A 5.2 GHz Microprocessor Chip for the IBM zEnterprise™ System

J. Warnock¹, Y. Chan², W. Huott², S. Carey², M. Fee², H. Wen³, M.J. Saccamango², F. Malgioglio², P. Meaney², D. Plass², Y.-H. Chan², M. Mayo², G. Mayer⁴, L. Sigal⁵, D. Rude², R. Averill², M. Wood², T. Strach⁴, H. Smith², B. Curran², E. Schwarz², L. Eisen³, D. Malone², S. Weitzel³, P.-K. Mak², T. McPherson², C. Webb²

IBM Systems and Technology Group:
1 - Yorktown Heights, NY
2 - Poughkeepsie, NY
3 – Austin, TX
4 - Boeblingen, Germany
5 IBM Research, Yorktown Heights, NY
Outline

• Introduction

• Technology and chip overview
 • RAS
 • Clock grids

• Core circuit design

• L3 design

• Power and noise considerations

• Chip frequency tuning

• Conclusions
Introduction: zEnterprise 196 (z196)

- Single-thread performance is critical for system z applications
- Starting point for z196: high-frequency z10 design
 - Z10 cores run at 4.4 GHz, 65nm technology
 - Move to 45nm technology for z196
 - Maintain low-FO4 pipeline for maximum frequency boost
 - Add out-of-order execution: improved IPC
 - Design improvements to reduce power dissipation
 - Improvements to 4-level cache hierarchy
- Result: Achieved 5.2 GHz operating frequency
 - Same power envelope as previous system
 - Up to 40% improvement seen on legacy workloads
Outline

• Introduction

• Technology and chip overview
 • RAS
 • Clock grids

• Core circuit design

• L3 design

• Power and noise considerations

• Chip frequency tuning

• Conclusions
Chip Technology & Design Overview

- High-performance 45nm SOI technology
- Embedded DRAM
 - Deep trench decoupling capacitors available
- Four logic threshold voltage options
 - Low V_T option for ultra-critical paths
- 2 Extra high-performance wiring planes added
- 4 cores, 1.5MB L2/core, 24MB shared L3
- Two co-processors, DDR3 RAIM controller, I/O bus controller (GX)
- 1.4B Transistors, 512mm2 chip area
Chip RAS Features

- Base technology: SOI provides SER advantage
- Component-level hardening against SER
 - Stacked devices in most clocked storage elements
- Extensive circuit-level techniques used
 - Parity, residues, local duplication of function
 - Checking overhead estimated at 20-25% for digital logic
- On-chip caches: ECC, parity
- Memory: RAIM ECC, Bus CRC, Tiered Recovery
- Recovery Unit (RU)
 - Maintains checkpointed states
 - RU restarts processor from checkpointed state when error detected
Chip Clock Grids

- High frequency grids over each core
 - “1:1” clock period, 5.2 GHz
 - Grid extends over L2 control region (circuits run at 2:1 gear ratio)
- Half-speed grid over L2 & nest: “2:1 grid”: 2.6 GHz
 - Most of nest is geared down by a factor of 2 = 4:1
- Synchronous interfaces from core to L2
 - 1:1 -> 2:1, on separate grids
- Synchronous interfaces from L2 to L3
 - 2:1 -> 4:1, but on the same grid
- Separate asynchronous grids over I/O region
 - Some overlap of synchronous and asynchronous grids
L3 cache (eDRAM)
L2 cache (SRAM)
Core 0
L3 cache (eDRAM)
L2 cache (SRAM)
Co-Processor
Main Memory IOs
GX IO Interface
1:1 grid
(Circuits at 2:1)

Core 1
L2 cache (SRAM)
L3 Controller
SC IO Interface
Main Memory IOs
GX IO Interface
1:1 grid
(Circuits at 2:1)

Core 2
L3 controller
L3 Data Stack
L2 cache (SRAM)
Co-Processor
GX Logic
SC IO Interface
Main Memory IOs
GX IO Interface
2:1 grid
(Circuits at 4:1)

Core 3
L3 Data Stack
L3 cache (eDRAM)
L2 cache (SRAM)
Co-Processor
GX Logic
SC IO Interface
Main Memory IOs
GX IO Interface
2:1 grid
(Circuits at 4:1)
L3 cache (eDRAM)
L2 cache (SRAM)
L3 Data Stack
L3 Controller
L2 cache (SRAM)
L3 Controller
L2 cache (SRAM)
L3 Data Stack
Core 0
Core 1
Core 2
Core 3
Main Memory IOs
GX IO Interface
SC IO Interface
Co-Processor
Memory Controller
GX Logic
1:1 grid
1:1 grid
(Circuits at 2:1)
2:1 grid
2:1 grid
(Circuits at 4:1)
Asynch grids
Outline

• Introduction
• Technology and chip overview
 • RAS
 • Clock grids
 • **Core circuit design**
• L3 design
• Power and noise considerations
• Chip frequency tuning
• Conclusions
Processor Core Circuit Design

- Custom dataflow implementation
 - Static CMOS design with parameterized gates
 - Automated device width, VT tuning (pre- and post-layout)
 - Aggressive use of pulsed local clocks for power savings
 - Widespread fine-grained local clock gating
- Custom high-speed memory elements
 - 64KB I cache, 128 KB D cache
 - Dynamic circuits for critical access paths
- Synthesized control logic
 - Structured placement of clocked storage elements
 - Custom-like techniques for robust pulsed-clock routing
Custom Design Methodology

- Design Partition ("macro") Custom Schematic
- Placed Design
- Wire RC Estimation
- Estimated R, C
- Tuner: area, power, timing optimization
- Tuner: Layout-aware power, timing optimization
- Timing Constraints, Requirements
- Routing
- Parasitic extraction
- Placement info, special wires, etc.
- Macro Layout

- Tuner: area, power, timing optimization
- Routing
- Parasitic extraction
- Placement info, special wires, etc.
- Macro Layout

J. Warnock ISSCC 2011
Single-cycle FXU Execution Loop
(Previous Generation Design)

Dynamic MUX-latch
Single-cycle FXU Execution Loop

(Current Design)

Operands

Controls

Scan clocks

Static Logic +
Pulsed-clock latch

out_b Output to adder,
rotate, etc.

Scan_in

operands

Operand select & control

Scan clocks

l2clk

dclk

out_b

l2

J. Warnock ISSCC 2011
L1 D-cache Critical 4-cycle Access Loop

Low V_T

LSU pipe0

LSU pipe1

Cycle boundary

Array boundary

Dynamic Logic

J. Warnock ISSCC 2011 18
Outline

• Introduction

• Technology and chip overview
 • RAS
 • Clock grids

• Core circuit design
 • L3 design
 • Power and noise considerations
 • Chip frequency tuning

• Conclusions
L3 Design

- 24MB on-chip shared L3 cache
 - Uses high-performance DRAM macros
 - 1.54ns access time for individual DRAM macro
 - 196 MB 4th level cache (L4) on separate SC chip
- Equal L3 access time from any of the 4 cores
 - 45 core processor cycles for L3 hit
 - Near/far data clocked on alternate 2:1 cycles
 - Allows sharing of circuitry for near/far data
- Lower level caches are store-through
 - Drives significant store activity in the L3
 - => highly interleaved design
L3 Timing Diagram

C0

C1

C2

C3

C4

C5

C6

C7

L3 Dir

ECC

Reach

L3 cache

ECC

Core return

ECC

Core return

0.77 ns

2:1 Mux

C4.5/C5 Fetch

ECC 64/72

C5/C5.5 Fetch

L3 data stack Fetch return mux

C5.5/C6 Fetch

C6/C6.5 Fetch

ECC circuitry shared by time slicing

Near/Far DW Mux

Clocked in-Phase

Clocked out-of-Phase

C2

256x8x144

256x8x144

C3

C4

C3.5

C4.5

12bits

12bits

J. Warnock ISSCC 2011
Outline

• Introduction
• Technology and chip overview
 • RAS
 • Clock grids
• Core circuit design
• L3 design
• Power and noise considerations
 • Chip frequency tuning
• Conclusions
Chip Power Considerations

• Fixed chip power budget
 • Roughly same budget as last-generation design. But:
 • Higher frequency
 • Larger chip area
 • Higher capacitance density (from technology scaling)
 • Net: Design team faced significant power issues

• Focused effort on power reduction
 • Keep about same cycle time (in FO4) as previous design
 • But improve power efficiency to enable higher frequency
 • Net: power efficiency improved by ~ 25%
 • Translation: ~ 8-10% improved frequency at const power
Chip Power Methodology

- Design Partition ("macro")
- Power Analysis
- Input patterns, constraints, conditions, etc.

- Power vs input switching factor
- Power vs clock gating percentage
- Leakage Power

High-level logic simulation

Macro-level switching factors, clock gating

Chip Power Analysis

Macro Power Model
Chip Power Breakdown

- Logic outside of cores: 6%
- Clock grids: 19%
- L3 cache: 11%
- L2 cache: 10%
- Chip IO: 7%
- 4 cores: 47%
DC Leakage Breakdown by Device Type

- HVT: 45.0%
- SVT: 6.4%
- edram: 7.4%
- sram cells: 8.8%
- LVT: 0.4%
- RVT: 32.0%

DC leakage = 30% of total power
Power Supply Noise Considerations

- Significant work on power efficiency, clock gating
 - Increases gap from minimum to maximum power states
- Sudden switching current transients, but multi-cycle response time through package
 - Need good amount of on-chip decoupling capacitance
- > 10 μF capacitance added on base power supply
 - Use DRAM trench for dense decoupling cap
- Decoupling also needed on array supplies
 - SRAM, DRAM
- Early hardware: noise on DRAM supply from bursts of high refresh/access activity
DRAM Supply Voltage Noise

Early hardware, 265nF cap on array supplies ~313mV peak-to-peak

Later hardware, 1.74uF cap on array supplies ~136mV peak-to-peak
Outline

• Introduction
• Technology and chip overview
 • RAS
 • Clock grids
• Core circuit design
• L3 design
• Power and noise considerations
 • Chip frequency tuning
• Conclusions
Hardware Frequency Tuning

- Local (macro-level) controls with fine granularity
 - Local clock pulse width (narrow, nom, wide)
 - Local clock pulse timing (nom, late)
 - Master-clock falling edge delay (MSFF designs)
 - Local clock gating override
 - Array and register files: pulse width & various timing settings
- Global controls: clock duty cycle adjustments
- Other controls for debug and critical path isolation
- Control settings optimized for max overall f_{max}
Chip V_{min} vs Process Speed

Fixed frequency: 5.4 GHz

V$_{\text{min}}$ with default settings

Optimized Control Settings (data average)
Outline

• Introduction
• Technology and chip overview
 • RAS
 • Clock grids
• Core circuit design
• L3 design
• Power and noise considerations
• Chip frequency tuning
• Conclusions
z196 Design: Conclusion

• Design team able to maintain high-frequency pipeline of z10 while adding out-of-order execution

• Large on-chip DRAM L3 for additional performance
 • Deep trench decoupling capacitors provide additional frequency leverage

• Technology features + design for power efficiency =>18% freq boost compared to previous generation

• Net: - 5.2 GHz final product frequency
 - up to 40% perf improvement (single thread legacy workload metric)
Acknowledgements

The authors would like to acknowledge the many contributions from the rest of the System z team, the IBM EDA team, and the IBM Technology Development and Manufacturing teams.