A Medical-Grade Wireless Architecture for Remote Electrocardiography

Kyunhtae Kang, Member, IEEE, Kyung-Joon Park, Member, IEEE, Jae-Jin Song, Chang-Hwan Yoon, and Lui Sha, Fellow, IEEE

Abstract—In telecardiology, electrocardiogram (ECG) signals from a patient are acquired by sensors and transmitted in real time to medical personnel across a wireless network. The use of IEEE 802.11 wireless LANs (WLANs), which are already deployed in many hospitals, can provide ubiquitous connectivity and thus allow cardiology patients greater mobility. However, engineering issues, including the error-prone nature of wireless channels and the unpredictable delay and jitter due to the non-deterministic nature of access to the wireless medium, need to be addressed before telecardiology can be safely realized. We propose a medical-grade WLAN architecture for remote ECG monitoring, which employs the point coordination function (PCF) for medium access control and Reed-Solomon coding for error control. Realistic simulations with uncompressed 2-lead ECG data from the MIT-BIH arrhythmia database demonstrate reliable wireless ECG monitoring; the reliability of ECG transmission exceeds 99.99% with the initial buffering delay of only 2.4 seconds.

Index Terms—Telecardiology, electrocardiogram, IEEE 802.11, wireless healthcare.

I. INTRODUCTION

Wireless telecardiology is one of the most promising examples of telemedicine, which involves the real-time transmission of electrocardiographic signals over wireless networks [1]–[4]. Among several candidates for wireless electrocardiogram (ECG) monitoring, the IEEE 802.11 wireless local-area network (WLAN) is a promising solution, which is already being deployed in many hospitals [5]–[10].

IEEE 802.11 WLAN technology is simple, flexible, and cost-effective, making it suitable as a ubiquitous communication environment in hospitals. However, safety-critical medical applications require the strict maintenance of a particular quality of service (QoS), which includes the provision of a minimum bandwidth and delay, and a maximum jitter and error-rate [11]. Guaranteeing those requirements using an IEEE 802.11 WLAN is challenging because wireless channels are subject to errors, and the medium access control (MAC) of IEEE 802.11 is not designed to assure a strict QoS. Moreover, a high collision-rate and the resulting requirement for frequent retransmissions can cause unpredictable delays and jitters in a wireless network, which degrade the quality of real-time ECG services.

In this paper, we first identify and analyze the errors introduced during transmission over a wireless channel communicating with mobile devices using both quantitative and qualitative criteria. Second, we present a novel, medical-grade WLAN architecture, in which the IEEE 802.11 MAC layer is split into MAC and logical link control (LLC) layers, in order to achieve a QoS suitable for real-time telecardiology. The MAC layer operates in point coordination function (PCF) mode [12], which uses a round-robin scheduler to poll each station (STA) sequentially. Additionally, the LLC layer incorporates an error-control structure which is designed to achieve the dependability required for ECG monitoring by combining an forward error correction (FEC) technique with block interleaving, so as to achieve homogeneous throughput with a bounded delay. Finally, we evaluate the effectiveness of the proposed architecture in achieving reliable ECG monitoring services using real ECG recordings from the MIT-BIH database [13], [14]. Although no real-time patient data in situation is being used, this allows us to form a realistic assessment of the reliability of the proposed novel wireless architecture in the context of the telecardiology application.

The main contribution of our work is to prevent collision between STAs by introducing enhanced QoS-aware MAC coordination. This allows data to be delivered in a deterministic way, and thus meets the jitter constraints of telecardiology. In addition, the proposed LLC, in combination with the enhanced MAC coordination, is shown to promote the reliability of ECG data transmission while guaranteeing a bounded delay. Our early-phase QoS assessment of the new wireless architecture is essential because ECG applications are safety-critical, and failure after deployment can have serious consequences.

The rest of this paper is organized as follows: In Section II, we present the background to the use of a IEEE 802.11 WLAN for telecardiology. In Section III, we introduce a QoS enhancement architecture for IEEE 802.11, focusing on the MAC layer. In Section IV, the focus switches to the LLC layer. Our evaluation environment is introduced in Section V, and then we present results to show the effectiveness of the proposed architecture in providing improved QoS. Related studies of ECG monitoring are reviewed in Section VI. Finally, Section VII is devoted to conclusions.

This work was supported in part by National Science Foundation (NSF) under Grants IIS-0720482 and CNS-0834709, and in part by the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (2010-0020576).

K. Kang is with the Department of Computer Science and Engineering, Hanyang University, Korea (e-mail: kang.kyungtae@gmail.com).

K.-J. Park (corresponding author) is with the Department of Information and Communication Engineering, DGIST, Korea (e-mail: kyungjoon.park@gmail.com).

J.-J. Song and C.-H. Yoon are with Seoul National University Bundang Hospital, Korea (e-mail: jjong96@hanmail.net; kunson@hanmail.net).

L. Sha is with the Department of Computer Science, University of Illinois at Urbana-Champaign, USA (e-mail: lrs@illinois.edu).
II. ECG TRANSMISSION OVER IEEE 802.11 WLANs

Electrocardiography is a non-invasive technique that measures the electrical activity of the heart. A typical ECG trace consists of P wave, QRS complex and T wave [6] signals which are periodically sampled ((1) in Fig. 1) by electrodes attached to the patient, and then digitized ((2) in Fig. 1). The sampling frequency and digital resolution determine the characteristics of the wireless traffic generated by the subsequent transmission. There are a number of possible sampling and digitizing methods [3], [4], [15], as well as various compression techniques [16]–[18].

The number of leads required depends on the particular ECG configuration. If there are \(N_r \) leads, and the signal from each lead is digitized at a rate of \(N_s \) samples per second with a resolution of \(L_s \) bits, then the resulting data-rate of the ECG application would be

\[
\mu_{\text{ECG}} = N_r N_s L_s. \tag{1}
\]

This stream of digital data is packed into frames in the packetization process ((3) in Fig. 1), and then may be sent to a remote monitoring device across a wireless channel. Fixed access points (APs), attached to a wired network infrastructure, provide a communication portal for all the STAs within its range. The ECG data is transmitted to the AP, and then relayed to a remote monitoring device through the hospital LAN. This wired infrastructure can naturally be expected to deliver data much faster and more reliably than a wireless network, and so we can attribute all data losses to the wireless network without significant inaccuracy.

There are two main trends in the deployment of wireless ECG monitoring: a vendor-specific network which uses dedicated Wireless Medical Telemetry Service (WMTS) bands, and the IEEE 802.11 WLAN which uses shared Industrial, Scientific and Medical (ISM) bands [9]. While a vendor-specific network in the WMTS bands enjoys the benefit of dedicated bands, it suffers from low bandwidth. On the contrary, an IEEE 802.11 WLAN has benefit in cost by the standard-based deployment as well as its large bandwidth. However, because the ISM bands are unlicensed and are subject to interference from sources such as Bluetooth devices and microwave ovens. Nevertheless, experience based on recent substantial deployments suggests that an IEEE 802.11 WLAN can significantly outperform the conventional vendor-specific one [9]. That is why we focus on the design of an efficient IEEE 802.11 WLAN architecture which can guarantee the QoS level required for telecardiology.

For multiple channel access, the IEEE 802.11 standard defines two medium-access coordination functions: the basic distributed coordination function (DCF) and the optional point coordination function (PCF) [12]. DCF is a distributed medium-access scheme based on a carrier-sense multiple-access with collision avoidance (CSMA/CA) protocol. In DCF mode, an STA must sense the medium before initiating a packet transmission, and must then wait for an exponential random back-off period if contention occurs between different STAs trying to access the medium. This is likely to happen because all the STAs in one basic service set (BSS)\(^1\) compete for the channel with the same priority. This makes it impossible to guarantee any forms of QoS which depends on an assured bandwidth, packet delay or jitter.

Although there has been a good deal of work on telecardiology [1]–[4], [6]–[8], to the best of our knowledge, there have been no previous attempts to solve the problem of guaranteeing QoS for ECG transmissions over a WLAN with the effective combination of medium access and error control schemes. We will now address this issue.

III. MEDICAL-GRADE MAC IN IEEE 802.11 WLAN FOR DELAY GUARANTEE

In order to guarantee predictable delivery of ECG data, most of all, we should design an appropriate MAC protocol. We advocate the use of PCF for ECG data transmission. PCF uses a centralized polling scheme, which requires the access point (AP) to act as a point coordinator (PC). If a BSS is set PCF-enabled, then its channel access time is divided into beacon intervals, as shown in Fig. 2. A beacon interval is composed of a contention-free period (CFP) and a contention period (CP). During the CFP, the PC maintains a list of registered STAs, which are polled in the order in which they are listed. When an STA is polled, it receives permission to transmit a data frame. Since every STA is allocated a maximum length of frame to transmit, the maximum duration of the CFP for all the STAs can be determined by the PC. The time taken by the PC to generate beacon frames is called the target beacon transmission time (TBTT). The PC specifies the next TBTT within the beacon, which is broadcast to all the other STAs in the BSS. In a nutshell, due to the round-robin scheduler, each STA in PCF is guaranteed to transmit at least once in each cycle.

A typical medium-access sequence using PCF is shown in Fig. 2. When a PC polls an STA, it can piggyback the data-frames to the STA together with the CF-Poll frame. After a short inter-frame space (SIFS) interval the STA then sends back a data-frame piggybacked with an acknowledgement (ACK). When the PC polls the next STA, it piggybacks not only the data-frame to its destination, but also an ACK to the previous successful transmission. Note that packet transmissions are separated by SIFS except in one scenario: if the polled STA does not respond to the PC within the period of a PCF inter-frame space (PIFS), the PC will poll the following STA. Silent STAs are removed from the polling list.

\(^1\)A group of STAs coordinated by DCF or PCF is called a basic service set (BSS).
after several periods, but may be polled again at the beginning of the next CFP. Normally, PCF uses a round-robin scheduler to poll each STA sequentially in the order of a polling list, but priority-based polling mechanisms can also be used if different QoS levels are required by different STAs.

IV. MEDICAL-GRADE LLC FOR ROBUST ECG TRANSMISSION OVER IEEE 802.11 WLANs

We introduce the logical link control (LLC) layer above the MAC layer to enhance the QoS for ECG applications. Proper error control is required at the LLC layer in the subnetwork because of the errors that occur in the wireless link. However, retransmitting information is not appropriate for real-time ECG applications because of the non-deterministic delay that takes place during error recovery. On the contrast, the FEC approach has a homogeneous throughput and a bounded time delay, which are crucial considerations for ECG applications.

We advocate the use of Reed-Solomon (RS) coding, combined with interleaving [19], as a method of FEC in the LLC layer. We use a simple RS code with short codewords, with the aim of reducing the buffering delay to a level that is compatible with the moderate data-rate of ECG applications.

1) RS FEC codes: The proposed error control scheme introduces RS FEC codes in the LLC layer (between (3) and (4) in Fig. 1), which we have chosen because of their superior performance at lower error-rates [20].

An RS code is specified by \((n, k)\) with \(s\)-bit symbols, which takes \(k\) data symbols of \(s\) bits each and adds \(n - k\) parity symbols to make an \(n\)-symbol codeword. An algebraic RS decoder can correct up to \(t\) symbols that contain errors in a codeword or up to \(2t\) erasures, where \(2t = n - k\). We use the RS code as an erasure code (not as an error-correcting code), and assume that the cyclic redundancy check (CRC) provided by the physical layer will be used to detect and erase damaged physical-layer frames. Erasure decoding has the advantage that it is simpler than error correction, because the position of the erased octets is known in advance.

RS decoding is performed for each codeword. When a codeword is received, a syndrome symbol is created for each parity symbol [21]. If there are any errors in that codeword, then their locations are found using the Berlekamp algorithm [22]. The original data can then be recovered by erasure decoding. The number of times that the decoding procedures need to be executed is proportional to the number of errors, which may occur in up to \(t\) symbols. Thus, if we assume that \(T_{cw}(\nu)\) is the time required for decoding a single codeword which contains \(\nu\) symbol errors, then \(T_{cw}(\nu)\) also bounds the delay incurred in the RS decoding of a codeword on \(T_{cw}(t)\), and it is this bound that makes the decoding process predictable for real-time ECG applications.

2) Interleaving to combat error bursts: FEC incurs constant transmission overhead even when the channel is error free. To ensure data fidelity while minimizing the transmission overhead, we adopted an interleaving technique [19]. The Block interleaving [23], first creates a two-dimensional array buffer like the one shown in Fig. 3. The ECG packets, each of which is \(L_{ECG}\) bits, are read into the two-dimensional array in rows, and RS coding is applied along columns. Then the data is pushed out in rows to the physical layer for transmission over the wireless physical channel. Now the error bursts encountered during transmission are spread across multiple codewords. Consequently, the number of errors occurring within one codeword may be sufficiently small to allow them to be corrected using a simple FEC technique.

The value of \(M\) which is the number of ECG packets in each buffer row, determines the degree of interleaving. A high value of \(M\) provides increased time diversity, which improves performance in the presence of time-varying shadowing, at the cost of a larger buffer and a longer buffering delay. The amount of storage required is \(nML_{ECG}\) bits, and the corresponding buffering delay \(\delta\) is determined as follows:

\[
\delta = \frac{nML_{ECG}}{\mu_{ECG}},
\]

where \(\mu_{ECG}\) is the data-rate of the ECG application.

V. EVALUATION OF THE PROPOSED QoS ENHANCEMENT ARCHITECTURE

A. Error statistics for packet transmissions over a fading channel

Unlike wired communication, channel errors are common in wireless networks. A typical bit error rate is \(10^{-5}\), leading to a packet error-rate (PER) of a few percents; but a PER can even go up to \(10\%\), depending on other parameters such as the transmission power and the distance between the transmitter and receiver. Even worse, errors in a wireless network tend to occur in bursts due to the nature of the fading channel.
The binary error process that describes the success or failure of data block transmission has been considered by Zorzi et al. [24], where the error process is specified by two independent parameters q and r, where q is the probability that the transmission of the ith block is unsuccessful, given that the $(i-1)$th block was transmitted successfully, while r is the probability that the ith block is successfully transmitted, given that the $(i-1)$th block was not. Using these parameters, the analytical expression for the Markov parameters for Rayleigh fading is given as follows:

$$
epsilon = 1 - q^{-1} = \frac{q}{q + r},$$

where ϵ is the steady-state PER and F is the fading margin. Now the value of r can be calculated as follows:

$$r = \frac{Q(\theta, \rho\theta) - Q(\rho\theta)}{\epsilon F - 1},$$

where $Q(\cdot, \cdot)$ is the Marcum-Q [25] function, and

$$\theta = \sqrt{\frac{2}{F}} = \frac{-2\log(1-\epsilon)}{1 - \rho^2}.$$

The term ρ is the correlation coefficient of two samples of the complex Gaussian fading process, and is equal to $J_{0}(2\pi f_{D}^2)$, where $J_{0}(\cdot)$ is the Bessel function of the first kind and of zeroth order, and f_{D}^2 is the normalized version of the Doppler frequency. In particular, the value of f_{D}^2 is calculated as $f_{D}^2 = f_{D} L_{\text{phys}}/\mu_{p}$, where f_{D} is the maximum Doppler frequency, L_{phys} is the frame size, and μ_{p} is the reference channel data-rate. The maximum Doppler frequency of the system f_{D} is given as $f_{D} = v/c$, where v is the mobile speed, c is the speed of the electromagnetic wave, and f_{c} is the carrier frequency.

B. Simulation environments

1) **ECG databases:** We used the MIT-BIH arrhythmia database [13], [14] to evaluate our wireless architecture, which is widely used to test the performance of ECG transmission, e.g., [3], [4]. This database contains 48 half-hour excerpts of two-channel (MLII and V5) ambulatory ECG recordings, obtained from 47 subjects studied by the BIH Arrhythmia Laboratory. Although the database was originally created as standard test material for evaluation of arrhythmia detectors, it is by far the most widely used data for testing and comparing proposed strategies for real-time ECG services. The recordings were digitized at 360 samples per second per channel, with 11-bit resolution over a 10 mV range, and thus the data-rates of both the MLII channel μ_{MLII} and the V5 channel μ_{V5} are 3,960 b/s. Data packets from both the MLII and V5 channels are multiplexed before transmission, and the resulting data-rate μ_{ECG} is 7920 (2 \times 360 \times 11) b/s. We assume that the ECG data is transmitted without compression.

2) **RS code parameters:** An RS code with short codewords is desirable for ECG applications with a moderate data-rate, because a short code limits the delay incurred by initial buffering. The error control parameters that we use are inspired from the design of the FEC process for the CDMA2000-1x broadcast air specification [26].

An RS code uses 8-bit symbols and operates in the Galois Field called GF(2^8). The primitive element α for this field is defined by

$$\alpha^8 + \alpha^4 + \alpha^3 + \alpha^2 + 1 = 0.$$

The jth code symbol v_j ($j = 0, \ldots, n-1$) is then defined by:

$$v_j = \begin{cases} u_j & (0 < j \leq k - 1) \\ \sum_{i=0}^{k-1} u_{i,j} & (k \leq j \leq n - 1), \end{cases}$$

where u_j is the jth of a block of k information symbols, and $p_{i,j}$ is the entry on the i-th row and the j-th column in the parity matrix of the code. Table I lists the power h of the entry on the i-th row and the j-th column of the parity matrix for the (16,12) RS code, $p_{i,j} = \alpha^h$, where α is a primitive element of GF(2^8), $i = 0, \ldots, 11$, and $j = 12, 13, 14, \text{and } 15$. For example, the entry of 40 in the upper left-hand corner indicates that $p_{0,12} = \alpha^{40}$.

An RS code specified by (16,12) generates sixteen code symbols for each block of twelve information symbols input to the encoder; the remaining four symbols are parity symbols. The generator polynomial for the (16,12) code is

$$g(X) = 1 + \alpha^{201}X + \alpha^{240}X^2 + \alpha^{201}X^3 + X^4.$$

3) **Other simulation parameters:** Because we used two-channel ambulatory ECG recordings, two buffer blocks, shown in Fig. 3, are required to perform RS encoding at the sending STA (equivalent to patient-worn medical device), and these two buffer blocks are multiplexed before transmission on the physical layer. More specifically, each row of the buffer block forms the payload of an ECG packet, either for the MLII or the V5 channel. The packets are transmitted in physical-layer frames assigned to each channel in the same order as the start-times of the transmissions of the physical-layer frames. We

\begin{table}
<table>
<thead>
<tr>
<th>Table I</th>
<th>VALUES OF THE EXPONENT h CORRESPONDING TO THE i-th ROW AND j-th COLUMN OF THE PARITY MATRIX FOR THE RS BLOCK CODE (16,12), SUCH THAT $p_{i,j} = \alpha^h$, WHERE α IS AN ELEMENT OF GF(2^8).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row index i</td>
<td>$p_{0,12}$</td>
</tr>
<tr>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>158</td>
</tr>
<tr>
<td>3</td>
<td>209</td>
</tr>
<tr>
<td>4</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
</tr>
<tr>
<td>6</td>
<td>125</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>137</td>
</tr>
<tr>
<td>9</td>
<td>254</td>
</tr>
<tr>
<td>10</td>
<td>160</td>
</tr>
<tr>
<td>11</td>
<td>201</td>
</tr>
</tbody>
</table>
\end{table}
TABLE II
SIMULATION PARAMETERS FOR ASSESSMENT OF ECG TRANSMISSION USING THE PROPOSED WIRELESS ARCHITECTURE.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{phy}</td>
<td>400 bits</td>
<td>Length of a physical-layer frame</td>
</tr>
<tr>
<td>L_{ECG}</td>
<td>396 bits</td>
<td>Length of a MAC-layer packet</td>
</tr>
<tr>
<td>f_c</td>
<td>2.4 GHz</td>
<td>Carrier frequency</td>
</tr>
<tr>
<td>μ_0</td>
<td>1 Gb/s</td>
<td>Reference channel data-rate</td>
</tr>
<tr>
<td>ϵ</td>
<td>$0 \sim 0.03$</td>
<td>Steady-state PER</td>
</tr>
<tr>
<td>v</td>
<td>2–5 km/h</td>
<td>Mobile speed of patients</td>
</tr>
<tr>
<td>s</td>
<td>8 bits</td>
<td>Length of a symbol</td>
</tr>
<tr>
<td>(n, k)</td>
<td>(16,12)</td>
<td>Candidate RS code</td>
</tr>
<tr>
<td>N_t</td>
<td>2</td>
<td>Number of leads</td>
</tr>
<tr>
<td>N_s</td>
<td>360 Hz</td>
<td>Samples per second</td>
</tr>
<tr>
<td>L_s</td>
<td>11 bits</td>
<td>Sample size</td>
</tr>
<tr>
<td>$\mu_{\text{MLII, V5}}$</td>
<td>3960 b/s</td>
<td>Data-rate of each ECG recording channel</td>
</tr>
<tr>
<td>μ_{ECG}</td>
<td>7920 b/s</td>
<td>Total ECG data-rate</td>
</tr>
</tbody>
</table>

TABLE III
RELIABILITY OF AN ECG MONITORING SERVICE USING THE PROPOSED WIRELESS ARCHITECTURE, EXPRESSED AS THE PROPORTION OF SUCCESSFUL PACKET TRANSMISSIONS OVER THE MLII CHANNEL.

<table>
<thead>
<tr>
<th>M_{11}</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual rate of packet errors</td>
<td>3.8E-3</td>
<td>5.9E-4</td>
<td>5.3E-5</td>
<td>3.0E-5</td>
</tr>
<tr>
<td>Reliability</td>
<td>99.62%</td>
<td>99.94%</td>
<td>99.99%</td>
<td>99.99%</td>
</tr>
</tbody>
</table>

in Fig. 4(b)). Finally, the reconstructed ECG signals were evaluated ((4) in Fig. 4(b)) by determining the mean-square errors (MSEs), which quantify the difference between the reconstructed ECG signals and the original signals obtained from the patient. The MSE for the time interval t can be estimated as follows:

$$\text{MSE}_t = \frac{1}{N_s t} \sum_{i=1}^{N_s t} (s_i - \hat{s}_i)^2,$$

where s_i is the digitized value of the ith ECG signal obtained from the patient and \hat{s}_i is the digitized value of ith ECG signal reconstructed at the remote monitoring device after wireless transmission.

C. Simulation results

Table III shows the upper bound on the residual rate of ECG packet errors after RS decoding for the MLII channel with different values of the block interleaving parameter M_{11}, under the range of channel conditions we assumed. We see that the proposed wireless architecture is sufficiently reliable for remote ECG monitoring. Especially, a high M_{11} value provides increased time diversity and reduces the perceived error rate in the presence of time-varying shadowing. For example, choosing a value of M_{11} that is larger than 4 can provide a reliability of 99.99%.

Figs. 5 and 6 show how the residual rate of ECG packet errors directly affects the quality of ECG signals reconstructed at the remote monitoring device for the selected “100.dat” data stream. Compared to the original ECG signal in Fig. 5(a), the reconstructed ECG signal with no error control in the LLC layer shows that ECG signals are frequently missed; this might lead a physician to misinterpret a patient’s condition. For example, the original ECG signal has 13 QRS complexes, while the ECG signal without error control has only 11 QRS complexes, as shown in Fig. 5(b). The missing QRS complexes result in a difference in the RR interval, as compared to the original one. As a result, in spite of the fact that the original ECG diagnosis is normal sinus rhythm with an atrial premature beat, the distorted reconstruction leads to a diagnosis that indicates sinus pause or sinoatrial block, which is a more serious problem. What is even worse, life-threatening arrhythmia which is very infrequent can be overlooked. A similar phenomenon can also be found in the case of the ECG signal obtained from the V5 channel, as shown in Fig. 6(b).

However, we can see from Figs. 5 and 6 that the ECG signals seen by a physician will be less distorted by the occurrence of frequent error bursts during transmission when

assume that this transmission involves the use of a multiplexer (MUX) and de-multiplexer (DEMUX), shown in Fig. 4(a). The width of buffer blocks for each channel is $M_{11}L_{\text{ECG}}$ and $M_{V5}L_{\text{ECG}}$ bits, respectively. The values of M_{11} and M_{V5} are assumed to be less than or equal to 8.

Because hospital patients can be expected to have low mobility, we assumed a speed v of between 2 km/h and 5 km/h. We also varied the PER experienced by the ECG sensors attached to a patient between 0 and 0.03. Then we analyzed the reliability of ECG transmission using the proposed wireless architecture for different amounts of interleaving. All the parameters used in our simulation are summarized in Table II.

Error traces to model the fate of frames transmitted over the wireless channel were obtained by simulating the PCF in the MAC layer and the channel, using the model explained in Section V-A ((1) in Fig. 4(b)). The traces were then supplied to the RS erasure decoding simulator ((2) in Fig. 4(b)). All the simulations were implemented in C, and compiled and run under Linux. This simulation generated residual ECG packet errors and their locations after RS decoding and these were injected into the MIT-BIH arrhythmia data that we used ((3)
The proposed error control in the LLC layer is applied and as the level of block interleaving increases. The reconstructed signal becomes increasingly similar to the original ECG signal as a sufficient level of interleaving is adopted, thus enabling cardiologists to make a correct diagnosis. When the value of M_{II} is greater than 4, the reconstructed ECG signal is almost identical to the original ECG signal. Table IV clearly demonstrates the fact that the values of MSEs at half-hour intervals decrease significantly as the value of M increases; these values have been obtained for 10 selected subjects from the MIT-BIH arrhythmia database. In order to further demonstrate the performance of the proposed scheme, we obtained the MSEs for the entire data set of 47 ECG recordings. The results can be seen in Fig. 7, which shows the maximum, minimum, and average MSEs for each case. These results provide further evidence that the proposed LLC structure reduces wireless channel errors in a very effective manner. However, this improvement in error-rate comes at the cost of an increased buffering delay. This is 0.6, 1.2, 2.4, and 4.8 seconds when the value of M_{II} is 1, 2, 4, and 8 respectively. So it becomes important to find the right balance between the quality of the reconstructed ECG signal and the buffering delay.

Fig. 5. Analysis of an ECG signal (lead MLII) over 10 seconds, for a selected interval that contains a lot of error bursts ($v = 2$ km/h, PER = 0.03).

Fig. 6. Analysis of an ECG signal (lead V5) over 10 seconds, for a selected interval that contains a lot of error bursts ($v = 2$ km/h, PER = 0.03).

Fig. 7. MSEs with and without the proposed LLC layer, for the entire data set of 47 ECG recordings. The maximum, minimum, and average MSEs are shown in each case.

VI. RELATED WORK
Real-time cardiac monitoring can provide patients with more freedom, but its acceptability relies on the integration of new technologies such as wireless sensors and real-time automatic ECG diagnosis into cardiac monitoring systems. We will briefly mention some existing wireless ECG monitoring systems: HP’s Agilent telemetry system is expensive and is...
TABLE IV

MSEs of reconstructed ECG signals using 10 selected ambulatory ECG recordings when v=2 KM/H and PER is 0.03 (MLII channel).

<table>
<thead>
<tr>
<th>Record #</th>
<th>Without LLC</th>
<th>With LLC (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>5.10E-5</td>
<td>4.51E-5</td>
</tr>
<tr>
<td>105</td>
<td>2.51E-4</td>
<td>2.72E-4</td>
</tr>
<tr>
<td>111</td>
<td>6.91E-5</td>
<td>5.13E-5</td>
</tr>
<tr>
<td>115</td>
<td>1.40E-4</td>
<td>9.11E-5</td>
</tr>
<tr>
<td>120</td>
<td>2.36E-4</td>
<td>1.09E-4</td>
</tr>
<tr>
<td>200</td>
<td>1.71E-4</td>
<td>1.78E-4</td>
</tr>
<tr>
<td>205</td>
<td>7.83E-5</td>
<td>6.15E-5</td>
</tr>
<tr>
<td>210</td>
<td>1.94E-4</td>
<td>1.77E-4</td>
</tr>
<tr>
<td>215</td>
<td>3.17E-4</td>
<td>3.04E-5</td>
</tr>
<tr>
<td>220</td>
<td>8.74E-4</td>
<td>5.96E-4</td>
</tr>
<tr>
<td>Average</td>
<td>1.98E-4</td>
<td>1.55E-4</td>
</tr>
</tbody>
</table>

generally used for multi-patient hospital applications [27]. In this system, patients must stay in hospital for cardiac surveillance.

Braecklein et al. [28] implemented a tele-cardiological monitoring system in which ECG signals are collected and analyzed by wireless ECG sensors. Detected cardiac events are automatically transmitted to the local base station, from whence they travel via a modem and dedicated telephone line to an Internet-based electronic health record (EHR) where the ECG data and event markers are stored. Authorized staff have access to the EHR to read the patient’s files. It can transmit a 1-lead ECG signal sampled at 500 Hz and provide real-time transmission of an ECG signal.

A new Australian mobile-phone-based medical diagnostic system called LifeMedic has been used to give medical services to the survivors in the region of Banda Aceh, Indonesia, devastated by the tsunami of January 2005 [29]. LifeMedic, which was developed by a Brisbane-based company, can deliver patient care in a hospital or at a remote location. Patient data, both signals and images, are provided respectively by medical sensors (ECG electrodes) and digital cameras, and then transmitted to an information center over a satellite communication system. This enables local physicians to send photographs of medical records and pictures of wounds back to Australia for a quick diagnosis.

Some other wireless monitoring systems [30], [31] have similar architectures and functions for cardiac monitoring. The general requirements and analysis of wireless patient monitoring using wireless LANs are presented in [8]. This includes the use of wireless LANs for patient monitoring in several different scenarios, requirements analysis, and design of architectures. Also, Zhou et al. [32] focuses on the network communication techniques used by a remote surveillance platform for real-time reliable cardiac monitoring.

VII. CONCLUSIONS

Pairing a healthcare application with a wireless transport requires a thorough understanding of both the applications and the detailed functions and capabilities of the wireless technology in the context of the environment in which it will be deployed. We have proposed an architecture for enhancing the QoS of wireless ECG transmission. The basis of our approach is to split the MAC layer into MAC and LLC layers. The new MAC layer uses the IEEE 802.11 PCF mode to achieve deterministic packet delivery, and the LLC layer uses RS-based error control with block interleaving to achieve high reliability. By means of simulations using data from the MIT-BIH database, we have shown how the proposed architecture can improve wireless network performance to the extent necessary to support a telecardiology application.

ACKNOWLEDGMENT

The authors would like to thank Julian Goldman (MD, Massachusetts General Hospital) and Rick Hampton for their valuable comments.

REFERENCES

Kyung-Joon Park graduated from Seoul Science High School, and received his B.S., M.S., and Ph.D. degrees all from the School of Electrical Engineering and Computer Science (EECS), Seoul National University (SNU), Seoul, Korea in 1998, 2000, and 2005, respectively. He is currently an assistant professor in the Department of Information and Communication Engineering at DGIST, Daegu, Korea. He was a postdoctoral research associate in the Department of Computer Science, University of Illinois at Urbana-Champaign (UIUC), IL, USA from 2006 to 2010. He worked for Samsung Electronics, Suwon, Korea as a senior engineer from 2005 to 2006, and was a visiting graduate student in the Department of Electrical and Computer Engineering at UIUC in 2001–2002. His current research interests include design of medical-grade protocols for wireless healthcare systems, analysis of malicious and selfish behavior of wireless networks, design and analysis of self-adjusting protocols for wireless environments, and modeling and analysis of cyber-physical systems.

Jae-Jin Song graduated from Seoul Science High School, and received his B.S., M.S., and Ph.D. degrees all from the College of Medicine, Seoul National University (SNU), Seoul, Korea in 2000, 2004 and 2010, respectively. He completed his residency training in the Department of Otorhinolaryngology at Seoul National University Hospital (SNUH) in 2005. He took fellowships as an otology specialist in the Department of Otorhinolaryngology both at SNUH and Seoul National University Bundang Hospital (SNUBH) from 2008 to 2009, and he is currently a clinical assistant professor in the Department of Otorhinolaryngology at SNUBH since July 2009. His current research interests include functional imaging of audio-visual connectivity and tinnitus, neuromodulation treatments such as transcranial magnetic stimulation and cortical implantation for the patients with tinnitus.

Chang-Hwan Yoon received his B.S., M.S., and Ph.D. degrees all from the College of Medicine, Seoul National University (SNU), Seoul, Korea in 1999, 2004, and 2011, respectively. He is currently a clinical assistant professor in Seoul National University Bundang Hospital. He was a research fellow in the Department of Internal Medicine, Frankfurt University at Frankfurt, Germany from 2007 to 2009. He worked for Seoul National University Hospital, Seoul, Korea as an intern, a resident and a clinical cardiology fellow from 1999 to 2004 and from 2009 to 2010 and was a flight surgeon in the Department of Internal Medicine at Aeromedical Center, Air Force, Korea in 2004–2007. His current research interests include differentiation from induced pluripotent stem cells to cardiovascular cells, mechanism of diabetic vasculopathy, and clinical research of ischemic heart diseases.

Lui Sha graduated with Ph.D. from Carnegie Mellon University in 1985. He is Donald B. Gillies Chair professor of Computer Science in University of Illinois at Urbana Champaign. He is a fellow of the ACM and a fellow of the IEEE. His work on real-time computing is supported by most of the open standards in real-time computing and has been cited as a key element to the success of many national high technology projects including GPS upgrade, the Mars Pathfinder and the International Space Station.