Isomorphisms of some graph coverings

Iwao Sato
The Tsuruoka Technical College, Yamagata, Japan

Received 8 February 1991
Revised 5 May 1992

Abstract

Let G be a connected graph and Γ a group of automorphisms of G. We enumerate the number of Γ-isomorphism classes of derived graph coverings of G with voltages in a finite field of prime order $p (> 2)$.

1. Introduction

All graphs appearing here are simple. Let G be a graph, p prime, and $F = \mathbb{GF}(p)$. Let $A(G)$ be the arc set of the corresponding symmetric digraph to G. An ordinary voltage assignment α on G in F is a function from $A(G)$ into F such that $\alpha(y, x) = -\alpha(x, y)$ for each $(x, y) \in A(G)$. The pair (G, α) is called an ordinary voltage graph of G with voltages in F. For such an ordinary voltage graph (G, α), the derived graph G^α is defined as follows: $V(G^\alpha) = V(G) \times F$ and $((x, i), (y, j)) \in A(G^\alpha)$ if and only if $(x, y) \in A(G)$ and $j = \alpha(x, y) + i$. The natural projection $p : G^\alpha \to G$ is the function from $V(G^\alpha)$ onto $V(G)$ which erases the second coordinate. Then p is a (topological) covering projection (see [3]).

Any voltage $i \in F$ determines a permutation $\rho(i)$ of the symmetric group S_F on F which is given by $\rho(i)(j) = i + j$ for $j \in F$. Thus each ordinary voltage graph of G with voltages in F can be viewed as a permutation voltage graph of G with voltages in S_F (see [4]).

Let α and β be two ordinary voltage assignments on G in F, and let Γ be a subgroup of the automorphism group $\text{Aut} G$ of G, denoted $\Gamma \leq \text{Aut} G$. Two natural projections $p_\alpha : G^\alpha \to G$ and $p_\beta : G^\beta \to G$ are called Γ-isomorphic, denoted $G^\alpha \cong \Gamma G^\beta$, if there exist an isomorphism $\psi : G^\alpha \to G^\beta$ and a $g \in \Gamma$ such that $p_\beta \psi = gp_\alpha$.

A general theory of graph coverings is developed in [S]. Furthermore, double covers of graphs were dealt with in [6, 11].

Correspondence to: I. Sato, Department of Mechanical Engineering, The Tsuruoka Technical College, Yamagata, 997, Japan.

0012-365X/94/$07.00 © 1994--Elsevier Science B.V. All rights reserved
SSDI 0012-365X(92)00494-7
Counting formula of graph coverings are only known in the following four cases:
\(r \)-isomorphism classes of derived graph coverings of a graph \(G \) with voltages in \(\mathbb{GF}(2) \) [6]; \(I \)-isomorphism classes of derived graph coverings of \(G \) with voltages in \(S_r \) [7, 9]; isomorphism classes of concrete derived graph coverings of \(G \) with voltages in \(S_r \) [8]; strong isomorphism classes of derived graph coverings of \(G \) with voltages in \(\mathbb{GF}(p^n) \) [2]. Here \(r \leq \text{Aut} \ G \), and \(I \) is the trivial subgroup of \(\text{Aut} \ G \). The first result for \(r = \text{Aut} \ G \) agrees with [12, Theorem 2.21]. In Section 2, we enumerate the number of \(I \)-isomorphism classes of derived graph coverings of a graph with voltages in \(\mathbb{GF}(p) \). In Section 3, we give an enumeration of the \(r \)-isomorphism classes of derived graph coverings of a connected graph with voltages in \(\mathbb{GF}(p) \) \((p > 2) \).

2. \(I \)-isomorphism classes

Let \(G \) be a graph, \(T \) a spanning forest of \(G \), \(p \) prime, and \(F = \mathbb{GF}(p) \). Let \(H_1, \ldots, H_c \) be the components of \(G \), \(x_i \in V(H_i) \) for \(i = 1, \ldots, c \), and \(X = (x_1, \ldots, x_c) \). Let \(\alpha \) be any ordinary voltage assignment on \(G \) in \(F \) and \(W \) any walk in \(G \). The net voltage of \(W \), denoted \(\alpha(W) \), is the sum of the voltages of the edges of \(W \). Then the \((T, X)\)-voltage \(\alpha_T \) of \(\alpha \) is defined as follows:

\[\alpha_T(u, v) = \alpha(P_u) + \alpha(u, v) - \alpha(P_v) \]

for each \((u, v) \in A(G)\), where \(P_u \) and \(P_v \) denote the unique walks from \(x_i \) to \(u \) and \(v \) in \(T \cap H_i \), respectively, if \(H_i \) is a component of \(G \) containing \((u, v)\).

Theorem 2.1. Let \(G \) be a graph, \(T \) a spanning forest of \(G \), \(p \) prime, and \(F = \mathbb{GF}(p) \). Let \(\alpha, \beta \) be two ordinary voltage assignments on \(G \) in \(F \). Then \(G^\alpha \cong I G^\beta \) if and only if, for each component \(H \) of \(G \), there is an element \(\lambda_H \) of \(F^* = F \setminus \{0\} \) such that \(\beta_T = \lambda_H \alpha_T \) on \(H \).

Proof. At first, suppose that \(G^\alpha \cong I G^\beta \). By [7, Theorem 7], we have \(G^\alpha \cong I G^{\alpha_T} \) and \(G^\beta \cong I G^{\beta_T} \), i.e. \(G^{\alpha_T} \cong I G^{\beta_T} \). However, two ordinary voltage graphs \((G, \alpha_T)\) and \((G, \beta_T)\) can be viewed as permutation voltage graphs of \(G \) with voltages in \(S_F \). Thus, by [7, Theorem 6], there exists a family \(\Pi = (\pi_i)_{i \in V(G)} \) of permutations in \(S_F \) such that

\[\rho(\beta_T(x, y)) = \pi_x^{-1} \rho(\alpha_T(x, y)) \pi_x \]

for each \((x, y) \in A(G)\), where \(\rho(i) (i \in F) \) is an element of \(S_F \) such that \(\rho(i)(j) = i + j \), \(j \in F \) and the multiplication of permutations is carried out from right to left.

Let \(H \) be any component of \(G \). Then \(\alpha_T(u, v) = \beta_T(u, v) = 0 \) for each \((u, v) \in A(H) \cap A(T)\). Thus \(\pi_x = \pi_x \) for any \(x \neq y \in V(H) \). That is, we have \(\rho(\beta_T(u, v)) = \pi_x^{-1} \rho(\alpha_T(u, v)) \pi_x \) for each \((u, v) \in A(H)\), where \(x \in V(H) \). If \(\alpha_T = 0 \) on \(H \), then \(\beta_T = 0 \) on \(H \), i.e. \(\lambda_H \) is arbitrarily element of \(F^* \).

Now, suppose that \(\alpha_T \neq 0 \) and \(\beta_T \neq 0 \) on \(H \). Let \((u, v)\) be an element of \(A(H) \setminus A(T) \) such that \(\alpha_T(u, v) = l \neq 0 \) and \(\beta_T(u, v) = k \neq 0 \). Set \(\pi_x^{-1}(i) = \sigma_i \), \(i \in F \). Then we have \(\sigma_i = jk + \sigma_0 \) for \(j \in F \).
If \((z, w) \neq (u, v)\) is another element of \(A(H) \setminus A(T)\) such that \(\alpha_T(z, w) \neq 0\) and \(\beta_T(z, w) \neq 0\). Set \(\alpha_T(z, w) = r\) and \(\beta_T(z, w) = s\). Then \(\sigma_j = js + \sigma_0\) for \(j \in F\). Thus we obtain \(\sigma_0 = -kr + \sigma_0\). Set \(\lambda = kl^{-1} = sr^{-1}\). Then \(k = 1\lambda\) and \(s = 1\lambda\). It follows that \(\beta_T = \lambda \alpha_T\) on \(H\).

If there is not such element \((z, w)\), then the result is trivial.

By [7, Theorem 6] and the fact that \(G^x \cong 1 G^x\), the converse follows. \(\square\)

As a generalization of [6, Theorem 2.2], we obtain the following result.

Corollary 2.2. Let \(G\) be a graph, \(p\) prime, and \(F = GF(p)\). Then the number of \(\Gamma\)-isomorphism classes of derived graph coverings of \(G\) with voltages in \(F\) is

\[
\prod_H \left(\frac{(p^{m(H)} - \pi(H) + 1)}{(p-1) + 1} \right).
\]

where \(H\) ranges over all components of \(G\), and \(m(H) = |E(H)|\), and \(n(H) = |V(H)|\).

3. \(\Gamma\)-isomorphism classes

Let \(\mathcal{F}_r\) denote the set of permutation voltage assignments on \(G\) in \(S_r\), and \(\Gamma \triangleleft \text{Aut } G\). Then \(\Gamma\) acts on \(\mathcal{F}_r\) as follows: \(\alpha^g(u, v) = \alpha(g(u), g(v))\) for each \((u, v) \in A(G)\), where \(\alpha \in \mathcal{F}_r\) and \(g \in \Gamma\).

Lemma 3.1. Let \(\alpha, \beta \in \mathcal{F}_r\). Then \(G^\alpha \cong \Gamma G^\beta\) if and only if there is a \(g \in \Gamma\) such that \(G^\alpha \cong \Gamma G^\beta\).

Proof. By [7, Theorem 6], \(G^\alpha \cong \Gamma G^\beta\) if and only if there are a \(\Pi = (\pi_x)_{x \in V(G)} \in S_r^{\Gamma}(G)\) and a \(g \in \Gamma\) such that \(\alpha(x, y) = \pi_x^{-1} \beta(g(x), g(y)) \pi_x\) for each \((x, y) \in A(G)\), i.e. if and only if there is a \(g \in \Gamma\) such that \(G^\alpha \cong \Gamma G^\beta\). \(\square\)

Let \(G\) be a connected graph, \(p > 2\) prime, and \(F = GF(p)\). Let \(C^1\) be the set of ordinary voltage assignments on \(G\) in \(F\) and \(C^0\) the set of functions from \(V(G)\) into \(F\). The coboundary operator \(\delta: C^0 \rightarrow C^1\) is the linear operator defined by \((\delta_s)(x, y) = s(x) - s(y)\) for \(s \in C^0\) and \((x, y) \in A(G)\). For each \(\alpha \in C^1\), let \([\alpha]\) be the element of \(C^1/Im \delta\) which contains \(\alpha\).

Lemma 3.2. Let \(G\) be a connected graph, \(p > 2\) prime, \(F = GF(p)\), and \(\alpha \in C^1\). Then the following four conditions are equivalent:

1. \(\alpha_T = 0\) for a spanning tree \(T\) of \(G\),
2. \(\alpha_T = 0\) for any spanning tree \(T\) of \(G\),
3. \(\alpha(C) = 0\) for all cycle \(C\) in \(G\),
4. \(\alpha \in Im \delta\).
Proof. (1)⇒(2): By Theorem 2.1, we have $G^* \cong G^0$, where $o(x, y) = 0$ for any $(x, y) \in A(G)$. Furthermore, by Theorem 2.1, the result follows.

(2)⇒(3): Let C be any cycle of G and $e \in E(C)$. Then there exists a spanning tree T of G such that $E(C) \setminus E(T) = \{e\}$. By (2), we have $\alpha(C) = 0$.

(3)⇒(1), (4)⇒(3): Clear.

(3)⇒(4): Let T be a spanning tree of G. Then, by a similar argument to the proof of \cite[(2.1)]{1}, there is a unique element β of $\text{Im} \delta$ such that $\beta(x, y) = \alpha(x, y)$ for all $(x, y) \in A(T)$.

Let (u, v) be any arc of $A(G) \setminus A(T)$, and let C be a unique cycle of G such that $E(C) \setminus E(T) = \{u\}$. Since $\alpha(C) = \beta(C) = 0$, we have $\alpha(u, v) = \beta(u, v)$, i.e. $\alpha = \beta$. □

Let G be a connected graph, $p > 2$ prime, $F = GF(p)$, and $\Gamma \leq \text{Aut} G$. Let $\alpha, \beta \in C^1$. Then, by Theorem 2.1 and Lemmata 3.1 and 3.2, $G^* \cong \Gamma G^0$ if and only if $\beta = \lambda \alpha + \delta s$ for some $g \in \Gamma$, some $\lambda \in F^*$ and some $s \in C^0$. Let the group $\Gamma \times F^*$ act on $C^1/\text{Im} \delta$ as follows:

$$[\alpha]^{(g, \lambda)} = \lambda \alpha \delta^s \in \{\lambda \alpha \delta^s | s \in C^0\},$$

where $\alpha \in C^1, \lambda \in F^*$ and $g \in \Gamma$. Thus, the number of Γ-isomorphism classes of derived graph coverings of G with voltages in F is equal to that of $\Gamma \times F^*$-orbits on $C^1/\text{Im} \delta$.

By Burnside's Lemma, that number is equal to

$$\frac{1}{|\Gamma|(p-1)} \sum_{(g, \lambda) \in \Gamma \times F^*} |(C^1/\text{Im} \delta)^{(g, \lambda)}|,$$

where $U^{(g, \lambda)}$ is the set consisting of the elements of U fixed by (g, λ).

Let $g \in \Gamma, \lambda \in F^*$ and $\text{ord}(\lambda) = m$ the order of λ. A (g)-orbit σ of length k on $E(G)$ is called diagonal if $\sigma = (g) \{x, g^k(x)\}$ for some $x \in V(G)$. The vertex orbit $(g)x$ and the arc orbit $(g') = (g)(x, g^k(x))$ are also called diagonal. A diagonal arc orbit (g') of length $2k$ (the corresponding edge orbit of length k and the corresponding vertex orbit of length $2k$) is called type-1 if $\lambda^k = -1$ (or $m = 2k$), and type-2 otherwise.

For $g \in \Gamma$, let $G(g)$ be a simple graph whose vertices are the (g)-orbits on $V(G)$, with two vertices adjacent in $G(g)$ if and only if some two of their representatives are adjacent in G. Let $\lambda \in F^*$ and $\text{ord}(\lambda) = m$. A (g)-orbit σ on $V(G), E(G)$ or $A(G)$ is called m-divisible if $|\sigma| \equiv 0 \pmod{m}$. An m-divisible (g)-orbit σ on $V(G)$ is called strongly m-divisible if σ satisfies the following condition: If $\Omega = (g)(x, y)$ is any not diagonal (g)-orbit on $A(G)$, and $y = g^j(x), x, y \in \sigma$, then $j \equiv 0 \pmod{m}$.

Let $G_2(g)$ be the subgraph of $G(g)$ induced by the set of m-divisible (g)-orbits on $V(G)$. The kth p-level of $G_2(g)$ is the induced subgraph of $G_2(g)$ on the vertices ω such that $\theta_p(|\omega|) = p^k$, where $\theta_p(i)$ is the largest power of p dividing i. A p-level component of $G_2(g)$ is a connected component of some p-level of $G_2(g)$.

A p-level component H is called defective if each vertex σ of H is strongly m-divisible, not type-1 diagonal, and satisfies $\theta_p(|\sigma|) > \theta_p(|\omega|)$ whenever $\omega \not\in V(H)$ and $\omega \in E(G(g))$. Otherwise H is called favorable.
Theorem 3.3. Let G be a connected graph, $p (> 2)$ prime, $F = GF(p)$ and $\Gamma \leq Aut G$. For $g \in \Gamma$, let $\nu(g)$ and $\pi(g)$ be the number of $\langle g \rangle$-orbits on $E(G)$, $V(G)$, respectively. For $g \in \Gamma$ and $\lambda \in F^\times$, let $v_0(g, \lambda)$, $\mu(g, \lambda)$ and $d(g, \lambda)$ be the number of not m-divisible $\langle g \rangle$-orbits on $V(G)$, type-2 diagonal $\langle g \rangle$-orbits on $E(G)$ and defective p-level components in G, respectively, where $m = ord(\lambda)$. Furthermore, let $x(g, \lambda)$ be the number of not m-divisible $\langle g \rangle$-orbits on $E(G)$ which are not diagonal. Then the number of Γ-isomorphism classes of derived graph coverings of G with voltages in F is

$$
\frac{1}{|\Gamma|(|p - 1|)} \sum_{g \in \Gamma} \sum_{\lambda \in F^\times} \frac{\nu(g) - \pi(g) - \nu_0(g, \lambda) - \mu(g, \lambda) - d(g, \lambda)}{\nu_0(g, \lambda) \pi(g) - \mu(g, \lambda) d(g, \lambda)}.
$$

The proof of Theorem 3.3 uses an analogue of Hofmeister's method [6]. At first, we consider the following exact sequence:

$$
0 \rightarrow \ker \delta \xrightarrow{\delta} C^0 \xrightarrow{\delta} C^1 \xrightarrow{\delta} C^1/Im \delta \rightarrow 0,
$$

where δ^0 is the canonical monomorphism, and δ^1 is the canonical epimorphism. For $(g, \lambda) \in \Gamma \times F^\times$, two endomorphisms $\mu_{\lambda}: C^1 \rightarrow C^1$ and $\nu_{\lambda}: C^1/Im \delta \rightarrow C^1/Im \delta$ are defined as follows: $\mu_{\lambda}(x) = \lambda x - x$ and $\nu_{\lambda}([x]) = [\lambda x - x]$, where $x \in C^1$. Then, note that $\nu_{\lambda} \delta^1 = \delta^1 \mu_{\lambda}$, and $\ker \nu_{\lambda} = (C^1/Im \delta)(\lambda)$.

Now, let $C_{g, \lambda}^0 = \delta^{-1}(Im \mu_{\lambda})$ and $C_{g, \lambda}^1 = \mu_{\lambda}^{-1}(Im \delta)$.

Let $g \in \Gamma$, $\lambda \in F^\times$. For any arc (x, y) of $A(G)$, let $l(x, y)$ be defined by

$$
l(x, y) = \begin{cases}
\frac{t}{2} & \text{if the arc orbit } \langle g \rangle (x, y) \text{ is type-1 diagonal,} \\
[t, m] & \text{otherwise,}
\end{cases}
$$

where $t = |\langle g \rangle (x, y)|$, $m = ord(\lambda)$, and $[a, b]$ denotes the least common multiple of a and b.

Lemma 3.4. Let $g \in \Gamma$, $\lambda \in F^\times$, $s \in C^0$. Then $s \in C_{g, \lambda}^0$ if and only if, for each $(x, y) \in A(G)$,

$$
\sum_{i=0}^{l(x, y) - 1} \lambda^i s^g(x) = \sum_{i=0}^{l(x, y) - 1} \lambda^i s^g(y).
$$

Proof. Set $m = ord(\lambda)$, $t = |\langle g \rangle (x, y)|$, $c = [t, m]$ and $l = l(x, y)$.

Suppose that $s \in C_{g, \lambda}^0$. Then there is a $x \in C^1$ such that $\lambda x = \alpha = \delta s$. Thus

$$
\lambda^i x^g = \alpha = \delta \sum_{i=1}^{c-1} \lambda^i s^g + \lambda^c s^g.
$$

For each $(x, y) \in A(G)$, we have

$$
\sum_{i=0}^{c-1} \lambda^i s^g(y) = \sum_{i=0}^{c-1} \lambda^i s^g(x) = \lambda^c \alpha (x, y).
$$
If \(\langle g \rangle (x, y) \) is type-1 diagonal, then we have
\[
\sum_{i=0}^{t-1} \lambda^i s^\theta(x) - \sum_{i=0}^{t-1} \lambda^i s^\theta(y) = \lambda^k \alpha^\theta(x, y) - \alpha(x, y)
\]
\[
= -\alpha(y, x) - \alpha(x, y) = 0, \quad \text{where } t = 2k.
\]

Conversely, suppose that \(s \) satisfies \((*)\) for each \((x, y) \in \mathbb{A}(G)\). Let \(\Omega \) be any \(\langle g \rangle \)-orbit on \(\mathbb{A}(G) \), \(|\Omega| = t\), and \((x, y) \in \Omega\). Then, let
\[
\alpha(x, y) = \begin{cases}
(\lambda^t - 1)^{-1} \sum_{i=0}^{t-1} (\lambda^i s^\theta(x) - \lambda^i s^\theta(y)) & \text{if } \Omega \text{ is not diagonal and } t \not| m, \\
-(\lambda^k + 1)^{-1} \sum_{i=0}^{k-1} (\lambda^i s^\theta(x) - \lambda^i s^\theta(y)) & \text{if } \Omega \text{ is type-2 diagonal}, \\
0 & \text{otherwise},
\end{cases}
\]
where \(t = 2k \) in the case that \(\Omega \) is diagonal. Furthermore, let
\[
\lambda^i \alpha^\theta(x, y) = \alpha(x, y) + \sum_{j=0}^{i-1} (\lambda^j s^\theta(x) - \lambda^j s^\theta(y)) \quad \text{for } i \geq 1.
\]

Then we have
\[
\lambda^r \alpha^\theta + i = \alpha^\theta(x, y) + \sum_{j=0}^{r-1} (\lambda^j s^\theta(g^i(x)) - \lambda^j s^\theta(g^i(y))) \quad \text{for } r, i \geq 1.
\]

If \(\Omega \) is not diagonal, then we define \(\alpha(v, u) = -\alpha(u, v) \) for \((u, v) \in \Omega\). If \(\Omega \) is type-1 diagonal, then we have
\[
\lambda^{i+k} \alpha^\theta(y, x) = \lambda^i \alpha^\theta(x, y) + \lambda^k \sum_{j=0}^{k-1} (\lambda^j s^\theta(g^i(x)) - \lambda^j s^\theta(g^i(y))) = \lambda^{i+k} \alpha^\theta(x, y),
\]
i.e.
\[
\alpha^\theta(y, x) = -\alpha^\theta(x, y) \quad \text{for } i \geq 1.
\]

In the case that \(\Omega \) is type-2 diagonal, we have \(\alpha(y, x) = -\alpha(x, y) \) by the definition of \(\alpha(x, y) \). Thus, we have
\[
\lambda^{i+k} \alpha^\theta(y, x) = \lambda^k \{ \lambda^i \alpha^\theta(x, y) \}
\]
\[
= \lambda^k \{ \alpha^\theta(x, y) + \sum_{j=0}^{i-1} (\lambda^j s^\theta(g^k(x)) - \lambda^j s^\theta(g^k(y))) \}
\]
\[
= -\lambda^k \{ \alpha(x, y) + \sum_{j=0}^{i-1} (\lambda^j s^\theta(x) - \lambda^j s^\theta(y)) \} = -\lambda^{i+k} \alpha^\theta(x, y),
\]
i.e. \(\alpha^\theta(y, x) = -\alpha^\theta(x, y) \) \((i \geq 1)\).

Therefore, we obtain an \(\alpha \in C^1 \) such that \(\lambda \alpha^\theta - \alpha = \delta s \), i.e. \(s \in C^0_{\theta, \lambda} \). \(\Box \)
Lemma 3.5. For \(g \in \Gamma \) and \(\lambda \in \mathbb{F}^* \),
\[
|C_{g, \lambda}^0| = n^{\gamma(g)} + v_3(g, \lambda) + 2^{\gamma(g, \lambda)}, \text{ where } n = |V(G)|.
\]

Proof. We enumerate the number of \(s \in C_{g, \lambda}^0 \) which satisfy (*') for each \((x, y) \in A(G)\).

Let \((x, y) \in A(G)\), \(\Omega = \langle g \rangle (x, y) \) the arc \(\langle g \rangle \)-orbit containing \((x, y)\), \(|\Omega| = t \), \(\text{ord}(\lambda) = m \) and \(l = l(x, y) \).

Case 1: \(x, y \) are in the same \(\langle g \rangle \)-orbit on \(V(G) \), and \(\sigma \) is not diagonal. Then \(\Omega \) is not diagonal, \(|\sigma| = t \) and \(l = [m, t] \). Let \(y - g^j(x) (1 < j < t) \) and \(m' = l/t \). By Lemma 3.4, we have
\[
(1 + \lambda^t + \cdots + \lambda^{t(m'-1)})(s(x) + \lambda s^\theta(x) + \cdots + \lambda^{t-1} s^{\theta t-1}(x)) = (1 + \lambda^t + \cdots + \lambda^{t(m'-1)})(s(y) + \lambda s^\theta(y) + \cdots + \lambda^{t-1} s^{\theta t-1}(y)).
\]

Case 1.1: \(\sigma \) is \(m \)-divisible. Then \(\lambda = 1 \). Since \(m' = 1 \), we have
\[
(\lambda^{t-1} - 1)(s(x) + \lambda s^\theta(x) + \cdots + \lambda^{t-1} s^{\theta t-1}(x)) = 0.
\]
If \(\sigma \) is strongly \(m \)-divisible, then \(\lambda^{t-1} = 1 \), i.e. there are \(p \) possible choices for the \(s(w) \) with \(w \in \sigma \). If \(\sigma \) is not strongly \(m \)-divisible, then \(s(x) + \lambda s^\theta(x) + \cdots + \lambda^{t-1} s^{\theta t-1}(x) = 0 \).

Case 1.2: \(\sigma \) is not \(m \)-divisible.
Since \(\lambda \neq 1 \), we have \(1 + \lambda^t + \cdots + \lambda^{t(m'-1)} = (1 - \lambda^t)/(1 - \lambda^t) = 0 \). Thus there are \(p \) possible choices for the \(s(w) \) with \(w \in \sigma \).

Case 2: \(x, y \) are in the same \(\langle g \rangle \)-orbit on \(V(G) \), and \(\sigma \) is diagonal. Let \(\Omega \) be diagonal. Then \(t = 2k, |\sigma| = t \) and \(y = g^k(x) \).

Case 2.1: \(\Omega \) is type-2. Then \(l = [m, t] \). Let \(m' = l/t \). By Lemma 3.4, we have
\[
(1 - \lambda^k + \lambda^{2k} - \cdots - \lambda^{k(2m'-1)}) (s(x) + \lambda s^\theta(x) + \cdots + \lambda^{k-1} s^{\theta k-1}(x)) = (1 - \lambda^k + \lambda^{2k} - \cdots - \lambda^{k(2m'-1)}) (s(y) + \lambda s^\theta(y) + \cdots + \lambda^{k-1} s^{\theta k-1}(y)).
\]
Since \(\lambda \neq 1 \), \(1 - \lambda^k + \lambda^{2k} - \cdots - \lambda^{k(2m'-1)} = (1 - \lambda^k)/(1 + \lambda^k) = 0 \).

We consider not diagonal \(\langle g \rangle \)-orbits \(\langle g \rangle (x, z) \) on \(A(G) \) such that \(z \in \sigma \). Since \(\Omega \) is type-2, we have either \(m|k \) or \(m'k = 2k \). If \(\sigma \) is either strongly \(m \)-divisible or not \(m \)-divisible, then there are \(p \) possible choices for the \(s(w) \) with \(w \in \sigma \) by case 1. If \(\sigma \) is \(m \)-divisible but not strongly \(m \)-divisible, then
\[
s(x) + \lambda s^\theta(x) + \cdots + \lambda^{t-1} s^{\theta t-1}(x) = 0
\]
according to case 1.1.

Case 2.2: \(\Omega \) is type-1. Then \(\lambda^k = 1 \) and \(l = m = t \). By Lemma 3.4, we have
\[
s(x) + \lambda s^\theta(x) + \cdots + \lambda^{t-1} s^{\theta t-1}(x) = 0.
\]

Case 3: \(x \) and \(y \) are in different vertex \(\langle g \rangle \)-orbits \(\sigma_1, \sigma_2 \) of length \(t_1, t_2 \). Then \(t = [t_1, t_2] \). Let \(t_i = p^a q_i \), \((p, q_i) = 1 \) \((i = 1, 2)\), and \(a = \max \{q_1, q_2\} \). Since \(m \nmid p \), \(t = p^{a}[q_1, q_2] \) and \(l = p^{a}[q_1, q_2, m] \). Let \(t_i' = [q_1, q_2, m]/q_i \) \((i = 1, 2)\). By Lemma 3.4,
we have
\[(1 + \lambda^{t_1} + \cdots + \lambda^{t_m(p^\sigma - 1)}) (s(x) + \lambda s^\sigma(x) + \cdots + \lambda^{t_m - 1} s^{p^\sigma - 1}(x)) \]
\[= (1 + \lambda^{t_1} + \cdots + \lambda^{t_m(p^\sigma - 1)}) (s(y) + \lambda s^\sigma(y) + \cdots + \lambda^{t_m - 1} s^{p^\sigma - 1}(y)).\]

Case 3.1: \(\sigma_1\) is \(m\)-divisible and \(\sigma_2\) is not \(m\)-divisible. Then
\[(1 + \lambda^{t_1} + \cdots + \lambda^{t_m(p^\sigma - 1)}) = (1 - \lambda^1)/(1 - \lambda^{t_1}) = 0.\]

Thus we have
\[p^\sigma - \sigma_1 t_1 (s(x) + \lambda s^\sigma(x) + \cdots + \lambda^{t_1 - 1} s^{p^\sigma - 1}(x)) = 0.\]

If \(a_1 < a_2\), then \(p^\sigma - \sigma_1 t_1 = 0\). In the case that \(a_1 \geq a_2\), then \(p^\sigma - \sigma_1 t_1 = t_1 \neq 0\), and so
\[s(x) + \lambda s^\sigma(x) + \cdots + \lambda^{t_1 - 1} s^{p^\sigma - 1}(x) = 0.\]

Case 3.2: Both \(\sigma_1\) and \(\sigma_2\) are \(m\)-divisible.

Then \(\lambda^{t_1} = \lambda^{t_2} = 1\). If \(a_1 = a_2\), then we have
\[t_1 (s(x) + \lambda s^\sigma(x) + \cdots + \lambda^{t_1 - 1} s^{p^\sigma - 1}(x)) = t_2 (s(y) + \lambda s^\sigma(y) + \cdots + \lambda^{t_1 - 1} s^{p^\sigma - 1}(y)).\]

If \(a_1 > a_2\), then we have
\[s(x) + \lambda s^\sigma(x) + \cdots + \lambda^{t_1 - 1} s^{p^\sigma - 1}(x) = 0.\]

Case 3.3: Both \(\sigma_1\) and \(\sigma_2\) are not \(m\)-divisible. Since \(\lambda^{t_1} \neq 1\) and \(\lambda^{t_2} \neq 1\), we have
\[1 + \lambda^{t_1} + \cdots + \lambda^{t_m(p^\sigma - 1)} = (1 - \lambda^1)/(1 - \lambda^{t_1}) = 0\]
and
\[1 + \lambda^{t_2} + \cdots + \lambda^{t_m(p^\sigma - 1)} = (1 - \lambda^1)/(1 - \lambda^{t_2}) = 0.\]

Let \(\sigma\) be not \(m\)-divisible \(\langle g \rangle\)-orbit on \(V(G)\). In view of cases 1.2, 2.1, 3.1 and 3.3, there are \(p^{1|\sigma|}\) choices for the \(s(w)\) with \(w \in \sigma\).

If \(H\) is a favorable \(p\)-level component of \(G_\lambda(g)\), then any vertex \(\sigma\) of \(H\) admits \(p^{1|\sigma|-1}\) choices for the \(s(w)\) with \(w \in \sigma\) by cases 1.1, 2.1, 2.2, 3.1 and 3.2. However, if \(H\) is defective, then some vertex \(\sigma\) of \(H\) admits \(p^{1|\sigma|}\) choices according to cases 1.1, 2.1, 3.1 and 3.2, while any other vertex \(\sigma\) of \(H\) admits \(p^{1|\sigma|-1}\) choices according to case 3.2.

Therefore, it follows that
\[|C_{g, \lambda}^0| = \prod_{\sigma} p^{1|\sigma|} \left(\prod_{H_1} \left(\prod_{\sigma_1 \in H_1} p^{1|\sigma_1| - 1} \right) \right) \left(\prod_{H_2} \left(\prod_{\sigma_2 \in H_2} p^{1|\sigma_2| - 1} \right) \right) \]
\[= p^n - (v(g) - v_0(g, \lambda)) + d(g, \lambda),\]

where \(\sigma, H_1, H_2\) runs over all not \(m\)-divisible \(\langle g \rangle\)-orbits on \(V(G)\), favorable \(p\)-level components of \(G_\lambda(g)\) and defective \(p\)-level components of \(G_\lambda(g)\), respectively.

Each \(\langle g \rangle\)-orbit \(\Omega\) on \(E(G)\) corresponds to two \(\langle g \rangle\)-orbits on \(A(G)\) if \(\Omega\) is not diagonal, and one \(\langle g \rangle\)-orbit on \(A(G)\) otherwise.
Lemma 3.6. For $g \in \Gamma$ and $\lambda \in F^*$, $|\text{Ker} \mu_{g, \lambda}| = p^{e(g) - \kappa(g, \lambda) - \mu(g, \lambda)}$.

Proof. Let $\alpha \in \text{Ker} \mu_{g, \lambda}$. Then we have $\alpha = \lambda \alpha' = \lambda^2 \alpha'' = \cdots$.

Let $\Omega = \langle g \rangle(x, y)$ be any $\langle g \rangle$-orbit on $A(G)$, $|\Omega| = t$ and $m = \text{ord}(\lambda)$.

Case 1: x and y are in the same $\langle g \rangle$-orbit on $V(G)$, and Ω is diagonal. Let $t = 2k$.

Then we have $\lambda^i x(y, x) = \lambda^{i-1} x(y, x)$ ($i \geq 1$), $\lambda^k x(y, x) = -x(y, x)$ and $x(y, x) = \lambda^k x(y, x)$. If Ω is type-1, then there are p possible choices for $x(y, x)$. Otherwise $x(u, v) = 0$ for each $(u, v) \in \Omega$.

Case 2: x and y are not in the same $\langle g \rangle$-orbit on $V(G)$, or Ω is not diagonal. Then we have $\lambda^i x(y, x) = \lambda^{i-1} x(y, x)$ ($i \geq 1$) and $x(y, x) = \lambda^i x(y, x)$. If m/t, then there are p possible choices for $x(y, x)$. Otherwise $x(u, v) = 0$ for each $(u, v) \in \Omega$.

From the note preceding the lemma, it follows that

$$\frac{|\text{Ker} \mu_{g, \lambda}|}{p^{e(g) - \kappa(g, \lambda) - \mu(g, \lambda)}} = \square.$$

Proof of Theorem 3.3. Let $g \in \Gamma$ and $\lambda \in F^*$. Set $\varepsilon = e(g)$, $\nu = v(g)$, $\nu_0 = v_0(g, \lambda)$,

Let $C_{g, \lambda} = \{(s, \alpha) \in C \times C^1 \mid \delta s = \mu_{g, \lambda}(\alpha) = \lambda \alpha' - \alpha\}$, and consider the two canonical epimorphisms $\gamma^0 : C_{g, \lambda} \rightarrow C_{g, \lambda}^0$ and $\gamma^1 : C_{g, \lambda} \rightarrow C_{g, \lambda}^1$. By Lemmata 3.5 and 3.6 and the fact that $\text{Ker} \gamma^0 \cong \text{Ker} \mu_{g, \lambda}$, we have $|C_{g, \lambda}^0| = |C_{g, \lambda}^1| = |\text{Ker} \gamma^0| = p^{n - v_0 + v_0 - \nu} - \kappa - \mu$. Since $\text{Ker} \gamma^0 \cong \text{Ker} \delta$ and $|\text{Ker} \delta| = p^j$, it follows that

$$|C_{g, \lambda}^1| = |\text{Ker} \gamma^1| = p^{n - v_0 + v_0 - \nu + \kappa - \mu - 1}.$$

Set $\delta^1 = \delta^1 |C_{g, \lambda}^1$. Since $\text{Im} \delta \subset C_{g, \lambda}^1$, we have $\text{Ker} \delta^1 = \text{Ker} \delta^1 = \text{Im} \delta$. Thus $|\text{Ker} \delta^1| = p^{n - v_0 - \nu + \kappa - \mu + 1}$. Furthermore, since $\text{Im} \delta^1 = \text{Ker} \nu_{g, \lambda}$, it follows that $|\text{Ker} \nu_{g, \lambda}| = |C_{g, \lambda}^1| = |\text{Ker} \delta^1| = p^{n - v_0 + v_0 - \nu + \kappa - \mu + 1}$. By Burnside’s Lemma, the result follows. \square

Theorem 3.3 holds for $p = 2$ or $\Gamma = I$, and so it is a generalization of [6, Theorem 3.4] and [10, Theorem 5].

Now we give some examples. Let $G = K_n$, $\Gamma \leq S_n$ and $F = GF(p)$. Set $V(G) = \{1, 2, \ldots, n\}$. Let $e(n, p, \Gamma)$ be the number of Γ-isomorphism classes of derived graph coverings of K_n with voltages in F. It is clear that $e(1, p, \Gamma_1) = e(2, p, \Gamma_2) = 1$ for any prime p, where $\Gamma_i \leq S_i$ ($i = 1, 2$). Let $\lambda \in F^*$. Then, note that each of $d(g, \lambda)$, $v_0(g, \lambda)$, $\kappa(g, \lambda)$ and $\mu(g, \lambda)$ is constant on each conjugacy class of S_n.

For $n = p = 3$, we obtain Table 1. By Theorem 3.3, we have $e(3, 3, S_3)_1 = (3 + 1 + 3 + 9 + 6 + 2)/12 = 2$.

Next, let $n = 4$, $p = 3$ and $\Gamma = \{1, (1234), (13)(24), (1432)\}$. Then we have $e(4, 3, S_4) = 4$ and $e(4, 3, \Gamma) = 6$.

In Table 2, we give some values of $e(n, p, S_n)$ the number $e(n, p, S_n)$ of S_n-isomorphism classes of derived graph coverings of the complete graph K_n with voltages in $GF(p)$.
Table 1

<table>
<thead>
<tr>
<th>Class representative g</th>
<th>1</th>
<th>(12)</th>
<th>(123)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda \in \mathcal{F}^*$</td>
<td>1</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>$\varepsilon(g)$</td>
<td>3</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>$\nu(g)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$\nu_0(g, \lambda)$</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>$\kappa(g, \lambda)$</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>$\mu(g, \lambda)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$d(g, \lambda)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>$n \setminus p$</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>65</td>
<td>232</td>
<td>1690</td>
</tr>
<tr>
<td>6</td>
<td>94</td>
<td>3856</td>
<td>67547</td>
<td>3622126</td>
</tr>
<tr>
<td>7</td>
<td>1896</td>
<td>1537078</td>
<td>157358236</td>
<td>82898147256</td>
</tr>
</tbody>
</table>

Acknowledgment

The author would like to thank Professor M. Hofmeister for sending him three papers [2, 7, 8] in references and the referees for many helpful comments and suggestions.

References