Contents

2 Editorial Information

KEYNOTE

2 Cloud Computing: The Next Big Thing?
by Burkhard Neidecker-Lutz, Keith Jeffery, Maria Tsakali and Lutz Schubert.

JOINT ERCIM ACTIONS

6 Static Analysis versus Model Checking
by Flemming Nielson

7 An Infrastructure for Clinical Trials for Cancer – ACGT Project Successfully Terminated
by Jessica Michel Assoumou and Manolis Tsiknakis

8 ERCIM at SAFECOMP 2010 in Vienna
by Erwin Schoitsch

8 35th International Symposium on Mathematical Foundations of Computer Science
by Vaclav Matias

9 IWPSE-EVOL 2010 – International Workshop on Principles of Software Evolution
by Anthony Cleve and Tom Mens

10 ICT Policy Alignment between Europe and India
by Nicholas Ferguson, Ashok Kar and Florence Pesce

11 Andrea Esuli Winner of the 2010 ERCIM Cor Baayen Award

SPECIAL THEME

Cloud Computing
coordinated by Frédéric Desprez, Ottmar Krämer-Fuhrmann and Ramin Yahyapour

Introduction to the Special Theme
12 Cloud Computing
by Frédéric Desprez, Ottmar Krämer-Fuhrmann and Ramin Yahyapour

Invited articles
14 OpenNebula: Leading Innovation in Cloud Computing Management
by Ignacio M. Llorente and Rubén S. Montero

16 SLA@SOI - SLAs Empowering a Dependable Service Economy
by Wolfgang Theilmann and Ramin Yahyapour

18 BEinGRID Presage of the Cloud
by Daniel Field

20 From XtreemOS Grids to Contrail Clouds
by Christine Morin, Yvon Jégou and Guillaume Pierre

Resource management
22 Interoperability between Grids and Clouds
by Attila Marosi, Miklós Kozlovzszy and Péter Kacsuk

23 Open Cloud Computing Interface: Open Community Leading Cloud Standards
by Andy Edmonds, Thijs Metsch, Alexander Papaspyrou and Alexis Richardson

25 Recent Developments in DIET: From Grid to Cloud
by Frédéric Desprez, Luis Rodero-Merino, Eddy Caron and Adrian Muresan

26 Addressing Aggregation of Utility Metering by using Cloud – The Power Grid Case Study
by Orlando Cassano and Stéphane Mouton

27 Optimization and Service Deployment in Private and Public Clouds
by Máté J. Csorba and Poul E. Heegaard

29 Holistic Management for a more Energy-Efficient Cloud Computing
by Eduard Ayguadé and Jordi Torres

30 A Semantic Toolkit for Scheduling in Cloud and Grid Platforms
by András Micsik, Jorge Ejarque, Rosa M. Badia

Middleware and platforms
32 Making Virtual Research Environments in the Cloud a Reality: the gCube Approach
by Leonardo Candela, Donatella Castelli, Pasquale Pagano
33 ManuCloud: The Next-Generation Manufacturing as a Service Environment
by Matthias Meier, Joachim Seidelmann and István Mezgár

35 RESERVOIR – A European Cloud Computing Project
by Syed Naqvi and Philippe Massonet

36 Managing Virtual Resources: Fly through the Sky
by Jérôme Gallard and Adrien Lèbre

38 OW2 ProActive Parallel Suite: Building Flexible Enterprise CLOUDs
by Denis Caromel, Cédric Dalmasso, Christian Delbe, Fabrice Fontenoy and Oleg Smirnov

40 FoSII - Foundations of Self-Governing ICT Infrastructures
by Vincent C. Emekasora, Michael Maurer, Ivona Brandic and Schahram Dustdar

41 Large-Scale Cloud Computing Research: Sky Computing on FutureGrid and Grid’5000
by Pierre Riteau, Maurício Tsugawa, Andréa Matsunaga, José Fortes and Kate Keahey

43 elasticLM – Software License Management for Distributed Computing Infrastructures
by Claudio Cacciari, Daniel Mallmann, Csilla Zsigri, Francesco D’Andria, Björn Hagemeier, Angela Rumpl, Wolfgang Ziegler and Josep Martrat

Applications
44 Enabling Reliable MapReduce Applications in Dynamic Cloud Infrastructures
by Fabrizio Marozzo, Domenico Talia and Paolo Trunfio

46 Considering Data Locality for Parallel Video Processing
by Rainer Schmidt and Matthias Rella

47 Online Gaming in the Cloud
by Radu Prodan and Vlad Nae

49 Mastering Data-Intensive Collaboration and Decision Making through a Cloud Infrastructure
by Nikos Karacapilidis, Stefan Rüping and Isabel Drost

50 ComCert: Automated Certification of Cloud-based Business Processes
by Rafael Accorsi and Lutz Lowis

R&D AND TECHNOLOGY TRANSFER
52 Building Discrete Spacetimes by Simple Deterministic Computations
by Tommaso Bolognesi

54 Improving the Security of Infrastructure Software using Coccinelle
by Julia Lawall, René Rydhof Hansen, Nicolas Palix and Gilles Muller

55 Teaching Traffic Lights to Manage Themselves … and Protect the Environment
by Dirk Helbing and Stefan Lämmer

56 A New Approach to the Planning Process makes Huge Savings for the Railway Sector
by Malin Forsgren and Martin Aronsson

57 Fast Search in Distributed Video Archives
by Stephan Veigl, Hartwig Fronthaler and Bernhard Strobl

58 Meeting Food Quality and Safety Requirements with Active and Intelligent Packaging Techniques
by Elisabeth Ilie-Zudor, Marcell Szathmári, Zsolt Kemény

EVENTS
60 CLEF 2010: Innovation, Science, Experimentation
by Nicola Ferro

61 Announcements

IN BRIEF
63 Sylvain Lefebvre Winner of the Eurographics Award 2010

63 Peter Bosman wins Best Paper Award at Genetic and Evolutionary Computation Conference 2010

63 W3C UK and Ireland Office Moves to Nominet

63 Mobilize your Apps!
The transition from mass production to personalized, customer-oriented and eco-efficient manufacturing is considered to be a promising approach to improve and secure the future competitiveness of the European manufacturing industries, which constitute an important pillar of European prosperity. One precondition for this transition is the availability of agile IT systems, capable of supporting this level of flexibility on the production network layer, as well as on the factory and process levels.

The FP7 project, ManuCloud, has been set up with the mission to investigate the production-IT related aspects of this transition and to develop and evaluate a suitable IT infrastructure to provide better support for on-demand manufacturing scenarios, taking multiple tiers of the value chain into account. On this path, ManuCloud seeks to implement the vision of a cloud-like architecture concept (see Figure 1). It provides users with the ability to utilize the manufacturing capabilities of configurable, virtualized production networks, based on cloud-enabled, federated factories, supported by a set of software-as-a-service applications.

Three industries have been selected to be the initial application context for the ManuCloud concepts and technologies: The photovoltaic (PV) industry, the organic lighting (organic light emission diodes (OLED)) industry and the automotive supplies industry. Each industry is driven by specific market needs.

Over recent months, the market situation for the European PV industry has changed to a highly competitive environment. Prices for standard PV products have significantly increased its market share while European companies have lost their leading position. This project will implement the ManuCloud infrastructure for the PV industry to evaluate whether highly customizable PV systems, especially in the area of building integrated photovoltaic, allow for new business models for this industry.

The market for organic lighting is in an earlier stage than the PV market. However, market research predicts the development of a multibillion dollar market for these products within a few years. Due to the unique properties of large-area diffuse light generation with adjustable colors, organic lighting is expected to generate numerous new applications, a substantial share of which will be customized solutions. The project will set up and evaluate the ManuCloud infrastructure for customized organic lighting solutions.

In addition to these rather strategic applications, this project is expected to have an immediate impact on the automotive supplies industry, mainly on the factory/process level components of the ManuCloud infrastructure. The ability to add new functionalities to software systems at factory level and to quickly adjust production systems to new requirements is increasingly important for these companies. With typical state-of-the-art architectures used in production, additional functionality often causes an exponential growth of system complexity. This growth of complexity significantly increases ramp-up time, risk level, and costs as well as maintenance efforts for long-term operations.

Based on ManuCloud’s mission, two major R&D focal points have been selected for the project: The ManuCloud intra-factory environment...
and the ManuCloud inter-factory environment. The intra-factory environment is comprised of production-related IT systems within a single factory which lays the foundation to connect the factory into the inter-factory environment. The inter-factory environment serves as a market place for virtualized manufacturing services, and supports the dynamic interconnection of multiple factories for specific purposes. For the intra-factory environment, the project intends to make heavy use of cross-fertilization effects in the area of best practices, standards and technologies available in the different industries represented by the project partners. The project will consider, among others, the standards families OPC-UA, SEMI (automation) and IEC61499.

The Unified Architecture (UA) is the next generation of the OPen Connectivity standard that provides a cohesive, secure and reliable cross platform framework for access to real time and historical data and events. SEMI (Semiconductor Equipment and Materials International) is the global industry association serving the manufacturing supply chains for the micro-electronic, display and photovoltaic industries responsible for the generation of standards specific to this area. IEC 61499 is a new standard of the International Electrotechnical Commission. It is event driven, enables engineering of complete, distributed systems and extensively supports hardware-independent engineering.

Special attention will be paid to the service interface of automation systems to the factory, including aspects of process capability modeling and system self description. A layer above the automation systems will support service discovery, management and orchestration, allowing for quick development and deployment of new factory-level services. The implementation of automation system services will be integrated with the engineering process for these systems.

The inter-factory environment supports a tightly controlled, on-demand integration of federated production-IT systems of different vendors, supporting joint specification management, shop-floor data transfer, high level of traceability and distributed quality management. This functionality will be provided by the ManuCloud Manufacturing as a Service (MaaS) environment. A front-end system will support the dynamic configuration of virtual production networks and provide interfaces for product configurators, which are supported by a product design & manufacturing advisory subsystem. Demonstration scenarios will be setup for PV and OLED lighting use cases.

ManuCloud involves experts from eight different organizations that are directly included into the consortium and two additional third-party organizations from four different EU member states (Austria, Germany, Hungary and United Kingdom). From the direct consortium members, three organizations are SMEs, two are industry, two are research organizations and one is a university. The project will end in 2013.

Links:
ManuCloud project: http://www.manucloud-project.eu
Fraunhofer IPA: http://www.ipa.fraunhofer.de
Please contact:
Matthias Meier
Fraunhofer IPA, Germany
Tel: +49 711 970 1215
E-mail: Matthias.Meier@ipa.fraunhofer.de

Figure 1: ManuCloud conceptual architecture.