NOTE

ENUMERATION OF PACKED GRAPHS

Iwao SATO
Department of Mechanical Engineering, The Tsuruoka Technical College, Yamagata, 997, Japan

Received 26 August 1987
Revised 21 March 1988

Let \(|G| \) be the number of vertices of a graph \(G \), let \(\omega(G) \) be the density of \(G \), and \(K(G) \) be the clique graph of \(G \). A graph \(G \) is called a \((p, n)\)-packed graph if
\[
|G| = p, \quad \omega(G) = p - n \quad \text{and} \quad |K(G)| = 2^n.
\]
We obtain the number of non-isomorphic \((p, n)\)-packed graphs.

All graphs considered here are finite, undirected and simple. We denote the number of vertices of a graph \(G \) by \(|G|\). A clique of a graph \(G \) is a maximal complete subgraph of \(G \). The clique graph \(K(G) \) of a graph \(G \) is the intersection graph of the vertex sets of cliques of \(G \). The density \(\omega(G) \) of a graph \(G \) is the number of the vertices in the largest clique of \(G \). Hedman [4] showed that, for every graph \(G \),
\[
|K(G)| \leq 2^{\lfloor \omega(G) \rfloor}.
\]
We call a graph \(G \) packed if
\[
|K(G)| = 2^{\lfloor \omega(G) \rfloor}.
\]
Moreover, Hedman [4] showed that, for any packed graph \(G \),
\[
\omega(G) \geq \frac{1}{2} |G|.
\]
A packed graph \(G \) is called a \((p, n)\)-packed graph if
\[
|G| = p \quad \text{and} \quad |G| - \omega(G) = n,
\]
where \(n \leq \frac{1}{2} p \). Hedman [5] proved the following result.

Theorem A. Among graphs \(G \) on \(p \) vertices with \(\omega(G) < \frac{1}{2} p \), the number of non-isomorphic graphs maximizing the number of cliques is one.

We shall examine the number of non-isomorphic \((p, n)\)-packed graphs \((n \leq \frac{1}{2} p)\). If \(U \) is a nonempty subset of the vertex set \(V(G) \) of a graph \(G \), then the subgraph \(\langle U \rangle_G \) of \(G \) induced by \(U \) is the graph having vertex set \(U \) and whose edge set consists of those edges of \(G \) incident with two elements of \(U \). A subgraph \(H \) of \(G \) is called induced, denoted \(H < G \), if \(H \cong \langle U \rangle_G \) for some subset \(U \) of \(V(G) \). A \(2n \)-Neumann graph \(H_{2n} \) is the complement of a matching between \(2n \) vertices. A graph \(G \) is called an \(H(p, n)\)-graph \((n \leq \frac{1}{2} p)\) if there is a partition
\[
V_1 \cup V_2 \cup V_3 \text{ of } V(G) \text{ such that}
\]
(i) \(|G| - p, |V_1| = p - 2n \text{ and } |V_2| - |V_3| = n, \)
(ii) \(\langle V_1 \cup V_2 \rangle_G \) is complete,
(iii) \(\langle V_2 \cup V_3 \rangle_G \cong H_{2n}. \)

We require the following result.

Lemma (Sato [6]). If \(G' < G \), then \(K(G') \) is a subgraph of \(K(G) \).
The structure of \((p, n)\)-packed graphs is given as follows:

Theorem 1. For two positive integers \(p\) and \(n\), with \(n \leq \frac{1}{2}p\), a graph \(G\) is a \((p, n)\)-packed graph if and only if \(G\) is an \(H(p, n)\)-graph.

Proof. Let \(G\) be a \((p, n)\)-packed graph. Then we have \(\omega(G) = p - n\). Let \(K_1\) be a clique of \(G\) such that \(|K_1| = \omega(G)\). Denote by \(G_1\) the graph \(G - K_1\) obtained from \(G\) by removing all vertices of \(K_1\). Similarly to the proof of [4, Theorem 3.1], there are \(n\) vertices \(v_1, v_2, \ldots, v_n\) of \(K_1\) such that \(\langle \{v_1, v_2, \ldots, v_n\} \cup V(G_1) \rangle \cong H_{2n}\).

Now we may set \(V_1 = V(K_1) - \{v_1, v_2, \ldots, v_n\}\), \(V_2 = \{v_1, v_2, \ldots, v_n\}\) and \(V_3 = V(G_1)\).

Conversely, let \(G\) be an \(H(p, n)\)-graph. It is clear that \(\omega(G) = p - n\). Moreover we have \(G \supset H_{2n}\). By the lemma, \(K(H_{2n})\) is a subgraph of \(K(G)\). Thus, it follows that \(|K(G)| \geq |K(H_{2n})| = 2^n\). By [4, Theorem 2.1], we have \(|K(G)| \leq 2^n\). Hence \(G\) is a \((p, n)\)-packed graph. \(\Box\)

Let \(S_k\) be the symmetric group of degree \(k\) and \(Z(G)\) be the cycle indicator of a group \(G\) (see [1]).

The following theorem determines the number of non-isomorphic \((p, n)\)-packed graphs.

Theorem 2. For two positive integers \(p\) and \(n\), with \(n \leq \frac{1}{2}p\), the number of non-isomorphic \((p, n)\)-packed graphs is equal to the sum of all coefficients in \(Z(S_{p-2n} \times S_n; 1 + x)\).

Proof. By Theorem 1, the number of non-isomorphic \((p, n)\)-packed graphs is equal to that of non-isomorphic \(H(p, n)\)-graphs. Note that, for two graphs \(H\) and \(K\) with the same vertex set, \(H \cong K\) if and only if \(\overline{H} \cong \overline{K}\), where \(\overline{H}\) and \(\overline{K}\) are the complements of \(H\) and \(K\), respectively. Thus, the number of non-isomorphic \((p, n)\)-packed graphs is equal to that of non-isomorphic complements of \(H(p, n)\)-graphs.

Let \(G\) be an \(H(p, n)\)-graph and \(V_1 \cup V_2 \cup V_3\) be a partition of \(V(G)\) satisfying the conditions (i), (ii) and (iii). Then it follows that \(\langle V_1 \cup V_2 \rangle_{\overline{G}}\) is empty and \(\langle V_2 \cup V_3 \rangle_{\overline{G}} \cong nK_{2n}\). \(\overline{G}\) can be regarded as a bipartite graph with partite sets \(V_i\) and \(E(\langle V_2 \cup V_3 \rangle_{\overline{G}})\). Hence the number of non-isomorphic complements of \(H(p, n)\)-graphs is equal to that of non-isomorphic spanning subgraphs of the complete bipartite graph \(L\) with partite sets \(V_i\) and \(E(\langle V_2 \cup V_3 \rangle_{\overline{G}})\).

Let \(\mathcal{E}(L)\) be the edge-group of \(L\) (see [1]). Then we have \(\mathcal{E}(L) \cong S_{p-2n} \times S_n\). Let \(g_k\) be the number of non-isomorphic spanning subgraphs of \(L\) with \(k\) edges \((0 \leq k \leq (p - 2n)n)\). Then, by Pólya's Theorem, the generating function of \(g_k\) is given by \(\sum_{k>0} g_k x^k = Z(S_{p-2n} \times S_n; 1 + x)\). \(\Box\)
Corollary. For two positive integers p and n, with $n \leq \frac{1}{2}p$ and $p \neq 3n$, the number of non-isomorphic (p, n)-packed graphs is equal to that of non-isomorphic spanning subgraphs of the complete bipartite graph $K_{p - 2n, n}$.

Proof. By Theorem 2 and [3].

Acknowledgment

I would like to thank the referees for their helpful comments and suggestions.

References