Bartholdi zeta functions of graph bundles having regular fibers

Jin Ho Kwaka, Jaeun Leeb, Moo Young Sohnc

aMathematics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
bMathematics, Yeungnam University, Kyongsan 712-749, Republic of Korea
cApplied Mathematics, Changwon National University, Changwon 641-773, Republic of Korea

Received 21 November 2003; received in revised form 29 April 2004; accepted 4 May 2004
Available online 19 June 2004

Abstract

As a continuation of computing the Bartholdi zeta function of a regular covering of a graph by Mizuno and Sato in J. Combin. Theory Ser. B 89 (2003) 27, we derive in this paper some computational formulae for the Bartholdi zeta functions of a graph bundle and of any (regular or irregular) covering of a graph. If the fiber is a Schreier graph or it is regular and the voltages to derive the bundle or the covering lie in an Abelian group, then the formulae can be simplified. As a byproduct, the Bartholdi zeta functions of Schreier graphs, Cayley graphs and the cartesian product of a graph and a regular graph are obtained.

MSC (2000): 05C50; 05C25; 15A15; 15A18

Keywords: (Bartholdi) zeta function; Graph bundle; (Permutation) voltage assignment

1. Introduction

In this paper we consider an undirected finite simple graph. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Let v_G and e_G denote the number of vertices and edges of G, respectively. An automorphism of G is a permutation of the vertex set $V(G)$ that preserves adjacency. The set of automorphisms forms a permutation group, called the automorphism group $\text{Aut}(G)$ of G.
A \((v_0, v_n)\)-path \(P\) of length \(n\) in \(G\) is a sequence \(P = (v_0, v_1, \ldots, v_{n-1}, v_n)\) of \(n + 1\) vertices and \(n\) edges such that consecutive vertices share an edge (we do not require that all vertices are distinct). Sometimes, the path \(P\) is also considered as a subgraph of \(G\). We say that a path has a backtracking if \(v_{i-1} = v_{i+1}\) for some \(i, 1 \leq i \leq n - 1\). A \((v_0, v_n)\)-path is called a cycle if \(v_0 = v_n\). The inverse cycle of a cycle \(C = (v_0, v_1, \ldots, v_{n-1}, v_0)\) is the cycle \(C^{-1} = (v_0, v_{n-1}, \ldots, v_1, v_0)\).

A subpath \((v_1, \ldots, v_m, v_{m+1})\) of a cycle \(C = (v_1, \ldots, v_m, \ldots, v_1)\) is called a tail if \(\deg_C(v_1) = 1, \deg_C(v_i) = 2, 2 \leq i \leq m - 1,\) and \(\deg_C(v_m) \geq 3\), where \(\deg_C(v)\) is the degree of \(v\) in the subgraph \(C\). Each cycle \(C\) without backtracking determines a unique tailless, backtracking-less cycle \(C^*\) by removing all tails of \(C\). Note that any tail-less, backtracking-less cycle \(C\) is just a cycle such that both \(C\) and \(C^*\) have no backtracking (see [6, 12]). A cycle \(C\) is called reduced if it has no backtracking nor tail. Two reduced cycles \(C_1 = (v_1, \ldots, v_m)\) and \(C_2 = (w_1, \ldots, w_m)\) are called equivalent if there is \(k\) such that \(w_j = v_{j+k}\) for all \(j\), where the subscripts are modulo \(m\). Let \([C]\) be the equivalence class which contains a cycle \(C\). A reduced cycle \(C\) is prime if there is no cycle \(B\) such that \(C = B^r\) for \(r \geq 2\). Note that each equivalence class of prime, reduced cycles of a graph \(G\) corresponds to a unique element of the fundamental group \(\pi_1(G, v)\) of \(G\) at a vertex \(v \in V(G)\).

The Ihara zeta function [14] of a graph \(G\) is defined to be the function of \(u \in \mathbb{C}\) with \(|u|\) sufficiently small, given by

\[
Z(G, u) = Z_G(u) = \prod_{[C]} (1 - u^{|C|})^{-1},
\]

where \([C]\) runs over all equivalence classes of prime, reduced cycles of \(G\) and \(|C|\) denote the length of \(C\). Clearly, the zeta function of a disconnected graph is the product of the zeta functions of its connected components. Zeta functions of graphs were originated from zeta functions of regular graphs by Ihara [7], where their reciprocals are expressed as explicit polynomials. A zeta function of a regular graph \(G\) associated to a unitary representation of the fundamental group of \(G\) was developed by Sunada [15]. Hashimoto [6] treated multivariable zeta functions of bipartite graphs. Northshield [12] proved that the number of spanning trees in a graph \(G\) can be expressed in terms of the zeta function \(Z_G(u)\).

Let \(G\) be a connected graph. The adjacency matrix \(A(G) = (a_{ij})\) is the \(v_G \times v_G\) matrix with \(a_{ij} = 1\) if \(v_i\) and \(v_j\) are adjacent and \(a_{ij} = 0\) otherwise. Let \(D_G\) be the diagonal matrix whose \((i, i)\)-entry is \(d_G = \deg_G(v_i)\) for each \(1 \leq i \leq v_G\). The Ihara’s result on zeta functions of regular graphs is generalized as follows.

Theorem 1 (Bass [2]). Let \(G\) be a connected graph. Then the reciprocal of the Ihara zeta function of \(G\) is given by

\[
Z_G(u)^{-1} = (1 - u^2)^{v_G - v_G} \det(I - uA(G) + u^2(D_G - I)). \quad \Box
\]

Note that Theorem 1 is still true for a disconnected graph \(G\).

Later, Stark and Terras [14] gave an elementary proof of Theorem 1 and discussed three different zeta functions of any graph. Mizuno and Sato [10] gave a decomposition formula for the zeta function of a group covering of a graph.
Let G be a connected graph. For each $u, v \in V(G)$, let $[u, v]$ be the set of all (u, v)-paths in G. We say that a path $P = (v_0, \ldots, v_n)$ has a bump at the v_i if $v_{i+1} = v_{i-1}$. The bump count $bc(P)$ of a path P is the number of bumps in P. Furthermore, the cycle bump count $cbc(C)$ of a cycle $C = (v_0, \ldots, v_n)$ is
\[cbc(C) = |\{i : v_{i+1} = v_{i-1}, 1 \leq i \leq n\}|,\]
where $v_{n+1} = v_0$ and $|X|$ denotes the cardinality of a finite set X. In [1], Bartholdi defined a zeta function of G, called the Bartholdi zeta function, as follows: for two complex numbers u and t with $|u|$ and $|t|$ sufficiently small,
\[Z_G(u, t) = Z(G, u, t) = \prod_{[C]} (1 - u^{cbc(C)}t^{|C|})^{-1},\]
where $[C]$ runs over all equivalence classes of prime cycles of G.

The following theorem shows how one can compute the Bartholdi zeta function of a graph G.

Theorem 2 (Bartholdi [1]). Let G be a connected graph. Then the reciprocal of the Bartholdi zeta function of G is given by
\[Z_G(u, t)^{-1} = (1 - (1-u)^2t^2)^{G \times G} \times \det[I - tA(G) + (1-u)t^2(D_G - (1-u)I)].\]

In this paper, we aim to compute the Bartholdi zeta function of a graph bundle. In Section 2, a formula for the Bartholdi zeta function of a graph bundle is derived by Theorem 2 and a decomposition formula for it when the fiber is a Schreier graph. In Section 3, we compute the Bartholdi zeta function of a graph bundle when its voltages lie in an Abelian group. As a special case, we compute the Bartholdi zeta function of the cartesian product of a graph and a regular graph. In the last section, we show how the Bartholdi or Ihara zeta function of a regular graph can be computed by using its spectra and how it can be related to the characteristic polynomial of the graph with weights on vertices and edges.

2. Computing the Bartholdi zeta functions of graph bundles

Let G be a connected graph and let \tilde{G} be the digraph obtained from G by replacing each edge of G with a pair of oppositely directed edges. The set of directed edges of G is denoted by $E(\tilde{G})$. By e^{-1}, we mean the reverse edge to an edge $e \in E(\tilde{G})$. We denote the directed edge e of \tilde{G} by uv if the initial and terminal vertices of e are u and v, respectively. For a finite group Γ, a Γ-voltage assignment of G is a function $\phi : E(\tilde{G}) \rightarrow \Gamma$ such that $\phi(e^{-1}) = \phi(e)^{-1}$ for all $e \in E(\tilde{G})$. We denote the set of all Γ-voltage assignments of G by $C^1(G; \Gamma)$.

Let F be another graph and let $\phi \in C^1(G; \text{Aut}(F))$. Now, we construct a graph $G \times^\phi F$ with the vertex set $V(G \times^\phi F) = V(G) \times V(F)$, and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G \times^\phi F$ if either $u_1u_2 \in E(\tilde{G})$ and $v_2 = \phi(u_1u_2)v_1$ or $u_1 = u_2$ and $v_1v_2 \in E(F)$. We call $G \times^\phi F$ the F-bundle over G associated with ϕ.
(or, simply a graph bundle) and the first coordinate projection induces the bundle projection
\(p^\phi : G \times^\phi F \to G \). The graphs \(G \) and \(F \) are called the base and the fiber of the graph bundle \(G \times^\phi F \), respectively. Note that the map \(p^\phi \) maps vertices to vertices, but the image of an edge can be either an edge or a vertex. If \(F = \overline{K}_n \), the complement of the complete graph \(K_n \) of \(n \) vertices, then an \(F \)-bundle over \(G \) is just an \(n \)-fold graph covering over \(G \).

If \(\phi(e) \) is the identity of \(\text{Aut}(F) \) for all \(e \in E(\overline{G}) \), then \(G \times^\phi F \) is just the cartesian product of \(G \) and \(F \) (see [8]).

Let \(\phi \) be an \(\text{Aut}(F) \)-voltage assignment of \(G \). For each \(\gamma \in \text{Aut}(F) \), let \(\overline{G}_{(\phi, \gamma)} \) denote the spanning subgraph of the digraph \(\overline{G} \) whose directed edge set is \(\phi^{-1}(\gamma) \). Thus the digraph \(\overline{G} \) is the edge-disjoint union of spanning subgraphs \(\overline{G}_{(\phi, \gamma)} \), \(\gamma \in \text{Aut}(F) \). Let \(V(\overline{G}) = \{u_1, u_2, \ldots, u_{\nu_G}\} \) and \(V(F) = \{v_1, v_2, \ldots, v_{\nu_F}\} \). We define an order relation \(\leq \) on \(V(G \times^\phi F) \) as follows: for \((u_i, v_k), (u_j, v_l) \in V(G \times^\phi F), (u_i, v_k) \leq (u_j, v_l) \) if and only if either \(k < \ell \) or \(k = \ell \) and \(i \leq j \). Let \(P(\gamma) \) denote the \(\nu_F \times \nu_F \) permutation matrix associated with \(\gamma \in \text{Aut}(F) \) corresponding to the action of \(\text{Aut}(F) \) on \(V(F) \), i.e., its \((i, j) \)-entry \(P(\gamma)_{ij} = 1 \) if \(\gamma v_i = v_j \) and \(P(\gamma)_{ij} = 0 \) otherwise. Then for any \(\gamma, \delta \in \text{Aut}(F) \), \(P(\delta \gamma) = P(\delta)P(\gamma) \). The tensor product \(A \otimes B \) of the matrices \(A \) and \(B \) is considered as the matrix \(B \) having the element \(b_{ij} \) replaced by the matrix \(Ab_{ij} \). Kwak and Lee [9] expressed the adjacency matrix \(A(G \times^\phi F) \) of a graph bundle \(G \times^\phi F \) as follows.

Theorem 3 (Kwak and Lee). Let \(G \) and \(F \) be graphs and let \(\phi \) be an \(\text{Aut}(F) \)-voltage assignment of \(G \). Then the adjacency matrix of the \(F \)-bundle \(G \times^\phi F \) is

\[
A(G \times^\phi F) = \left(\sum_{\gamma \in \text{Aut}(F)} A(\overline{G}_{(\phi, \gamma)}) \otimes P(\gamma) \right) + I_{\nu_G} \otimes A(F),
\]

where \(P(\gamma) \) is the \(\nu_F \times \nu_F \) permutation matrix associated with \(\gamma \in \text{Aut}(F) \) corresponding to the action of \(\text{Aut}(F) \) on \(V(F) \), and \(I_{\nu_G} \) is the identity matrix of order \(\nu_G \).

For any vertex \((u_i, v_k) \in V(G \times^\phi F) \), its degree is \(d_G^G(u_i) + d_F^F(v_k) \), where \(d_G^G(u_i) = \text{deg}_G(u_i) \) and \(d_F^F(v_k) = \text{deg}_F(v_k) \). Therefore, \(D_{G \times^\phi F} = D_G \otimes I_{\nu_F} + I_{\nu_G} \otimes D_F \) and \(D_{G \times^\phi F} - (1 - u)I_{\nu_F} = (D_G \otimes I_{\nu_F} + I_{\nu_G} \otimes D_F) - ((1 - u)I_{\nu_F}) \otimes I_{\nu_F} = (D_G - (1 - u)I_{\nu_G}) \otimes I_{\nu_F} + I_{\nu_G} \otimes D_F \).

Notice that

\[
\varepsilon_{G \times^\phi F} - \nu_{G \times^\phi F} = \nu_F \varepsilon_G + \nu_F \varepsilon_F - \nu_G \varepsilon_F = (\varepsilon_G - \varepsilon_F)I_{\nu_F} + \nu_F \varepsilon_F.
\]

Now, the following theorem follows immediately from **Theorem 2**.

Theorem 4. Let \(G \) and \(F \) be two connected graphs and let \(\phi \) be an \(\text{Aut}(F) \)-voltage assignment of \(G \). Then the reciprocal of the Bartholdi zeta function of the graph bundle \(G \times^\phi F \) is

\[
Z_{G \times^\phi F}(u, t) = (1 - (1 - u)^2t^2)^{(\varepsilon_G - \varepsilon_F)I_{\nu_F} + \nu_F \varepsilon_F}
\]

\[
\times \det \left[I_{\nu_G} - t \sum_{\gamma \in \text{Aut}(F)} (A(\overline{G}_{(\phi, \gamma)}) \otimes P(\gamma) + I_{\nu_G} \otimes A(F))
\]

\[
+ (1 - u)t^2((D_G - (1 - u)I_{\nu_G}) \otimes I_{\nu_F} + I_{\nu_G} \otimes D_F) \right].
\]
In the following, we consider three particular cases of Theorem 4: (i) F is a Schreier graph, (ii) $F = \overline{K_n}$, (iii) $\phi = 1$ is trivial, or more generally all voltages lie in an Abelian group. The last cases will be treated in Section 3 later.

Let B be a subgroup of a group A and let $S = \{x_1, x_2, \ldots, x_n\}$ be a symmetric subset set of A. The Schreier graph is the graph whose vertex set is the right cosets of B in A, and there is an edge between two vertices Ba and Bb if and only if $Bb = Bax_i$ for some $x_i \in S$. For the special case $B = \{1\}$, the Schreier graph is just the Cayley graph. Observe that the group A acts transitively on the right cosets of B by right multiplication. By the permutation group theory, one can say that a simple graph F is a Schreier graph if there exists a symmetric subset S of $\phi(S)$ such that any two vertices v_i and v_j are adjacent if and only if $v_j = v_i$ for some $s \in S$ (see Section 2.4.4 in [5]). We call such an S the connecting set of the Schreier graph F. Notice that a Schreier graph F is connected if and only if the subgroup S generated by the connecting set S acts transitively on $\{1, 2, \ldots, s\}$. Moreover, a Schreier graph with connecting set S is a regular graph of degree $|S|$ and most regular graphs are Schreier graphs (see Section 2.3.4 in [5]).

Now, let F be a Schreier graph with connecting set S. Then the adjacency matrix of F is $A(F) = \sum_{s \in S} P(s)$. Hence, for any voltage assignment $\phi : E(\mathcal{G}) \to Aut(F)$, one can have

$$A(G \times^\phi F) = \left(\sum_{\gamma \in Aut(F)} A(\mathcal{G}(\phi, \gamma)) \otimes P(\gamma) \right) + I_{vG} \otimes \sum_{s \in S} P(s).$$

Let Γ be the subgroup of S_{vF} generated by $\{\phi(e), e \in E(\mathcal{G}), s \in S\}$. A representation ρ of the group Γ over the complex field \mathbb{C} is a group homomorphism from Γ to the general linear group $GL(r, \mathbb{C})$ of invertible $r \times r$ matrices over \mathbb{C}. The number r is called the degree of the representation ρ. Clearly, the homomorphism $P : \Gamma \to GL(n, \mathbb{C})$ defined by $\gamma \mapsto P(\gamma)$ is a representation of Γ, called the permutation representation of Γ. Let $\rho_1 = 1, \rho_2, \ldots, \rho_\ell$ be the irreducible representations of Γ and let f_i be the degree of ρ_i for $1 \leq i \leq \ell$, so that $\sum_{i=1}^{\ell} f_i^2 = |\Gamma|$. Then, the permutation representation P can be decomposed as the direct sum of irreducible representations: say $P = \bigoplus_{i=1}^{\ell} m_i \rho_i$ with multiplicities m_i (see [16]). Moreover, there exists an invertible matrix M such that

$$M^{-1} P(\gamma) M = \bigoplus_{i=1}^{\ell} (\rho_i(\gamma) \otimes I_{m_i})$$

for any $\gamma \in \Gamma$, where $A_1 \oplus \cdots \oplus A_k$ denotes the block diagonal sum of matrices with block diagonals A_1, \ldots, A_k consecutively. Furthermore, it is known [13] that $m_1 \geq 1$ since it is the number of orbits under the action of the group Γ. Note that $\sum_{i=1}^{\ell} m_i f_i = v_F$. Since F is regular of degree $|S|$, one can see that

$$(1 - u)^2 ((D_G - (1 - u)I_{vG}) \otimes I_{vF} + I_{vG} \otimes D_F)$$

$$= (1 - u)^2 (D_G - (1 - u - |S|)I_{vG}) \otimes I_{vF}$$

and $\epsilon_F = \frac{v_F |S|}{}$. Hence,
(I_{V_G} \otimes M)^{-1} (1 - tA(G \times^\phi F) + (1 - u)t^2(D_{G \times^\phi F} - (1 - u)I))(I_{V_G} \otimes M)

= I_{V_{GF}} - \left[\sum_{i=1}^t \ell \left(\sum_{\gamma \in \text{Aut}(F)} A(\tilde{G}(\phi, \gamma)) \otimes \rho_i(\gamma) + I_{V_G} \otimes \sum_{s \in S} \rho_i(s) \right) \otimes I_{m_i} \right.

+ (1 - u)t^2(D_G - (1 - u - |S|)I_{V_G}) \otimes I_{V_{GF}}

= \ell \left[I_{V_{GF}} - t \left(\sum_{\gamma \in \text{Aut}(F)} A(\tilde{G}(\phi, \gamma)) \otimes \rho_i(\gamma) + I_{V_G} \otimes \sum_{s \in S} \rho_i(s) \right) \right.

+ (1 - u)t^2(D_G - (1 - u - |S|)I_{V_G}) \otimes I_{f_i} \left. \otimes I_{m_i} \right].

This proves the following theorem.

Theorem 5. Let G be a connected graph, F a Schreier graph with connecting set S and let \(\phi : E(\tilde{G}) \to \text{Aut}(F) \) be a voltage assignment. Let \(\Gamma \) be the subgroup of the symmetric group \(S_n \) generated by \(\{\phi(e), s : e \in E(\tilde{G}), s \in S\} \), and let \(\rho_1, \rho_2, \ldots, \rho_\ell \) be the irreducible representations of \(\Gamma \) having degree \(1, f_2, \ldots, f_\ell \), respectively. Then the reciprocal of the Bartholdi zeta function of the F-bundle \(G \times^\phi F \) of G is

\[
Z_{G \times^\phi F}(u, t)^{-1} = (1 - (1 - u)^2 t^2)^{\frac{\nu_G}{2} G} \prod_{i=1}^\ell [(1 - (1 - u)^2 t^2)^{(1 - u)^{-1} f_i} T(u, t, \rho_i, \phi)]^{m_i},
\]

where

\[
T(u, t, \rho_i, \phi) = \det \left[I_{V_{GF}} - t \left(\sum_{\gamma \in \text{Aut}(F)} A(\tilde{G}(\phi, \gamma)) \otimes \rho_i(\gamma) + I_{V_G} \otimes \sum_{s \in S} \rho_i(s) \right) \right.

+ (1 - u)t^2(D_G - (1 - u - |S|)I_{V_G}) \otimes I_{f_i} \left. \right],
\]

and \(m_i \) is the multiplicity of \(\rho_i \) in the permutation representation \(P \) of \(\Gamma \). \(\square \)

Notice that if G is a regular graph of degree \(d_G \), then one can simplify \(T(u, t, \rho_i, \phi) \) as

\[
T(u, t, \rho_i, \phi) = \det \left[I_{V_{GF}} - t \left(\sum_{\gamma \in \text{Aut}(F)} A(\tilde{G}(\phi, \gamma)) \otimes \rho_i(\gamma) + I_{V_G} \otimes \sum_{s \in S} \rho_i(s) \right) \right.

+ (1 - u)t^2(d_G + |S| + u - 1)I_{V_G} \otimes I_{f_i} \left. \right].
\]
Let $F = \overline{K_n}$ be the trivial graph on n vertices. Then any $\text{Aut}(\overline{K_n})$-voltage assignment is just a permutation voltage assignment defined in [5], and $G \times^\phi \overline{K_n} = G^\phi$ is just an n-fold covering graph of G. In this case, it may not be a regular covering. Notice that $A(G) = \sum_{\gamma \in \text{Aut}(F)} A(\tilde{G}(\phi, \gamma))$ and $\overline{K_n}$ is a Schreier graph with empty connecting set. Hence,

$$T(u, t, \rho, \phi) = \left[I_{\nu} - t A(G) + (1-u)t^2(D_G - (1-u)I_{\nu}) \right]^{-1} \left[Z_G(u, t) \right]^{-1}.$$

Now, the following comes from Theorem 5.

Corollary 6. The reciprocal of the Bartholdi zeta function of the connected covering G^ϕ of a graph G derived from a permutation voltage assignment $\phi : E(G) \rightarrow S_n$ is

$$Z_{G^\phi}(u, t)^{-1} = Z_G(u, t)^{-1} \prod_{i=2}^\ell \left[(1-(1-u)t)^2(D_G - (1-u)I_{\nu}) \right]^{m_i}.$$

where

$$T(u, t, \rho_i, \phi) = \left[\sum_{\gamma \in \text{Aut}(F)} A(\tilde{G}(\phi, \gamma)) \otimes \rho_i(\gamma) \right] + (1-u)t^2(D_G - (1-u)I_{\nu}) \otimes I_{f_i}.$$

It is clear from Corollary 6 that for any covering \tilde{G} of G the Bartholdi zeta function $Z_G(u, t)$ divides $Z_{G^\phi}(u, t)$.

If Γ acts on itself by right multiplication, then Γ can be identified as a regular subgroup of S_T and the covering G^ϕ is a regular covering of G. In this case, the multiplicity m_i is equal to the degree f_i for each i. Therefore, we have Theorem 3 in [11] as a corollary.

Corollary 7 (Mizuno and Sato). The reciprocal of the Bartholdi zeta function of the connected regular covering G^ϕ of G derived from an ordinary voltage assignment $\phi : E(G) \rightarrow \Gamma$ is

$$Z_{G^\phi}(u, t)^{-1} = Z_G(u, t)^{-1} \prod_{i=2}^\ell \left[(1-(1-u)t)^2(D_G - (1-u)I_{\nu}) \right]^{f_i}.$$

where $T(u, t, \rho_i, \phi)$ is given in Corollary 6.

Now, let G be a Schreier graph. Then the G-bundle of the complete graph K_1 on one vertex is isomorphic to the fiber G. Hence, we have the following corollary.

Corollary 8. Let G be a Schreier graph with connecting set S and let Γ be the subgroup of the symmetric group S_G generated by S. Let $\rho_1 = 1$, ρ_2, ..., ρ_ℓ be the irreducible representations of Γ having degree 1, f_2, ..., f_ℓ, respectively. Then the reciprocal of the Bartholdi zeta function of G is
$Z_G(u, t)^{-1} = (1 - (1 - u)^2 t^2)^{|S| - 1} \prod_{i=1}^{\ell} T(u, t, \rho_i, \phi)^{m_i}$,

where

$T(u, t, \rho_i, \phi) = \det \left[I_{f_i} - t \sum_{s \in S} \rho_i(s) + (1 - u)t^2(|S| + u - 1)I_{f_i} \right]$.

and m_i is the multiplicity of ρ_i in the permutation representation P of Γ. \hfill \square

In the following example, by using Corollary 8, we compute the Bartholdi zeta function of a Cayley graph. In this case, the multiplicity m_i is equal to the degree f_i.

Example 1. Let G be a Cayley graph $\text{Cay}(\mathcal{A}, S)$, where S is a symmetric generating set of \mathcal{A} which does not contain the identity. Then G is regular of degree $|S|$ and $A(G) = \sum_{s \in S} P(s)$. Hence,

$Z_G(u, t)^{-1} = (1 - (1 - u)^2 t^2)^{|S| - 1} \det[I - tA(G) + (1 - u)t^2(|S| + u - 1)I]$

$= (1 - (1 - u)^2 t^2)^{|S| - 1} \times \det \left[I - t \sum_{s \in S} P(s) + (1 - u)t^2(|S| + u - 1)I \right]$

$= (1 - (1 - u)^2 t^2)^{|S| - 1} \times \prod_{i=1}^{\ell} \det \left[I_{f_i} - t \sum_{s \in S} \rho_i(s) + (1 - u)t^2(|S| + u - 1)I_{f_i} \right]^{f_i}$

$= (1 - (1 - u)^2 t^2)^{|S| - 1} \left(1 - t|S| + (1 - u)t^2(|S| + u - 1) \right) \times \prod_{i=2}^{\ell} \det \left[I_{f_i} - t \sum_{s \in S} \rho_i(s) + (1 - u)t^2(|S| + u - 1)I_{f_i} \right]^{f_i}$,

where ρ_i runs over all irreducible representations of \mathcal{A} whose degree is f_i. Moreover, if \mathcal{A} is Abelian, then every irreducible representation of \mathcal{A} is linear and hence we have

$Z_G(u, t)^{-1} = (1 - (1 - u)^2 t^2)^{|S| - 1} \left(1 - t|S| + (1 - u)t^2(|S| + u - 1) \right) \times \prod_{i=2}^{\ell} \left[1 - t \sum_{s \in S} \chi_i(s) + (1 - u)t^2(|S| + u - 1) \right]$,

where χ_i runs over all irreducible characters of the Abelian group \mathcal{A}. For example, let Q_n be the hypercube. Then $Q_n = \text{Cay}(\mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2, \{e_1, \ldots, e_n\})$, where all coordinates of e_i are 0 except the i-th one. Now, one can see that

$Z_{Q_n}(u, t)^{-1} = (1 - (1 - u)^2 t^2)^{2n-1(n-2)} \times \prod_{k=0}^{n-1} \left[1 - (n - 2k)t + (1 - u)t^2(n + u - 1) \right]^{\binom{n}{2}}$. \hfill \square
3. Graph bundles having voltages in an abelian group

In this section, we consider the Bartholdi zeta functions of graph bundles $G \times^{\phi} F$ when the images of ϕ lie in an abelian subgroup Γ of $\text{Aut}(F)$. Here F need not be a Schreier graph, but regular of degree d_F. In this case, for any $\gamma_1, \gamma_2 \in \Gamma$ the permutation matrices $P(\gamma_1)$ and $P(\gamma_2)$ are commutative and $D_F = d_F I_n$.

It is well known (see [3]) that every permutation matrix $P(\gamma)$ commutes with the adjacency matrix $A(F)$ of F for all $\gamma \in \text{Aut}(F)$. Since the matrices $P(\gamma), \gamma \in \Gamma$ and $A(F)$ are all diagonalizable and commute with each other, they are simultaneously diagonalizable. That is, there exists an invertible matrix M_{Γ} such that $M_{\Gamma}^{-1} P(\gamma) M_{\Gamma}$ and $M_{\Gamma}^{-1} A(F) M_{\Gamma}$ are diagonal matrices for all $\gamma \in \Gamma$. Let $\lambda_{(\gamma,1)}, \ldots, \lambda_{(\gamma,\nu_F)}$ be the eigenvalues of the permutation matrix $P(\gamma)$ and let $\lambda_{(F,1)}, \ldots, \lambda_{(F,\nu_F)}$ be the eigenvalues of the adjacency matrix $A(F)$. Then

$$M_{\Gamma}^{-1} P(\gamma) M_{\Gamma} = \begin{bmatrix} \lambda_{(\gamma,1)} & 0 & \cdots & 0 \\ 0 & \lambda_{(\gamma,2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{(\gamma,\nu_F)} \end{bmatrix}$$

and

$$M_{\Gamma}^{-1} A(F) M_{\Gamma} = \begin{bmatrix} \lambda_{(F,1)} & 0 & \cdots & 0 \\ 0 & \lambda_{(F,2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{(F,\nu_F)} \end{bmatrix}.$$

From this, one can see that

$$(I_{\nu_G} \otimes M_{\Gamma})^{-1} \left(\sum_{\gamma \in \Gamma} A(\tilde{G}_{i(\phi,\gamma)}) \otimes P(\gamma) + I_{\nu_G} \otimes A(F) \right) (I_{\nu_G} \otimes M_{\Gamma})$$

$$= \bigoplus_{i=1}^{\nu_F} \left(\sum_{\gamma \in \Gamma} \lambda_{(\gamma,i)} A(\tilde{G}_{i(\phi,\gamma)}) + \lambda_{(F,i)} I_{\nu_G} \right)$$

and

$$(I_{\nu_G} \otimes M_{\Gamma})^{-1} ((D_G - (1-u)I_{\nu_G}) \otimes I_{\nu_F} + I_{\nu_G} \otimes D_F) (I_{\nu_G} \otimes M_{\Gamma})$$

$$= \bigoplus_{i=1}^{\nu_F} (D_G - (1-u - d_F)I_{\nu_G}).$$

Thus

$$\det[I - t A(G \times^{\phi} F) + (1-u)t^2(D_G \times^{\phi} F - (1-u)I)]$$

$$= \prod_{i=1}^{\nu_F} \det \left[I_{\nu_G} - t \left(\sum_{\gamma \in \Gamma} \lambda_{(\gamma,i)} A(\tilde{G}_{i(\phi,\gamma)}) + \lambda_{(F,i)} I_{\nu_G} \right) + (1-u)t^2(D_G - (1-u - d_F)I_{\nu_G}) \right].$$
For each $i = 1, 2, \ldots, v_F$ and the voltage assignment ϕ, we denote

$$T(u, t, i, \phi) = \det \left[I_{v_G} - t \left(\sum_{y \in F} \lambda_{(y, i)} A(G_{\phi \cdot y}) + \lambda_{(F, i)} I_{v_G} \right) + (1 - u)t^2(D_G - (1 - u - d_F)I_{v_G}) \right].$$

Since $\varepsilon_F = \frac{\nu_{d_F}}{2}$, we have

$$Z_{G \times F}(u, t)^{-1} = \prod_{i=1}^{v_F} (1 - (1 - u)^2 t^2)^{\varepsilon_{G - v_G} + \frac{\nu_{d_F}}{2} + \varepsilon_{F - v_G}} T(u, t, i, \phi).$$

This proves the following theorem.

Theorem 9. Let G be a connected graph and let F be a connected regular graph of degree d_F. If the images of $\phi \in C^1(G; \text{Aut}(F))$ lie in an abelian subgroup of $\text{Aut}(F)$, then the reciprocal of the Bartholdi zeta function of the F-bundle $G \times^\phi F$ is

$$Z_{G \times F}(u, t)^{-1} = \prod_{i=1}^{v_F} (1 - (1 - u)^2 t^2)^{\varepsilon_{G - v_G} + \frac{\nu_{d_F}}{2} + \varepsilon_{F - v_G}} T(u, t, i, \phi),$$

where

$$T(u, t, i, \phi) = \det \left[I_{v_G} - t \left(\sum_{y \in F} \lambda_{(y, i)} A(G_{\phi \cdot y}) + \lambda_{(F, i)} I_{v_G} \right) + (1 - u)t^2(D_G - (1 - u - d_F)I_{v_G}) \right]. \quad \square$$

Notice that the cartesian product $G \times F$ of two graphs G and F is the F-bundle over G associated with the trivial voltage assignment ϕ, i.e., $\phi(e) = 1$ for all $e \in E(G)$ and $A(G) = A(G)$. The following corollary comes from this observation.

Corollary 10. For any connected graph G and a connected d_F-regular graph F, the reciprocal of the Bartholdi zeta function of the cartesian product $G \times F$ is

$$Z_{G \times F}(u, t)^{-1} = (1 - (1 - u)^2 t^2)^{\varepsilon_{G - v_G} + \frac{\nu_{d_F}}{2} + \varepsilon_{F - v_G}} \prod_{i=1}^{v_F} \det[I_{v_G} - t(A(G) + \lambda_{(F, i)} I_{v_G}) + (1 - u)t^2(D_G - (1 - u - d_F)I_{v_G})].$$

In particular, if G is a regular graph of degree d_G, then the reciprocal of the Bartholdi zeta function of the cartesian product $G \times F$ is

$$Z_{G \times F}(u, t)^{-1} = \prod_{i=1}^{v_F} \prod_{j=1}^{v_G} (1 - (1 - u)^2 t^2)^{\frac{d_F + d_G}{2} - 1} \prod_{i=1}^{v_F} \det[I_{v_G} - t(A(G) + \lambda_{(F, i)} I_{v_G}) + (1 - u)t^2(D_G + d_F + u - 1)t^2],$$

$$\times \prod_{i=1}^{v_F} \prod_{j=1}^{v_G} (1 - (1 - u)^2 t^2)^{\frac{d_F + d_G}{2} - 1}.$$
where \(\lambda_{(G,j)} (1 \leq j \leq v_G) \) and \(\lambda_{(F,i)} (1 \leq i \leq v_F) \) are the eigenvalues of \(G \) and \(F \), respectively. \(\square \)

Example 2. Let \(K_m \) be the complete graph on \(m \) vertices. Its eigenvalues are \(m - 1 \) with multiplicity 1 and \(-1\) with multiplicity \(m - 1 \). Therefore, by Corollary 10, one can see that

\[
Z_{K_m \times K_m}(u, t) = \frac{1}{(1 - u)(m + n + u - 3)t^2}\left[\prod_{i=1}^{v_G} (1 - \lambda_{(G,i)} t + (1 - u)(d_G - 1 + u)t^2)\right] - 1
\]

In particular,

\[
Z_{K_2 \times K_2}(u, t) = \left[1 - 2t + (1 - u^2)t^2\right]^{v_G} - 1
\]

which coincides with the computation in Example 1. \(\square \)

4. Further remarks

In this last section, by using formulæ introduced in this paper, we discuss further computational ideas for the zeta functions of graphs related to their spectrum.

First, by comparing Theorems 1 and 2, one can see that the computation of the Bartholdi zeta function \(Z_{G \times F}(u, t) \) of \(G \times F \) immediately gives the computation of Ihara zeta function \(Z_{G \times F}(u) \) of \(G \times F \), i.e., \(Z_G(0, u) = Z_G(u) \).

Next, if the fiber \(F \) is the one vertex, then \(G \times F = G \). The following corollary comes from Corollary 10.

Corollary 11. Let \(G \) be a regular graph of degree \(d_G \). Then

\[
Z_G(u, t) = \frac{1}{(1 - u^2)t^2} \prod_{i=1}^{v_G} (1 - \lambda_{(G,i)} t + (1 - u)(d_G - 1 + u)t^2)
\]

and

\[
Z_G(u) = \frac{1}{u^2} \prod_{i=1}^{v_G} (1 - \lambda_{(G,i)} u + (d_G - 1)u^2),
\]

where \(\lambda_{(G,i)} \), \(1 \leq i \leq v_G \), are the eigenvalues of \(G \). \(\square \)

It follows from Corollary 11 that if \(G \) is regular and all eigenvalues of \(G \) are known, then one can get the Bartholdi zeta function \(Z_G(u, t) \) and the Ihara zeta function \(Z_G(u) \) of \(G \) without further computations.

As an example, consider the five Platonic solids: tetrahedron, cube, octahedron, dodecahedron, and icosahedron. Denote their graphs by \(T, Q, O, D, I \), respectively. They are all regular and their characteristic polynomials are known in [4] (see Table 1). Now, by...
Table 1

<table>
<thead>
<tr>
<th>Platonic graphs and their characteristic polynomials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic polynomial</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>Q</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>I</td>
</tr>
</tbody>
</table>

Corollary 11, one can compute the zeta functions of the Platonic graphs. For instance, for the icosahedron graph $T,$

$$Z_T(u, t)^{-1} = [1 - (1 - u)^2t^2][1 - 5t + (1 - u)(u + 4)t^2]$$

$$\times [1 - \sqrt{5}t + (1 - u)(u + 4)t^2]^3$$

and

$$Z_T(u)^{-1} = (1 - u^2)^3(1 - 5u + 4u^2)^2(1 - \sqrt{5}u + 4u^2)^3(1 + u + 4u^2)^5$$

Finally, we observe that the Bartholdi zeta function of a graph can be expressed in terms of the characteristic polynomial of a weighted graph, which is discussed in [4]. Let $\omega : V(G) \cup E(G) \to \mathbb{C}$ be a function. Then the pair $(G, \omega) = G_\omega$ is called a vertex- and edge-weighted graph. The adjacency matrix $A(G_\omega)$ of the weighted graph G_ω is the square matrix of order V_G defined by

$$a_{ij} = \begin{cases}
\omega(v_i v_j) & \text{if } i \neq j, \\
\omega(v_i) & \text{if } i = j.
\end{cases}$$

Let $\Phi(G_\omega, \lambda) = \det(\lambda I - A(G_\omega))$ denote the characteristic polynomial of $G.$ For a given graph $G,$ we define a weight function $\omega_{u,t} : V(G) \cup E(G) \to \mathbb{C}$ by

$$\omega_{u,t}(v_i v_j) = \begin{cases}
\lambda & \text{if } i \neq j, \\
(u - 1)(a_{ij}G + u - 1)t^2 & \text{if } i = j,
\end{cases}$$

where a_{ij} is the (i, j)-entry of $A(G).$ Then, by Theorem 2, one can see that

$$Z_{G}(u, t)^{-1} = (1 - (1 - u)^2t^2)^{\eta_G - \nu_G} \Phi(G_{\omega_{u,t}}; 1)$$

and

$$Z_{G}(u)^{-1} = Z_{G}(0, u)^{-1} = (1 - u^2)^{\eta_G - \nu_G} \Phi(G_{\omega_{0,u}}; 1).$$

Acknowledgements

This paper was supported by Com^2MaC-KOSEF in Korea.
References