figure 2 below. It is important to understand that the strength or weakness of a relationship is not dependent on how many comparisons are made, but rather the improved decision making, which can be accomplished from having the additional comparisons or Information Content Quantity (ICQ). Hence, the maturity of a decision (DM) can be derived from a direct relationship to its Information Content Quantity or ICQ, without yet taking into account the aspect of data quality, hence, DM = ICQ. This simplistic mathematical concept is used solely to expound upon the fact that, although obvious and most often forgotten, the quantity of data is most relevant in any decision making process. Hence, disciplines evolve based upon the accepted maturity of their Information Content, which will obviously increase in quantity over time. Figure 1 above, graphically depicts the data flow process of how data becomes an addition to a discipline’s repository. The process involves taking into account the many experiences, facts and information gathered (as shown in Figure 1), and thus, through the implementation of the process, physically deriving new Information Content Quantity (ICQ). It should not be forgotten, that to derive the IC, significant cognitive energy is applied to all the data/new ICQ, in order to validate a datum’s existence to ultimately reside in that discipline’s repository.

Assimilation

Transdisciplinary Synthesis tasks operate on the components of each discipline in order to synthesize new data. Step 1 of the process begins with the “Discovery” of the domain knowledge of each discipline. This step encompasses the review and understanding of the discipline’s fundamentals, First Principles, Processes, Mathematics, Interfaces, Tools, Methods, Standards, etc. The amount of understanding, U, is determined by the amount of knowledge persons(s), K, performing the comparison and the resources, R, which are available in order to discern the discipline specifics. Thus, $U = KR1 + KR2 + \ldots + KRN$. Hence, the amount of time, T, it takes to understand the pieces of a discipline being compared, is also related directly to the amount of data and the complex, C, nature of the topics or $T = U*C$.

Following closely is step 2, the “Decomposition”, which decomposes the domain knowledge into “bite size” digestible bits of information, which can then subsequently be reduced in step 3, into the core capability this domain knowledge represents. For example, a bit of information might be a mathematical formula used to perform a specific task within a discipline.

The core capabilities are now assessed through the process of step 4, “Compare & Contrast”. Compare and Contrast provides the largest Quantity of Information Content, with respect to, each discipline’s core capability being assessed. Each comparison begins a cognitive process of assimilating the facts and information as described in Figure 1, and comparing each to the other, looking to see if an association evolves which might add pertinent knowledge that can be applied to each domain.

The next step, step 5, is the process of assigning relationship associations between two disciplines when a match is found. Finding a match means that, at least one discipline has a feature, function, process etc. that another discipline could potentially reuse to provide benefits or enhancements. Relationships and associations also can become part of a pertinent repository, possibly a global superset of knowledge, about the bi-directional comparisons of the disciplines. Step 6, is the process whereby, commonalities among different disciplines are functionally combined into a normalized form and validated, such that, a common set of new domain knowledge is formed and deposited metaphorically in each domain knowledge repository. This recursive and recombinant activity is depicted in Figure 3, by the red text describing the activation of the synthesis tasks and their implementation upon the discipline domain knowledge, to ultimately provide the recursive feedback loop of newly validated discipline domain knowledge.

Knowledge and Cognition

Research shows that generating new knowledge is accomplished via natural human means: mental insights, scientific inquiry process, sensing, actions, and experiences, while context is information, which characterizes the knowledge and gives it meaning. This knowledge is acquired via scientific research requiring the focused development of an established set of criteria, approaches, designs, and analysis, as inputs into potential solutions.

Transdisciplinary research literature clearly argues for development of strategies that transcend knowledge of any one given discipline and that enhance research collaboration. Increasingly, this cross-domain research is more commonplace, made possible by vast arrays of available web based search engines, devices, information content, and tools. Consequently, greater amounts of inadvertent cross-domain information content are exposed
to wider research audiences. Researchers expecting specific results to queries end up acquiring somewhat ambiguous results and responses broader in scope. Therefore, resulting in a lengthy iterative learning process and query refinement, until the sought after knowledge is discovered. This recursive refinement of knowledge and context occurs as user cognitive system interaction, over a period in time, where the granularity of information content results are analyzed, followed by the formation of relationships and dependencies. Ultimately the knowledge attained from assimilating the information content reaches a threshold of decreased ambiguity and level of understanding, which acts as a catalyst for decision-making, followed by actionable activity or the realization that a research objective has been attained.

Underlying clinical decision-making is also a great concern for handling ambiguity and the ramifications of erroneous inference. Often there can be serious consequences when actions are taken based upon incorrect recommendations and influence clinical decision-making before the inaccuracies can be detected and/or corrected. Underlying data fusion is the challenge of creating actionable knowledge from harnessing information content from the environment of vast, exponentially growing structured and unstructured sources of rich complex interrelated cross-domain data.

Therefore, we address the challenge of minimizing ambiguity and fuzziness of understanding in large volumes of complex interrelated information content via integration of two cognition based frameworks, for improving actionable decisions. Recombinant Knowledge Assimilation (RNA) & Artificial Cognitive Neural Framework (ACNF) recombine and assimilate knowledge based in human cognitive processes formulated and embedded in a neural network of genetic algorithms and stochastic decision making towards minimizing ambiguity and maximizing clarity.

Information Content to Knowledge

Nonaka and Takeuchi [1], when describing how Japanese companies innovate as knowledge creating organizations, described two types of knowledge: tacit and explicit. Tacit knowledge is personal and context-specific. Explicit knowledge is knowledge codified in books, journals and other documents for transmittal. Additionally, Nonaka [2] prescribed how dynamic organizational creation of knowledge needs to be strategically collected, understood, and managed across the entire company’s organizational structure as intellectual capital. Knowledge theorist Polanyi and Sen [3], in de-scribing what he called the “Tacit Dimension,” used the idea of tacit knowledge to solve Plato’s “Meno’s paradox,” that deals with the view that the search for knowledge is absurd, since you either al-ready know it or you don’t know what you are looking for, whereby you can not expect to find it. The author argued that if tacit knowledge was a part of knowledge then “we do know what to look for and we also have an idea of what else we want to know,” therefore personal and context-specific knowledge must be included in the formalization of all knowledge.

Renowned fuzzy logic theorist Zadeh [4], described tacit knowledge as world knowledge that humans retain from experiences and education, and concluded that current search engines with their remarkable capabilities do not have the capability of deduction, that is the capability to synthesize answers from bodies of information which reside in various parts of a knowledge base. More specifically Zadeh, describes fuzzy logic as a formalization of human capabili-ties: the capability to converse, reason and make rational decisions in an environment of imprecision, uncertainty, and incompleteness of information.

Tanik and Ertas [5] described, knowledge as generated through mental insights and the scientific inquiry process, usually stored in written form, assimilated through mental efforts, and disseminated through teachings and exposure in the context of a disciplinary framework. Kim et al. [6] used a case study to develop an organizational knowledge structure for industrial manufacturing. Specifically, a methodology was developed for capturing and representing organizational knowledge as a six-step procedure, which ranged from defining organizational knowledge to creation of a knowledge map for validation. The defined knowledge was extracted from the process as three types: prerequisite knowledge be-fore process execution, used knowledge during execution, and produced knowledge after execution. Spender [7] stated that universal knowledge true at all times is the highest grade that knowledge can attain. Alternatively, Gruber [8] when describing social knowledge systems on the web and their relationship to semantic science and services, defined knowledge as “collective knowledge” that is collaborated upon.

Lastly, when describing how science integrates with information theory, Brillouin [9] defined knowledge succinctly as resulting from a certain amount of thinking and distinct from information which had no value, was the “result of choice,” and was the raw material consisting of a mere collection of data. Additionally, Brillouin concluded that a hundred random sentences from a newspaper, or a line of Shakespeare, or even a theorem of Einstein have exactly the same information value. Therefore, information content has “no value” until it has been thought about and thus turned into knowledge.

Context

Dourish [10] expressed that the scientific community has de-bated definitions of context and it’s uses for many years. He discussed two notions of context, technical, for conceptualizing human action relationship between the action and the system, and social science, and reported
that “ideas need to be understood in the intellectual frames that give them meaning.” Hence, he described features of the environment where activity takes place [11].

Alternatively, Torralba [12] derived context based object recognition from real-world from scenes, described that one form of performing the task was to define the 'context' of an object in a scene was in terms of other previously recognized objects and concluded, that there exists a strong relationship between the environment and the objects found within, and that increased evidence exists of early human perception of contextual information. Dey [13] presented a Context Toolkit architecture that supported the building of more optimal context-aware applications, because, he argued, that context was a poorly used resource of information in computing environments and that context was information which must be used to characterize the collection of states or as he called it the “situation abstraction” of a person, place or object relevant to the interaction between a user and the application. Similarly, when describing a conceptual framework for context-aware systems, Coutaz et al. [14] concluded that context informs recognition and mapping by providing a structured, unified view of the world in which a system operates. The authors provided a framework with an ontological foundation, an architectural foundation, and an approach to adaptation, which they professed, all scale alongside the richness of the environment. Graham and Kjeldskov [15] concluded that context was critical in the understanding and development of information systems. Winograd [16] noted that intention could only be determined through inferences based on context. Hong and Landay [17] described context as knowing the answers to the “W” questions (e.g. Where are the movie theaters?). Similarly, Howard and Quisibaty [18] described context for decision making using the interrogatory 5WH model (who, what, when, where, why and how). Lastly, Ejigu et al. [19] presented a collaborative context aware service platform, based upon a developed hybrid context management model. The goal was to sense context during execution along with internal state and user interactions using context as a function of collecting, organizing, storing, presenting and representing hierarchies, relations, axioms and metadata.

Organization of Knowledge & Context

Rooted in cognition, in 1957 Newell et al. [20] and Simon [21] together developed models of human mental processes and produced General Problem Solver (GPS) to perform “means-end analysis” to solve problems by successively reducing the difference between a present condition and the end goal. GPS organized knowledge into symbolic objects and related contextual information, which were systematically stored and compared. Almost a decade later Sternberg [22] described a now well-known paradigm called the Sternberg Paradigm where,
aware service platform which was user collaborative in nature, that man-aged the reusability of context resources and reasoning axioms, and shared computational resources among multiple devices in the neighborhood space. They used a semantic ontology based hybrid model known as EHRAM as the core data source from which they systematically collected and stored information content, reasoned upon with their reasoning engine and then disseminated via their interface manager to the user. The main components of EHRAM con-text model were used to model the information content sources as a set of hierarchies (H), set of entities (E), set of entity relations (Re), set of attribute relations (Ra), set of axioms (A) and set of metadata (M). Hence, the information data source content was collected and stored as the EHRAM layered context representation structure.

Presentation of Knowledge & Context

Trochim [28] described Concept Maps to present knowledge and context as structured conceptualization used by groups to collaborate thoughts and ideas. Described was the typical case in which concept maps are developed via six detailed steps; the “Preparation,” which included the selection of participants and development of the focus for conceptualizing the end goal, such as brainstorming sessions and developing metrics, (e.g. rating the focus), the “Generation” of specific statements which reflected the overarching conceptualization, the “Structuring” of statements which described how the statements are related to one another, the “Representation” of statements in the form of a presented visual concept map, which used multidimensional scaling [29] to place the statements in similar proximity to one another and cluster analysis [30] which determined how to organize the presentation into logical groups which made sense, the “Interpretation” of maps which was an exercise in consensus building once the representation had been created; and finally the “Utilization” of maps which was described as a process by which the groups within the process collectively determine how the maps might be used in planning or evaluation of related efforts. Stated was that concept mapping encouraged groups to stay on task which then resulted relatively quickly into an interpretable conceptual framework. It also expressed the framework entirely in the language of the participants and finally yielded a graphic or pictorial product. The product simultaneously presented all major ideas and their interrelationships and often improved group or organizational cohesiveness and morale. Graph theory, was shown to be used within many disciplines as an approach to visually and mathematically present knowledge and context relationships, [31].

In Software Engineering, many traditional tools exist: Entity Relationship Diagrams (ERD), Sequence Diagrams (SD), and State Transition Diagrams (STD) which each present different knowledge and context about database, and systems [32]. More recently, Universal Modeling Language (UML) [33] and semantic and ontology based software development tools, as well as, descriptive Resource Description Framework (RDF) language [34], and Web Ontology Language (OWL) [35] were used extensively to create, store, and present knowledge and context, using shapes, lines, and text as relationships between objects of information. However, Ejigu et al. [19] argued that ontology tools were only good at statically presenting knowledge of a domain and that they were not designed for scalable capturing and processing dynamic information in constantly changing environments.

Representation of Knowledge & Context

Dourish [11] concluded that representation of knowledge and context is an ethno methodological problem of encoding and representing social motivation behind action and that translating ideas between different intellectual domains can be exceptionally valuable and unexpectedly difficult. One reason is that ideas need to be understood within the intellectual frames that give them their meaning, and therefore need to be sensitive to the problems of translation between the frames of reference. Additionally, he describes four assumptions which represent context in systems, first, context as a form of information which can be encoded and represented in software systems just as other information content, second, context is delineable and therefore for a set of requirements, context can be de fined as activities that an application supports and it can be done in advance, third, context is stable and hence can vary representation from one software application to another but does not vary from in stance to instance of an event, it was specific to an activity or an event. Lastly, Dourish concluded, that most importantly context is separable from the action or activity, since context described the features of the environment where the activity takes place, separate from the activity itself. Dourish proposed an interactional model of context, where the central concern with representing context was with the questions, “how and why” during interactions, do people achieve and maintain a mutual understanding of the context for actions.

Clinical psychologists, Polyn and Kahana [36] described that cognitive theories suggest that recall of a known item representation is driven by an internally maintained context representation. They described how neural investigations had shown that the recall of an item represented in the mind is driven by an internally maintained context representation that integrated information with a time scale. Howard and Kahana [37] stated that by linking knowledge items and context representations in memory, one could accomplish two useful functions. First, one could determine whether a specific item occurred in a specific list (episodic recognition). Second, one could use a state of context to cue item representations for recall (episodic re-call).
Alternatively, Konstantinou et al. [38] concluded that a common knowledge representation formalism ought to allow inference extraction, and proposed “Relational.OWL,” a tool to automate structural representation of knowledge ontology to database mapping. Additionally, Ejigu et al. [19] made the argument that context and the organization of it was missing from systems and is instead in the “head” of the user, and proposes an ontology-based structure using RDF representation of knowledge and context with metadata attributes. Similarly, Zouaq et al. [39], proposed a Natural Language Processing (NLP) solution, which enables structured representations of documents. They proposed a knowledge puzzle approach using ontology-based learning objects, semantic maps, and grammatical maps, which represented a structure of context on the basis of using text relations. Finally, similar to Trochim [28], Novak and Canas [40] described the structure of concept maps as a mechanism for structural representation of knowledge and context.

Frameworks for Knowledge and/or Context

Outlining the need for frameworks which can analyze and process knowledge and context, Liao et al. [41] represented context in a knowledge management framework comprising processes, collection, preprocessing, integration, modeling, and representation, enabling the transition from data, information, and knowledge to new knowledge. The authors also indicated that newly generated knowledge was stored in a context knowledge base and used by a rule-based context knowledge-matching engine to support decision-making activities. Gupta and Govindarajan [42] defined a theoretical knowledge framework and measured the collected increase of knowledge flow out of multinational corporations based upon “knowledge stock” (e.g., the value placed upon the source of knowledge). Pinto [43] developed a conceptual and methodological framework to represent the quality of knowledge found in abstracts. Suh [44] concluded that collaborative frameworks do not provide the contents which go in them, therefore, content was discipline specific, required subject matter experts, and clear decision-making criteria.

Additionally, Suh noted that processes promoting positive collaboration and negotiation were required to achieve the best knowledge available, and were characterized by process variables and part of what is defined as the Process Domain. Finally, Ejigu et al. [19] created a framework for knowledge and context which collected and stored knowledge as well as decisions in a knowledge repository that corresponded to a specific context instance.

Collection of Knowledge & Context

Llinas et al. [45], observed that the synthesis of combining two bits of information into knowledge fusion requires knowledge and pedigree/historical information, which was context. Rowley and Hartley [23] describe knowledge as learning accumulation, hence, to accumulate knowledge and context “collective intelligence” was used as described by Gruber [8]. Therefore, not only is effort required to observe, select, and physically take hold of information, but also necessary is the understanding that collected knowledge and context has a historical relationship to existing information. Gruber [8] states that collective intelligence emerge if data collected from all people is aggregated and “recombined” to create new knowledge. To form an understanding of the relationship between different knowledge and contexts when assimilating knowledge, the associated relationships can be written symbolically as knowledge Ki and the associated context relationship Rj where, Ki(Rj) represents a recombination of knowledge and context and finally represents the assimilation storage into the core domain repository. This is depicted in knowledge assimilation Figure 4. Figure 4 depicts a conceptual search space where a user would search for discipline-specific knowledge and context within the Information Domain. The combined knowledge and context is then assimilated in the Temporary Knowledge Domain into a storage space shown on the right of the equation, the Knowledge Domain, to store knowledge and context which has reached a threshold level in the mind of the assimilator.

Storage of Knowledge & Context

Today, existing databases housing vast bits of information do not store the information content of the reasoning context used to determine their storage [19]. The knowledge collection and storage formula was therefore developed to include and store relationship context along with knowledge, recursively. This means that, each act of knowledge and context pairing shown as in equation shown in Figure 4 ∑i,j Ki(Rj), recursively examined all of the previous relationships as they were recombined into storage since they were all related and dependent on each other. Recursive refinement then occurred, per iteration of relationship pairing. Recursive refinement occurred when the user found what was looked for shown as Ki(Rj), using interrogatives, (e.g. who, what when, where, why and how) [17-18]. The information content contributing to finding the answer then has significant value and therefore, a higher degree of permanence in the mind of the stakeholder [46]. Therefore, the information content has reached a threshold where retaining the knowledge and context has become important.

The assimilation to storage can take physical and virtual form. Virtual storage can be described as the caching of a collection of temporary knowledge in the mind of the user per Ausubel et al. [47] along with a set of historical pedigree of preconceived/tacit or explicit
knowledge and context per Nonaka [2] used to solve an issue at hand. Physical representations of assimilated stores are well known (e.g. libraries, databases, coin or philatelic collections.) However, whether virtual or physical, each unit of storage has a series of reasons or pedigree as to why it was collected and stored, or in the case of knowledge and context assimilation, why a knowledge and context relationship was created. For this result it is assumed that while knowledge and context are contemplated in the mind of the user [47], that knowledge and context are stored virtually until the point in time the user reaches the threshold where it is believed the virtual knowledge is of enough quality to become stored in a physical repository for someone else to see or use, or that a virtual memory constraint has been reached and thus the memory needs to saved physically so that it might not be lost if not captured.

Presentation of Knowledge & Context

Figure 5 represents a KRT. This approach for presentation of knowledge and context and was constructed to present five discrete attributes, namely, time, state, relationship distance, relationship value, and event sequence. The goal of a KRT is to map the dependencies of knowledge and related attributes as knowledge is developed from information content. In this figure, the timeline represented by the blue arrow from left to right, shows the events or state transitions in sequence and captures the decision points. During each iteration of presentation of knowledge and context, intrinsic values were captured and placed close to each colored knowledge component. In Figure 5, these are represented as words under the cycles. The Basic Sentence Decomposition depicts how a KRT looks when it represents a sentence decomposed into pieces; in this case words. The red triangles, added next, depict a particular state for each iteration in the KRT development cycle. For emphasis, each colored sphere was built into the depiction and added in sequence to represent the fact that each word follows the other. Each icon represents each word of the sentence. The relative values in this Basic Sentence Decomposition between each sphere are perceived to be of the same value to each other. Therefore, the lines are the same distance as well. Since, this base representation depicted in Figure 5 can present time, state, and sequence, as well as, relationships, the challenge was addressed as described by Dourish [11] to create presentation of context which can visually capture and manage a continually renegotiation and redefinition of context as development of knowledge occurs over time.

Representation of Knowledge & Context

The representation of knowledge and context formula is introduced here and is presented by Equation (3-2). The independent results which follow are mathematical evaluations extended from Newton’s law of gravitation shown in Equation (3-1). Newton’s Law of Gravitation formula is,

$$F = G \frac{M_1 M_2}{r^2} \quad \text{(Equation 3-1)}$$

where:

- F is the magnitude of the gravitational force between the two objects with mass,
- G is the universal gravitational constant,
- M_1 is the mass of the first mass,
- M_2 is the mass of the second mass, and
- r is the distance between the two masses.

This equation was used as an analogy for the derivation of mathematical relationship between a basis made up of two objects of knowledge.

Abstracting Newton’s Law of Gravitation as an analogy of Equation (3-1), representing relationships between two objects of knowledge using context, is written as Equation (3-2) shown below, which describes the components of the formula for representing relationships between two objects of knowledge using context:

$$A = B \frac{(I_1 I_2)}{c^2} \quad \text{(Equation 3-2)}$$

where:

- A is the magnitude of the attractive force between the two objects of knowledge,
- B is a balance variable,
- I_1 is the importance measure of the first object of knowledge,
- I_2 is the importance measure of the second object of knowledge, and
- c is the closeness between the two objects of knowledge.

Comparing the parameters of Equation (3-1) and Equation (3-2) F and A have similar connotations except F represents a force between two physical objects of mass M_1 and M_2 and A represents a stakeholder magnitude of attractive force based upon stakeholder determined importance measure factors called I_1 and I_2. As an analogy to F in Equation 3-1, A’s strength or weakness of attraction force was also determined by the magnitude of the value. Hence, the greater the magnitude value, the greater the force of attraction and vice versa. The weighted factors represented the importance of the objects to the relationships being formed. The Universal Gravitational Constant G is used to balance gravitational equations based upon the physical units of measurement (e.g. SI units, Planck units). B represents an analogy to G’s concept of a balance variable and is referred to as a constant of proportionality. For simplicity, no units of measure were used within equation (3-2) and the values for all variables only showed magnitude and don’t represent physical properties (e.g. mass, weight) as does.
G. Therefore, an assumption made here is to set B to the value of 1.

For simplicity, all of these examples assume the same units and B was assumed to be one. The parameter c in Equation (3-2) is taken to be analogous to r in Equation (3-1). Stakeholder perceived context known as closeness c represented how closely two knowledge objects (KO) are related. Lines with arrows are used to present the closeness of the relationships between two pieces of knowledge presented as spheroids.

The representation of knowledge and context approach depicted in Figure 6 is a representative structure of knowledge and context as a snapshot in time for Bioscience 1 abstract. The first word of Bioscience 1 abstract is the word “A.” “A” by itself has little meaning. However, it was still considered part of this abstract and was therefore marked as object of knowledge 1 (KO1) within the abstract. As the abstract was read and more information content was gained and understood, “A”’s knowledge value changed. Currently, all that is known at this juncture is that “A” described a singular entity and has foreshadowed that something will follow. Hence, that has some small value and creates cognitive structure in the mind of the “learner” per Ausubel et al. [47]. It is depicted in Figure 6 as knowledge object 1 (KO1) (e.g. red spheroid with the number 1) and mentally place only a small value on it for now because of our lack of knowledge. Next, as reading the abstract continued, the second word is found and marked as knowledge object 2 (KO2), “phenotypic.” Figure 6, representing the knowledge and context of the mind of the learner now depicts KO1 and KO2, as related to each other. The word “A,” or KO1 has a smaller spheroid than KO2, and therefore, structurally represents a smaller context of importance measure shown as a diameter, I1 < I2. The line distance between KO1 and KO2 structurally represents “closeness” or how closely related the objects are perceived to be to each other. The word “A,” KO1 has small relationship to KO2. Hence, KO1’s relationship to KO2 was characterized simply as residing within the same abstract and one of order sequence. Therefore, the knowledge objects remain further apart, shown as closeness or “c.” Therefore, the snapshot in time shows a structural representation of knowledge relationship between two knowledge objects along with the context of magnitude importance value shown as the arrows representing the diameter magnitude of each knowledge object.

Using Equation (3-2), the value of the attraction force A1→2 = 5 x 2 divided by the relative closeness/perceived distance2 = 1. Hence, the attraction force A in either direction was 10. The value of 10 is context, which can be interpreted in relation to the scale. The largest possible value for attraction force A with the assumed important measure 1-10 scale is 100, therefore a force of attraction value of 10 was relatively small compared to the maximum. This means that the next stakeholder/researcher understood that a previous stakeholder’s conveyance was of small relative overall importance. However, the closeness value of 1 showed that the two objects were very closely related. Figure 6 therefore shows that when using Equation (3-2), if relationship closeness and/or perceived importance measure of the knowledge objects change value, as new knowledge or context is added and evaluated, then it follows that relationship force of attraction will change.

Framework to Enhance Knowledge & Context

The framework developed in this research to enhance knowledge and context is shown in Figure 8 and was referred to as the Recombinant kNowledge Assimilation (RNA). RNA and is made up of a combination of the organization of knowledge and context, the presentation of knowledge and context, and the representation of knowledge and context [19]. The three components make up the core pieces essential for building a knowledge and context framework [19, 41]. Cross discipline domain research [21-22, 24, 27, 51] shows clearly that although all researchers use their own flavor of unique rules, methodologies, processes and frameworks, they use a core set of components for gathering, analyzing, organizing and disseminating their work. Recently Liao et al. [41] and Ejigu et al. [19] defined these processes as: collection, storage, presentation and representation.

RNA Flow Diagram

The RNA Flow Diagram shown in Figure 7 is shown to describe the flow of the processes within the framework [19]. It is similar to the Liao et al. [41] framework that collects, stores, presents and represents knowledge and context. The RNA flow diagram comprised three major, discrete parts. First, “Content,” which represents all information content input into the flow diagram. Second, “Sub-Processes” for synthesizing knowledge and context. Third, storage repositories known as pedigree bins, where knowledge and context was stored during compilation. Compilation is a path beginning from basic information content in the Information Domain, to the Knowledge Domain, as described by Brillouin [9], where a set of initially “useless” information is “thought about” and turned into knowledge. This knowledge becomes the collected pedigree knowl-edge and context, just as Gupta and Govindarajan [42] collected knowledge flow for measurement, for the next researcher, as shown by the blue arrow leaving the Knowledge domain and feeding back into the Information Domain in Figure 9.

In the RNA flow Diagram shown in Figure 8, each diamond shaped box represents a decision point. This is a critical point where a stakeholder of the process contemplates the decision to be made using any previous knowledge components acquired prior to making the decision as defined by Kim et al. [6]. Each red spheroid
represents a sub-step within each of the larger components of the RNA process. These red spheroids are used to identify an important portion of the process. Red arrows signify action and green arrows represent “Yes” answers to a decision, hence the red lines represent a stakeholder of the process performing an action such as, collecting more information content known as used knowledge during process execution [6] for the eventual goal of establishing a more complete understanding of knowledge and context during processing at a decision point. All other blue arrows, represent either “No” answers or neutral transitions to a subsequent step in the process to track the flow of the process and thus continually collect information content used to make the “No” decision.

The RNA process flow begins when a reason or “need” was established to ask a question and the “want” to search for an answer. This causes the establishment of a set of criteria or rules which govern what was to be discovered [48]. These criteria govern the activity performing the bottom-up processing and recursively evolving the building of knowledge and context. Once the criteria has been established and understood passing from the Information Domain thru the Temporary Knowledge Domain and finally captured in the Knowledge Domain, the RNA sub-processes begin processing based upon the defined rules. RNA processes criteria just as other information content. Each is collected from the Information Domain, “thought about” [9] in the temporary Knowledge Domain and subsequently placed into the Knowledge Domain for use as shown in Figure 8.

The upper rounded box labeled “Content” represents all information content which can potentially be used when performing the steps of the RNA process to build knowledge components. This is the set of initially “useless” information built into knowledge, as described by Brillouin [9], and is represented by the information content under the Information Domain search space in Figure 9. Hence, when a stakeholder begins the process of examining information, it is the information content which was initially observed, using the senses, and then subsequently “thought about” and under-stood, via collecting, representing, presenting, and storing, until the stakeholder satisfies the desired threshold of understanding defined by the initiating criteria. During each step in the process, the gathering and comparisons, shown by the red arrows in Figure 5, occur up to the point where a stakeholder believes an understanding has been reached, just as Brillouin [9] defines knowledge as resulting from a certain amount of thinking. Therefore, sub-Processes: Discovery, Decomposition and Reduction, Compare & Contrast, Association, and Normalization. These sub-processes synthesize knowledge and context within the framework down the left side of Figure 7. These sub-processes operate in the process domain [52] as shown in Figure 9. Discovery encompasses the review and understanding of existing knowledge and/or in the case of disciplines, the review of a discipline’s fundamentals and/or First Principles. Decomposition & Reduction decomposes the domain knowledge into “bite size” digestible bits of information and reduces the representative domain knowledge to a core capability. Compare & Contrast, a cognitive examination process assimilating facts and information, comparing each to the other, looking for evolving associations, Association for establishing and assigning relationships between any two objects of information, and Normalization for functionally combining commonalities into a normalized form and validating the result. Finally, recursion is depicted as the blue domain knowledge feedback loops, which represents the iterative recursive refinement taking the knowledge gathered during each iteration and using it as input into the next iteration of the RNA process.

Since RNA’s synthesis tasks, depicted in Figure 7, extend concepts from mature disciplines including Software Engineering. Specifically, recursion is shown by the feedback loops from each of the processes [24] [25]. Recursion is well suited for the goal of creating objects of information using a bottom-up approach, iteratively building its components and attributes through a series of decisions. Hence, RNA implements the mature bottom-up approach for developing knowledge and context as discipline components, derived from discipline domain abstract readings and the recursive nature of the process shown by the feedback loop in Figure 7, which recombines knowledge and context.

Application of RNA to Journal Abstracts

The RNA common process was applied to research journal abstracts in Bioscience [54] and Video Processing [55]. The elements of the constructed RNA framework and sub-processes were applied to each journal abstract, yielding criteria knowledge component and context, knowledge component and context, and transdisciplinary knowledge component and context depicted in Figure 8.

Additionally, the snapshot in time shown in Figure 8 depicts how the framework combined the use of RNA as a common process, the presentation approach for knowledge and context, and the representation approach for knowledge and context. Together the frame-work constructed and refined a sustainable blueprint of knowledge and context from abstract excerpts in Bioscience and Video Processing. Thus, via the log files and pedigree bin storage mechanisms, it was shown how a cohesive user collaborative [44] dependency trail of knowledge and context was created. The collaborative
nature of the process showed how “collective intelligence” was created as defined by Gruber [8]. Therefore, the outcome satisfied the objective of locating reliable and relevant information out of an environment of rich domain specific Bioscience and Video processing abstracts. Finally, upon comparison of the two abstracts using the framework the outcome showed creation of transdisciplinary knowledge component and context.

Knowledge & Context Foundation Conclusion

A framework was constructed from the organization, presentation, and the representation of knowledge and context. The organization was derived from the concept of collection and storage, general problem solver, derived from Newell et al.[20] and Simon [21] who together developed models of human mental processes. Sternberg paradigm [22], and tenets of transdisciplinary engineering as defined by Tanik and Ertas [5]. The presentation was constructed from five discrete attributes, namely, time, state, relationship distance, relationship value, and event sequence from computer engineering and mathematics. The representation was derived by using Newton’s law of gravitation as an analogy. Finally, the framework was applied to abstracts from research manuscripts and extracted disciplinary and transdisciplinary knowledge and components and therefore was able to as described by Ertas et al. [49], discover important knowledge within one discipline can be systematically discovered, and recombined into another, and via combined engineering visualization mechanisms and collaborative KRT blueprints satisfied Stokols [56], need to achieve a more complete understanding of prior research collaborations and sustain future ones. Finally, the framework satisfied the need as described by Liao et al. [41], enabling transition from data, information and knowledge to new knowledge.

Therefore, using RNA, disciplinary and transdisciplinary knowledge components and context were systematically discovered from tacit and explicit knowledge and context; a mechanism to dynamically interact with ever changing research knowledge, assimilating it to form explicit new knowledge while also retaining the causal pedigree. Thus, RNA was able to enhance transdisciplinary research knowledge and context and describe a foundation for using the mature physical science of n-dimensional relationships in a space and apply the domain to the development and management of complex interrelated knowledge and context.

RESULTS AND DISCUSSIONS

Frameworks for Knowledge and/or Context Refinement

As the knowledge and context foundation described above depicts the process and tools for enhancing knowledge and context the Artificial Cognitive Neural Framework expounded upon in the following sections describe the mechanisms by which we apply additional refinement concepts and another formalization for the modular Decomposition and Reduction and Association sub-processes described in the RNA flow above.

A formalization for increasing or decreasing levels of granularity and a formalization for increasing or decreasing the closeness of relationships occurs here as a hybrid, fuzzy-neural processing system using genetic learning algorithms. This processing system uses a modular artificial neural architecture. This architecture is based on a mixture of neural structures that add flexibility and diversity to overall system capabilities. In order to provide an artificially intelligent processing environment that is continually adaptable, we believe the system must possess the notion of artificial emotions that allow the processing environment to “react” in real-time as the systems outside the environment change and evolve recursively as recombiant knowledge assimilation. This hybrid fuzzy-neural processing system forms what we describe as an Artificial Cognitive Neural Framework (ACNF) [57], which allows for artificially “conscious” software agents to carry “emotional memories,” based on Dr. Levine’s Autonomic Nervous System States [58]. These conscious software agents are autonomous agents that sense the environment and act on it, based on a combination of information memories (explicit spatio-temporal memories), emotional memories (implicit inference memories), and outside stimulus from the environment. These memories constitute into the pedigree of logged repositories of information content comprised of all related knowledge and context including the relationships which provide the input into the recursive processing. We will describe the constructs for basic emotions and short & long-term memories [59]. The short-term memories (non-recurrent associative memories) provide preconscious buffers as a workspace for internal activities while a transient episodic memory provides a content-addressable associative memory with a property consisting of a moderately fast decay rate [60].

In the ACNF, first the unconscious artificial neural perceptrons, each working toward a common goal, form a coalition. These coalitions will vie for access to the problem to be solved. The resources available to these coalitions depend on their combined nervous system state, which provides information on the criticality of their problem to be resolved. This nervous system state is defined by Autonomic Nervous System States chart [57].

Based on this nervous system state, information are broadcast to all unconscious processes in order to recruit other artificial neural perceptrons that can contribute to the coalition’s goals. The coalitions that understand the broadcast can then take action on the problem. What follows is a description of the overall ACNF architecture in the context of artificial neural emotions and artificial nervous system states.
RNA-ACNF Cognitive Coalition

Figure 9 illustrates a high-level view of the ACNF. This is similar to an artificial intelligence blackboard system, except that it is greatly extended to allow for system-wide action selection. The three main subsystems within the architecture are the Mediator, the Memory System, and the Cognitive System [61]. The Mediator gathers information and facilitates communication between agents. Hence, each decision handshake of a combined RNA-ACNF system is handled by the Mediator which takes information from perceptrons and from coalitions of perceptrons and updates the short-term, long-term and episodic memories or pedigree. The information available in memory (what the system has learned) is continually broadcast to the conscious perceptrons that form the cognitive center of the system (i.e., they are responsible for the cognitive functionality of perception, consciousness, emotions, processing, etc.).

The purpose of the ACNF is to:
1. Provide an architectural framework for “conscious” software agents.
2. To provide a “plug-in” domain for the domain-independent portions of the “consciousness” mechanism.
3. To provide an easily customizable framework for the domain-specific portions of the “consciousness” mechanism.
4. To provide the cognitive mechanisms for behaviors and emotions for “conscious” software agents.

Artificial Neural Memories

The ACNF contains several different artificial memory systems (including emotional memories), each with specific purposes. Each of these memory systems are stored pedigree used in the recursive RNA process and are integrated during the processes of relationship formation between objects of knowledge and context [62].

1. Perceptual Memory – this memory enables identification, recognition, and characterization, including emotions.
2. Working Memory – contains preconscious buffers as a temporary workspace for internal activities.
3. Episodic Memory – this is a content-addressable associative memory with a rapid decay (very short-term memory).
4. Autobiographical Memory – long-term associative memory for facts and data.
5. Procedural Memory – long-term memory for learned skills.
6. Emotional Memory – both long-term (spatio-temporal) and implicit (inference) emotional memories.

When processing pedigree memory, RNA loosely categorizes the granularity of information content into knowledge and context based upon the criteria established by the cognitive human interaction input into the system. These loosely or fuzzy categories are only as fuzzy as the threshold of human understanding. Therefore, in order to artificially create this effect we use Intelligent Information Agents (I2A) to develop fuzzy organization over time, ultimately reaching a threshold of perceived understanding relative to the initially specified set of criteria.

Fuzzy, Semantic, Self-Organizing, Topical Maps (FSSOM)

At the heart of artificial organization are Fuzzy, Semantic, Self-Organizing, Topical Maps (FSSOM). The FSSOM is a general method for organizing, analyzing, and artificially expressing complex, multidimensional relationships. The FSSOM is actually built from different FSSOMs. A semantic SOM that organizes the words grammatically and semantically into categories used to encode the inputted information as a histogram. This greatly reduces the dimensionality, and therefore simplifies the second FSSOM, the Information Map. The Information Map is labeled to form a Topic Map that has several important attributes:

1. The abstract contextual algorithms explore the map visually for information located by meaning.
2. Searches use contextual information to find links to relevant information within other source documents.
3. The Information Map is self-maintaining and automatically locates input on the grid, ‘unsupervised’.
4. A semantic SOM and an information SOM are normalized representations of any physical information content (e.g. picture, text, object) used in the development of recombinant knowledge and context.

Illustrated below is a FSSOM with information search hits superimposed. The larger hexagons denote information sources that best fit the search criterion. The isograms denote “closeness”; how close the hits are to particular information topics or criterion.

There are also other attributes to be explored that would provide significant benefit: as a natural language front end to relational data, like research abstracts; and, as a means to find information with common meaning located in a foreign language FSSOM through the use of common encoding [63].

This approach to mapping information by ‘meaning’ avoids problems common to classical natural language IR (information retrieval) methods. Classical IR requires extensive modeling of the innumerable forms of information representation. Such a modeling activity would always be on-going and expensive to maintain. In contrast, the FSOM promises a reliable method for automatically organizing information for retrieval across different languages.
Once the FSSOM has been developed, it can be enhanced to include a higher-level Topic Map. This high-level Topic Map describes knowledge structures that span multiple documents. The key features of the Topic Map, illustrated in Figure 10, are the topics, their associations and occurrences in the FSSOM. The topics are the areas on the FSSOM that fall under a topic name. The associations describe the relationships between topics, such as ‘biometric data’ in ‘bone fractures’. The occurrences are the links from the FSSOM into the documents used to form the FSSOM.

The value of superimposing a Topic Map onto the FSSOM, shown in Figure 11, is that it can define the information domain’s ontology. The Topic Map enables end users to rapidly search information conceptually. Therefore, enabling candidate sophisticated dialectic searches to be performed upon them.

There is one other valuable attribute to using the FSSOM method. Because the vector that represents the information is a randomly constructed vector, it cannot be decoded to reformulate the source; the source must be reread. This is critical to protecting compartmentalized information. Using the FSSOM, the protected source can be included in the FSSOM and used to support/rebut an argument without revealing the detailed information.

The approach to analyzing text information utilizing the FSSOM is threefold [65]. First, the FSSOM is investigated to semantically organize the diverse information collected. Second, the map produced by the FSSOM is used to enhance the user’s comprehension about the situations under analysis. Third, as the user traverses the map to find related and relevant events, the results are used to train a Fuzzy, Active Resonance Theory Neural Network (FuNN) to replicate the approach.

This approach mimics human intelligence, learning from documents using an ontology to define particular domains, labelling the FSSOM to capture the meaning of the integrated information thus capturing the knowledge of each Intelligent Information Agent in the FuNN. The DAS: three different agents, the Coordinator, the DAS and the Search, work together, each having its own learning objectives.

The Coordinator is taught to watch the FSSOM, responding to new hits (input) that conform to patterns of known interest. When an interesting hit occurs, the Coordinator selects one or more candidate DAS agents, and then spawns Search agents to find information relevant to each DAS. As time proceeds, the Coordinator learns which hit patterns are most likely to yield a promising lead, adapting to any changes in the FSSOM structure and sharing what it learns with other active Coordinators [66]. The Search agent takes the DAS prototype search vectors and, through the FSSOM, finds information that is relevant and related. The Search agent learns to adapt to different and changing source formats and could include parsing procedures required to extract detailed information.

CONCLUSION
This paper addressed the challenge of minimizing ambiguity and fuzziness of understanding in large volumes of complex interrelated information content. The objective was to explore and create a framework, which improved the quality and speed in discovering actionable information within vast stores of particular topics/diseases/conditions and other clinical research information. The goal was to minimize existing lengthy iterative learning processes and query refinement in the Biomedical and Healthcare fields, which plague researchers today. This chapter described how to interweave a Recombinant Knowledge Assimilation (RNA) framework with an Artificial Cognitive Neural Framework (ACNF), which recombined and assimilated knowledge based upon human cognitive processes, to speed and make relevant the critical context that medical professionals seek. Finally, this chapter described how the frameworks were formulated and embedded into a neural network of genetic algorithms combined with stochastic decision making to create a polymorphous framework which systematically minimized ambiguity and maximized clarity.

REFERENCES

FIGURES AND TABLES

Fig. 1 Discipline Evolution

![Discipline Evolution](image1)

Fig. 2 Relationship Intersection

![Relationship Intersection](image2)
Fig. 3 Transdiscipline Synthesis Diagram

Fig. 4 Recombinant kNowledge Assimilation Equation

Fig. 5 Knowledge Relativity Thread

Fig. 6 Representation of Knowledge Object and Context

Fig. 7 RNA Flow Diagram

Fig. 8 Knowledge and Context Processing
Fig. 9 Artificial Cognitive Neural Framework (ACNF)

Fig. 10 The Fuzzy, Semantic, Self-Organizing Topical Map

Fig. 11 Superimposing Hi Level Topical Maps on FOSSOM