Resource-Allocation for OFDMA Multi-hop Relaying Downlink Systems

Ryoulhee Kwak and John M. Cioffi
Department of Electrical Engineering
Stanford University
Stanford, CA 94305, U.S.A.
E-mail: \{rhkwak, cioffi\}@stanford.edu

Abstract—This paper proposes resource-allocation algorithms to maximize the sum-rate in orthogonal frequency-division multiple-access multi-hop relaying downlink systems. With advance subchannel allocation to users and relay stations, Lagrange dual-decomposition solves the power-allocation problem. This paper shows the optimal solution to be a modified water-filling algorithm, where an inner-outer bisection method determines the optimal water-levels. Further, proposed heuristic resource-allocation algorithms rely on the Karush-Kuhn-Tucker conditions. Simulation results show that the multi-hop OFDMA relaying systems outperform the conventional OFDMA systems by more than 30% with use of the proposed resource-allocation algorithms.

I. INTRODUCTION

Figure 1 shows a multi-user wireless relaying system that provides high data rates and enlarges the coverage area by relaying the data from a base station (BS) to users [1], [2], [3]. The presence of relay stations (RS) complicates the resource optimization in system-throughput maximization.

Researchers have proposed resource-allocation algorithms for a variety of situations with many assumptions: The route-selection algorithm and the smart channel-selection algorithm for a fixed RS model have been investigated in [4], [5]. Wu and Qiao [6] proposed a load-balancing algorithm in integrated cellular and ad-hoc relay systems. The authors in [7] formulated the subchannel-allocation problem in an orthogonal frequency-division multiple-access (OFDMA) multi-hop relaying system as a linear programming (LP) problem. However, [7] only focused on subchannel reuse without power optimization. Under time-division multiple-access systems, timeslot-allocation algorithms have been investigated in [8] and [9]. Although the optimal timeslot-allocation problem to maximize the common throughput for all the users in a cell can be formulated as an LP, the model used in [8] is too simple for most practical situations. For such simplified models, power-allocation algorithms are also developed in [10], [11] and [12].

To obtain a practical solution, this paper focuses on the resource-allocation algorithms that maximize the sum-rate in OFDMA multi-hop relaying downlink system. The difficulty of resource-allocation is the nonconvexity of the problem, which is caused by the interrelationship of all resources such as power and subchannels. This paper formulates the optimization problem as a convex problem by using preassigned subchannels because the subchannel-allocation might not be a significant factor for system performance [4]. Then, the use of the Lagrange dual-decomposition method leads to the resource-allocation algorithms. This paper shows that the optimal power-allocation algorithm is a modified water-filling algorithm, which is efficiently solved by using an inner-outer bisection method. Also, this paper proposes a heuristic power-allocation algorithm that is simple in complexity and achieves near-optimal performance. Further, this result motivates a heuristic subchannel-allocation algorithm in which the user with the lowest modified inverse subchannel signal-to-noise ratio (MISSNR) occupies each subchannel.

The organization of this paper is as follows: Section II presents the system model and the problem formulation. Section III develops efficient resource-allocation algorithms by using the Lagrange dual decomposition method and Karush-Kuhn-Tucker conditions (KKT). Section IV discusses numerical results. Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This paper considers an OFDMA multi-hop relaying downlink system of \(K\) users and \(N_r\) RSs, where each transmitter and receiver have a single antenna. The number of downlink subchannels is \(N\), and the OFDMA receiver completely removes the inter-symbol interference. Figure 2 shows the overall downlink frame structure. Transmission between the BS and the users occurs on subchannel set \(B_0\) of subframe 1, and subchannel set \(B_j\) (\(1 \leq j \leq N_r\)) in subframe 1 is for the transmission between the BS and RS \(j\). Similarly,
subchannel set S_j ($1 \leq j \leq N_r$) in subframe 2 is for the transmission between RS j and the users associated with RS j. N_j' denotes the number of subchannels in a set B_j, i.e., $|B_j| = N_j'$. In both subframes, at most one user or one RS occupies each subchannel to avoid interference which dramatically increases the complexity of the problem, hence, $B_j \cap B_j' = \emptyset$ for $j \neq j'$, $S_j \cap S_j' = \emptyset$ for $j \neq j'$, $\cup_{j=1}^{N_j} B_j \subseteq \{1, \ldots, N\}$, and $\cup_{j=1}^{N_r} S_j \subseteq \{1, \ldots, N\}$. For subchannel i in subframe k, $h_k(i)$ denotes the subchannel gain, and a zero-mean i.i.d. Gaussian noise with variance $\sigma_k^2(i)$ adds at the receiver. $c_k(i) = |h_k(i)|^2/\sigma_k^2(i)$ defines the signal-to-noise ratio for subchannel i in subframe k. $P_k(i)$ and $r_k(i)$ denote the power and the rate for subchannel i in subframe k such that $r_k(i) = 0.5 \log_2(1 + P_k(i)c_k(i))$ bits per dimension. i_1 and i_2 denote subchannel i in subframe 1 and 2 respectively.

In general, (1) is not a convex optimization problem since to find optimal subchannel sets $\{B_j\}$ and $\{S_j\}$ is a combinatorial problem, whose complexity exponentially increases with N. However, for fixed subchannel sets, (1) becomes a convex power-allocation optimization problem. Although a subgradient method [13] can solve the convex optimization problem, its convergence requires a huge number of iterations and provides no insight into the subchannel-allocation algorithm, which is essential to the convexity and the performance of (1). Thus a new method is required.

The total power constraint couples the objective function over RSs, but the Lagrange dual-decomposition method decouples the overall problem into RS-by-RS problems. However, the dual method does not easily apply to the current form of (1). Hence, the following equivalent problem is considered:

\[
\text{maximize} \quad \sum_{i_1 \in B_0} r_1(i_1) + \sum_{i_2 \in S_1} r_2(i_2) \\
\text{subject to} \quad t_j \leq \sum_{i_1 \in B_j} r_1(i_1) \quad \forall j = 1, \ldots, N_r, \\
\sum_{i_1 \in B_j} P_1(i_1) + \sum_{i_2 \in S_j} P_2(i_2) \leq P_{tot}, \\
P_k(i_k) \geq 0 \quad \forall k \quad \text{and} \quad \forall i_k. \quad (2)
\]

The Lagrangian of the sum-rate maximization problem (2) over domain \mathcal{D} is

\[
\mathcal{L}(\{P_1(i_1)\}, \{P_2(i_2)\}, \{r_1(i_1)\}, \{r_2(i_2)\}, t_1, \ldots, t_N, \lambda_1, \lambda_2, \ldots, \lambda_{N_r}, \lambda'n) = \sum_{i_1 \in B_0} r_1(i_1) + t_1 + \cdots + t_N' \\
+ \lambda_1(\sum_{i_2 \in S_1} r_2(i_2) - t_1) + \lambda'_1(\sum_{i_1 \in B_1} r_1(i_1) - t_1) + \cdots \\
+ \lambda_{N_r}(\sum_{i_2 \in S_{N_r}} r_2(i_2) - t_{N_r}) + \lambda'_N(\sum_{i_1 \in B_{N_r}} r_1(i_1) - t_{N_r}) \\
+ \lambda'n(P_{tot} - \sum_{i_1} P_1(i_1) - \sum_{i_2} P_2(i_2)), \quad (3)
\]

where the domain \mathcal{D} is the set of all non-negative $\{P_1(i_1)\}$ and $\{P_2(i_2)\}$. Then, the Lagrange dual function is
Because (4) is a convex function in $P_1(i_1)$ and $P_2(i_2)$ for all i_1 and i_2, the optimal solution satisfies the following KKT conditions:

\[
\begin{align*}
P_1(i_1) &= [k_1 - \frac{1}{c_1(i_1)}]^+ \quad i_1 \in B_0, \\
P_1(i_1) &= [k_{j_2} - \frac{1}{c_1(i_1)}]^+ \quad i_1 \in B_j \quad \forall j, \\
P_2(i_2) &= [k_{j_3} - \frac{1}{c_2(i_2)}]^+ \quad i_2 \in S_j \quad \forall j, \\
k_1 &= k_{j_2} + k_{j_3} \quad i_1 \in B_j \quad i_2 \in S_j \quad \forall j, \\
\sum_{i_1 \in B_j} r_1(i_1) &= \sum_{i_2 \in S_j} r_2(i_2) \quad \forall j, \\
\sum_{i_1} P_1(i_1) + \sum_{i_2} P_2(i_2) &= P_{tot}, \\
P_k(i_k) &\geq 0 \quad \forall k \quad \text{and} \quad \forall i_k,
\end{align*}
\]

where k_1, $\{k_{j_2}\}$, and $\{k_{j_3}\}$ are constant water-levels. This type of solution is called a water-filling solution. The solution is unique because the minimized function is convex. In case of a conventional OFDMA downlink system, the resource-allocation algorithm for the sum-rate maximization problem assigns each subchannel to the user with the highest subchannel SNR, and the optimal power-allocation algorithm is a conventional water-filling algorithm [14]. However, the conventional water-filling algorithm does not solve this problem because the water-levels for all subchannel sets $\{B_j\}$ and $\{S_j\}$ are different, i.e. $k_{jk} \neq k_{j'k}$ for $j \neq j'$ and $\forall k$, and all water-levels are interrelated through the water-level k_1. Further, Fig. 3 illustrates that the system requires only the portion of the allocated power for relaying.

The modified water-filling algorithm solves (2). This algorithm employs an inner-outer bisection method. The outer bisection method initially determines the upper bound of k_1 by using the conventional water-filling algorithm on subchannels in B_0 with P_{tot}. Using the k_1, the inner bisection method adjusts $\{k_{j_2}\}$ and $\{k_{j_3}\}$ to satisfy (6)-(9) and determines $P_1(i_1)$ for $i_1 \in B_j$ and $P_2(i_2)$ for $i_2 \in S_j$. If this power distribution violates (10), the inner-outer bisection method readjusts the k_1, $\{k_{j_2}\}$, and $\{k_{j_3}\}$. This process is performed until the power distribution also satisfies (10) and the width of each water-level is small enough.

Algorithm 1 Inner-outer bisection method

Inner bisection method for each j

1. $t_{k2} := (u_{k2}(j) + l_{k2}(j))/2$.
2. $k_{j3} := t_{k1} - t_{k2}$.
3-1. $P_1(i_1) := (t_{k2} - \frac{1}{c_1(i_1)})^+$ \quad $\forall i_1 \in B_j$.
3-2. $P_2(i_2) := (k_{j3} - \frac{1}{c_2(i_2)})^+$ \quad $\forall i_2 \in S_j$.
4-1. $r_2 := \sum_{i_1 \in B_j} 0.5 \log_2(1 + P_1(i_1)c_1(i_1))$.
4-2. $r_3 := \sum_{i_2 \in S_j} 0.5 \log_2(1 + P_2(i_2)c_2(i_2))$.
5. $\text{error} := r_2 - r_3$.
6. if $\text{error} > 0$, $u_{k2}(j) := t_{k2}$;
else $l_{k2}(j) := t_{k2}$.

until $u_{k2}(j) - l_{k2}(j) < \epsilon_2$.

Outer bisection method

given k_1 and tolerance ϵ_1, let $u_{k1} := k_1$ and $l_{k1} = 0$.

repeat
1. $t_{k1} := (u_{k1} + l_{k1})/2$.
2. Do inner bisection method for all $j = \{1, ..., N_r\}$.
3. $P_1(i_1) := (t_{k1} - \frac{1}{c_1(i_1)})^+$ \quad $\forall i_1 \in B_0$.
4. $\text{error} := \sum_{j} P_1(i_1) + \sum_{j} P_2(i_2) - P_{tot}$.
5. if $\text{error} > 0$, $u_{k1} := t_{k1}$;
else $l_{k1} := t_{k1}$.

until $u_{k1} - l_{k1} < \epsilon_1$.

The convergence proof of the inner-outer bisection method simply uses the fact that the error functions required to adjust the water-levels in the bisection method are the increasing function of k_{j_2} and k_1 respectively and intersect 0. Details are not presented here due to page limits.

B. Heuristic Solutions with Total Power Constraints

This subsection suggests the heuristic power-allocation and sub-channel-allocation algorithms. Figure 4 shows the optimal power distribution obtained from the KKT conditions. P_1, P_2, and P_3 in Fig. 4 denote the total power of subchannels B_0, B_j, and S_j respectively and P_a in Fig. 4 is,

\[
P_a = \sum_{i_2 \in S_j} (P_1(i_1) + P_2(i_2)), \quad i_1 \in B_j.
\]
In general, \(P_1 + P_4 \) is not equal to \(P_{\text{tot}} \) because,

\[
P_1 + P_4 - P_{\text{tot}} = \sum_{i=1}^{N_r} \left(\sum_{i \in S_j} P_1(i_1) - \sum_{i \in B_j} P_1(i_1) \right).
\] (12)

However, (12) is negligible in most practical situations such as the channel between the BS and the RS is line-of-sight (LOS). In this case, (12) reduces to

\[
\sum_{j=1}^{N_r} |S_j|^* - N_j^* P_1(i_1),
\]

where \(|S_j|^*\) denotes the number of power allocated subchannels in \(S_j \) and is negligible because \(P_2 \) are small. This observation leads to the heuristic power-allocation algorithm. The algorithm assumes that \(P_1 + P_4 = P_{\text{tot}} \) instead of (8) and distributes \(P_{4j} \) to all subchannels \(B_j \) and \(S_j \) for all \(j \) where

\[
P_{4j} = \sum_{i \in S_j} (P_1(i_1) + P_2(i_2)).
\]

The algorithm is as follows: Step 1 generates MISSNRs for all \(\{ S_j \} \), i.e. \(1/c_1(i_1) + 1/c_2(i_2) \). Step 2 performs the conventional water-filling algorithm on subchannels in \(B_0 \) and modified subchannels in \(S_j \) with \(P_{\text{tot}} \) to determine \(k_1 \) and \(P_1(i_1) \) for \(i_1 \in B_0 \). Step 3 calculates \(P_{4j} \) from the water-filling result in step 2 and distributes it to subchannels in \(B_j \) and \(S_j \) with constraint (9) by using a bisection method. It also converges because the error function is the increasing function and intersects 0. The algorithm repeats the same procedure for all \(j \).

The single water level in (5) and (8) suggests the heuristic subchannel-allocation algorithm. The user with the highest subchannel SNR occupies subchannels in \(B_0 \) and the user with the lowest MISSNR occupies subchannels in \(S_j \). For choosing subchannels \(\{ B_j \} \) where \(j \neq 0 \), it is the optimal solution to assign the worst \(\sum_{j=1}^{N_j} N_j \) subchannels of the BS to \(\{ B_j \} \) where \(j \neq 0 \) because these are the least efficient subchannels in subframe 1.

C. Separate Power Constraints

This subsection investigates the power-allocation problem when the BS and RSs have their own power constraints. For preassigned subchannel sets, the power constraints in (1) become

\[
\sum_{i} P_1(i_1) \leq P_{\text{Base}},
\]

\[
\sum_{i \in S_j} P_2(i_2) \leq P_{RS_j}, \quad \forall j.
\] (13)

where \(P_{\text{Base}} \) and \(P_{RS_j} \) are the power constraints of the BS and RS \(j \). Since all \(\{ S_j \} \) are orthogonal (no interference), each RS independently manages its own power. In case of an optimal solution, the elements of the minimum function in (1) should be equal. Then,

\[
\min \left(\sum_{i \in B_j} r_1(i_1), \sum_{i \in S_j} r_2(i_2) \right) = \min \left(\sum_{i \in B_j} r_1(i_1), c_j^* \right)
\] (14)

where \(c_j^* \) is the solution of the following problem,

maximize \(\sum_{i \in S_j} r_2(i_2) \)
subject to \(\sum_{i \in S_j} P_2(i_2) \leq P_{RS_j}, \quad P_2(i_2) \geq 0 \quad \forall i \in S_j. \)

Independent conventional water-filling algorithms can determine each \(c_j^* \). From the above arguments and with fixed \(\{ B_j \} \) and \(\{ S_j \} \), the optimization problem becomes

maximize \(\sum_{i \in B_0} r_1(i_1) + f_1 + \cdots + f_{N_r} \)
subject to \(\sum_{i \in B_0} P_1(i_1) \leq P_{\text{base}}, \quad P_1(i_1) \geq 0 \quad \forall i_1, \)

where \(f_j \) denotes the right side of (14). This is an easy convex problem because only \(\{ P_1(i_1) \} \) are variables in (16). After solving (16), a water-filling algorithm determines \(\{ P_2(i_2) \} \) for each RS through margin maximization.

IV. Simulation Results

This section provides simulation results for the proposed resource-allocation algorithms in OFDMA multi-hop relaying downlink systems. The radius of a cell where 1000 users are uniformly distributed is 20 km and there are 4 RSs in the cell. For each given location of users, shadowing is assumed log-normal and spatially uncorrelated with a standard deviation of 10 dB. The model for propagation loss used in the simulations is the large city and metropolitan area COST 231-Hata model [15]. The channel between the BS and RSs is line-of-sight. The height of the BS is set to 50 m, the height of the RS...
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.