The completion of
L-topological groups

Fatma Bayoumi* and Ismail Ibedou

Department of Mathematics, Faculty of Sciences, Benha University, Benha 12517, Egypt

Abstract

The target in this paper, is to extend an L-topological group to a complete L-topological group, and so giving the notion of the completion of an L-topological group. In the way, we have introduced the notion of the completion of an L-uniform space.

Keywords: L-topological groups; complete L-topological groups; L-uniform spaces; complete L-uniform spaces; U-cauchy filters; L-filters; L-topological spaces.

1. Introduction

In this paper, we gave new notions of L-filter, L-uniform space and L-topological group. We defined, in an L-uniform space (X, \mathcal{U}), a U-cauchy filter and have shown when (X, \mathcal{U}) to be a complete L-uniform space, and also how an L-topological group (G, τ) to be complete. Finally, the completion of an L-uniform space and the completion of an L-topological group are investigated.

In Section 2, we recall some results of L-filters and L-neighborhood filters defined by Gähler in [11, 13, 14]. Also, we have defined the product of two L-sets and the product of two L-filters.

In Section 3, we have defined in an L-uniform space (X, \mathcal{U}), a new notion of L-filter called U-cauchy filter. We showed that any convergent L-filter is a U-cauchy filter and the converse holds in the complete L-uniform spaces.

Section 4 is devoted to show how to extend an L-uniform space to a complete L-uniform space, and so the completion of an L-uniform space here is given as a reduced extension L-uniform space with a complete L-uniform structure.

In Section 5, using the L-uniform structures \mathcal{U}^l and \mathcal{U}^r defined on the L-topological group (G, τ) which are compatible with τ as in [8], we shall define the notion of complete L-topological group. A complete separated L-topological group (H, σ) in which (G, τ) is a dense subgroup will be called a completion of (G, τ).

*Corresponding author: e-mail: fatma_bayoumi@hotmail.com
2. On L-filters

In this section, we recall and show some results concerning L-filters needed in the paper. Denote by L^X the set of all L-subsets of a non-empty set X, where L is a complete chain with different least and greatest elements 0 and 1, respectively [19]. For each L-set $\lambda \in L^X$, let λ' denote the complement of λ, defined by $\lambda'(x) = \lambda(x)'$ for all $x \in X$. For all $x \in X$ and $\alpha \in L_0$, the L-subset x_α of X whose value α at x and 0 otherwise is called an L-point in X and the constant L-subset of X with value α will be denoted by $\overline{\alpha}$.

L-filters. By an L-filter on a non-empty set X we mean [13] a mapping $\mathcal{M} : L^X \to L$ such that $\mathcal{M}(\overline{\alpha}) \leq \alpha$ for all $\alpha \in L$ and $\mathcal{M}(\overline{1}) = 1$, and also $\mathcal{M}(\lambda \wedge \mu) = \mathcal{M}(\lambda) \wedge \mathcal{M}(\mu)$ for all $\lambda, \mu \in L^X$. \mathcal{M} is called homogeneous [11] if $\mathcal{M}(\overline{\alpha}) = \alpha$ for all $\alpha \in L$. If \mathcal{M} and \mathcal{N} are L-filters on X, \mathcal{M} is called finer than \mathcal{N}, denoted by $\mathcal{M} \leq \mathcal{N}$, provided $\mathcal{M}(\lambda) \geq \mathcal{N}(\lambda)$ holds for all $\lambda \in L^X$.

Let $\mathcal{F}_L X$ denote the set of all L-filters on X, $f : X \to Y$ a mapping and $\mathcal{M}_i, \mathcal{N}_i$ are L-filters on X, Y, respectively. Then the image of \mathcal{M} and the preimage of \mathcal{N} with respect to the mapping f are the L-filters $\mathcal{F}_L f(\mathcal{M})$ on Y and $\mathcal{F}_L^{-1} f(\mathcal{N})$ on X defined by $\mathcal{F}_L f(\mathcal{M})(\mu) = \mathcal{M}(\mu \circ f)$ for all $\mu \in L^Y$ and $\mathcal{F}_L^{-1} f(\mathcal{N})(\lambda) = \bigvee_{\mu \circ f \leq \lambda} \mathcal{N}(\mu)$ for all $\lambda \in L^X$, respectively. For each mapping $f : X \to Y$ and each L-filter \mathcal{N} on Y, for which the preimage $\mathcal{F}_L^{-1} f(\mathcal{N})$ exists, we have $\mathcal{F}_L f(\mathcal{F}_L^{-1} f(\mathcal{N})) \leq \mathcal{N}$. Moreover, for each L-filter \mathcal{M} on X, the inequality $\mathcal{M} \leq \mathcal{F}_L^{-1} f(\mathcal{F}_L f(\mathcal{M}))$ holds [13].

For each non-empty set A of L-filters on X, the supremum $\bigvee_{\mathcal{M} \in A} \mathcal{M}$ with respect to the finer relation of L-filters exists and we have

$$ (\bigvee_{\mathcal{M} \in A} \mathcal{M})(f) = \bigwedge_{\mathcal{M} \in A} \mathcal{M}(f) $$

for all $f \in L^X$. The supremum $\bigwedge_{\mathcal{M} \in A} \mathcal{M}$ of A exists if and only if for each non-empty finite subset $\{M_1, \ldots, M_n\}$ of A we have $M_1(\lambda_1) \wedge \cdots \wedge M_n(\lambda_n) \leq \sup(\lambda_1 \wedge \cdots \wedge \lambda_n)$ for all $\lambda_1, \ldots, \lambda_n \in L^X$ [11]. If the infimum of A exists, then for each $\lambda \in L^X$ and n as a positive integer we have

$$ (\bigwedge_{\mathcal{M} \in A} \mathcal{M})(\lambda) = \bigvee_{\lambda_1 \wedge \cdots \wedge \lambda_n \leq \lambda, M_1, \ldots, M_n \in A} (M_1(\lambda_1) \wedge \cdots \wedge M_n(\lambda_n)). $$

By a filter on X we mean a non-empty subset \mathcal{F} of L^X which does not contain $\overline{0}$ and closed under finite infima and super sets [17]. For each L-filter \mathcal{M} on X, the subset α-pr \mathcal{M} of L^X defined by: α-pr $\mathcal{M} = \{ \lambda \in L^X \mid \mathcal{M}(\lambda) \geq \alpha \}$ is a filter on X.

A family $(B_\alpha)_{\alpha \in L_0}$ of non-empty subsets of L^X is called valued L-filter base on X [13] if the following conditions are fulfilled:

(V1) $\lambda \in B_\alpha$ implies $\alpha \leq \sup \lambda$.

(V2) For all $\alpha, \beta \in L_0$ and all L-sets $\lambda \in B_\alpha$ and $\mu \in B_\beta$, if even $\alpha \wedge \beta > 0$ holds, then there are a $\gamma \geq \alpha \wedge \beta$ and an L-set $\nu \leq \lambda \wedge \mu$ such that $\nu \in B_\gamma$.

Each valued L-filter base $(B_{\alpha})_{\alpha \in L_0}$ on a set X defines an L-filter \mathcal{M} on X by: $\mathcal{M}(\lambda) = \bigvee_{\mu \in B_{\alpha}, \mu \leq \lambda} \alpha$ for all $\lambda \in L^X$. On the other hand, each L-filter \mathcal{M} can be generated by many valued L-filter bases, and among them the greatest one $(\alpha \text{-pr} \mathcal{M})_{\alpha \in L_0}$.

Proposition 2.1 [13] There is a one-to-one correspondence between the L- filters \mathcal{M} on X and the families $(\mathcal{M}_\alpha)_{\alpha \in L_0}$ of prefilters on X which fulfill the following conditions:

1. $f \in \mathcal{M}_\alpha$ implies $\alpha \leq \sup f$.
2. $0 < \alpha \leq \beta$ implies $\mathcal{M}_\alpha \supseteq \mathcal{M}_\beta$.
3. For each $\alpha \in L_0$ with $\bigvee_{0 < \beta < \alpha} \beta = \alpha$ we have $\bigcap_{0 < \beta < \alpha} \mathcal{M}_\beta = \mathcal{M}_\alpha$.

This correspondence is given by $\mathcal{M}_\alpha = \alpha \text{-pr} \mathcal{M}$ for all $\alpha \in L_0$ and $\mathcal{M}(f) = \bigvee_{g \in \mathcal{M}_\alpha, g \leq f} \alpha$ for all $f \in L^X$.

L-neighborhood filters. In the following, the topology in sense of [10, 16] will be used which will be called L-topology. int_τ and cl_τ denote the interior and the closure operators with respect to the L-topology τ, respectively. For each L-topological space (X, τ) and each $x \in X$ the mapping $\mathcal{N}(x) : L^X \to L$ defined by: $\mathcal{N}(x)(\lambda) = \text{int}_\tau \lambda(x)$ for all $\lambda \in L^X$ is an L-filter on X, called the L-neighborhood filter of the space (X, τ) at x, and for short is called a τ-neighborhood filter at x. The mapping $\dot{x} : L^X \to L$ defined by $\dot{x}(\lambda) = \lambda(x)$ for all $\lambda \in L^X$ is a homogeneous L-filter on X. Let (X, τ) and (Y, σ) be two L-topological spaces. Then the mapping $f : (X, \tau) \to (Y, \sigma)$ is called L-continuous (or (τ, σ)-continuous) provided $\text{int}_\tau \mu \circ f \leq \text{int}_\tau (\mu \circ f)$ for all $\mu \in L^Y$. An L-filter \mathcal{M} is said to converge to $x \in X$, denoted by $\mathcal{M} \underset{\tau}{\to} x$, if $\mathcal{M} \leq \mathcal{N}(x)$ [14]. The L-neighborhood filter $\mathcal{N}(F)$ at an ordinary subset F of X is the L-filter on X defined, by the authors in [3], by means of $\mathcal{N}(x), x \in F$ as:

$$\mathcal{N}(F) = \bigvee_{x \in F} \mathcal{N}(x).$$

The L-filter \hat{F} is defined by $\hat{F} = \bigvee_{x \in F} \dot{x}$. $\hat{F} \leq \mathcal{N}(F)$ holds for all $F \subseteq X$.

Lemma 2.1 [14] Let (X, τ) and (Y, σ) be two L-topological spaces and \mathcal{M} an L-filter on X, and let $f : X \to Y$ be a (τ, σ)-continuous mapping. Then $\mathcal{M} \underset{\tau}{\to} x$ implies that $\mathcal{F}_L f(\mathcal{M}) \underset{\sigma}{\to} f(x)$.

Firstly, let us give this important definition.

For $\lambda, \mu \in L^X$, let $\lambda \times \mu : X \times X \to L$ be the L-set defined as follows:

$$(\lambda \times \mu)(x, y) = \lambda(x) \wedge \mu(y) \quad (2.1)$$

for all $x, y \in X$.

3
Remark 2.1 For all $\lambda, \mu, \xi, \eta \in L^X$, we have

$$(\lambda \wedge \mu) \times (\xi \wedge \eta) = (\lambda \times \xi) \wedge (\mu \times \eta) = (\lambda \times \eta) \wedge (\mu \times \xi).$$

Proposition 2.2 For any two L-filters \mathcal{L}, \mathcal{M} on X, the mapping $\mathcal{L} \times \mathcal{M} : L^{X \times X} \to L$ defined by

$$(\mathcal{L} \times \mathcal{M})(u) = \bigvee_{\lambda \times \mu \leq u} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu))$$

for all $u \in L^{X \times X}$ is an L-filter on $X \times X$.

Proof. From (2.1) and that \mathcal{L}, \mathcal{M} are L-filters, we get that

$$(\mathcal{L} \times \mathcal{M})(\tilde{\alpha}) = \bigvee_{\lambda \times \mu \leq \tilde{\alpha}} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu)) \leq \alpha.$$

Moreover, $(\mathcal{L} \times \mathcal{M})(\tilde{1}) = 1$.

From Remark 2.1 and for all $u, v \in L^{X \times X}$, we get that

$$(\mathcal{L} \times \mathcal{M})(u) \wedge (\mathcal{L} \times \mathcal{M})(v) = \bigvee_{\lambda \times \mu \leq u} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu)) \wedge \bigvee_{\xi \times \eta \leq v} (\mathcal{L}(\xi) \wedge \mathcal{M}(\eta))$$

$$= \bigvee_{\lambda \times \mu \leq u, \xi \times \eta \leq v} (\mathcal{L}(\lambda \wedge \xi) \wedge \mathcal{M}(\mu \wedge \eta))$$

$$\leq \bigvee_{(\lambda \wedge \xi) \times (\mu \wedge \eta) \leq u \wedge v} (\mathcal{L}(\lambda \wedge \xi) \wedge \mathcal{M}(\mu \wedge \eta))$$

$$= (\mathcal{L} \times \mathcal{M})(u \wedge v).$$

Also,

$$(\mathcal{L} \times \mathcal{M})(u \wedge v) = \bigvee_{\lambda \times \mu \leq u \wedge v} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu))$$

$$\leq \bigvee_{\lambda \times \mu \leq u, \lambda \times \mu \leq v} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu))$$

$$= \bigvee_{\lambda \times \mu \leq u} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu)) \wedge \bigvee_{\lambda \times \mu \leq v} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu))$$

$$= (\mathcal{L} \times \mathcal{M})(u) \wedge (\mathcal{L} \times \mathcal{M})(v).$$

Hence, $(\mathcal{L} \times \mathcal{M})$ is an L-filter on $X \times X$. □

Here, we prove the following result.

Lemma 2.2 Let \mathcal{L} and \mathcal{M} be L-filters on X, and let $(\mathcal{L}_\alpha)_{\alpha \in L_0}$ and $(\mathcal{M}_\alpha)_{\alpha \in L_0}$ be the families of prefilters on X correspond, according to Proposition 2.1, \mathcal{L} and \mathcal{M}, respectively. Then the family $(\mathcal{K}_\alpha)_{\alpha \in L_0}$ of subsets \mathcal{K}_α of $L^{X \times X}$, where

$$\mathcal{K}_\alpha = \{\lambda \times \mu \mid \lambda \in \mathcal{L}_\alpha, \mu \in \mathcal{M}_\alpha\},$$

is a family of prefilters on $X \times X$ corresponds the L-filter $\mathcal{L} \times \mathcal{M}$. 4
Proof. Firstly, we show that, for all $\alpha \in L_0$, K_α is a prefilter on $X \times X$. For any $\alpha \in L_0$, we have $K_\alpha = \{ \lambda \times \mu \mid \lambda \in L_\alpha, \mu \in M_\alpha \}$ is non-empty, where L_α and M_α are non-empty for all $\alpha \in L_0$. Also, 0 does not exist in L_α or M_α implies that $\emptyset \notin K_\alpha$ for all $\alpha \in L_0$. From Remark 2.1 and from that L_α and M_α are prefilters, we get for all $u, v \in K_\alpha$ and $w \geq v$ that $u \cup v \in K_\alpha$ and $w \in K_\alpha$ for all $\alpha \in L_0$. That is, K_α, for all $\alpha \in L_0$, is a prefilter on $X \times X$.

Let $u \in K_\alpha$. Then $u = \lambda \times \mu$, where $\lambda \in L_\alpha$ and $\mu \in M_\alpha$, which implies that $\alpha \leq \sup \lambda$, $\alpha \leq \sup \mu$, and $\alpha \leq \sup (\lambda \times \mu) = \sup \mu u$, that is, condition (1) of Proposition 2.1 holds.

Let $0 < \alpha \leq \beta$ and $u \in K_\beta$. Then $u = \lambda \times \mu$, where $\lambda \in L_\beta$ and $\mu \in M_\beta$, which implies, from $L_\alpha \supseteq L_\beta$ and $M_\alpha \supseteq M_\beta$, that $\lambda \in L_\alpha$ and $\mu \in M_\alpha$, that is, $u \in K_\alpha$ and condition (2) of Proposition 2.1 is fulfilled.

Since $\bigcap_{0 < \beta < \alpha} L_\beta = L_\alpha$ and $\bigcap_{0 < \beta < \alpha} M_\beta = M_\alpha$, we get that

$$\bigcap_{0 < \beta < \alpha} K_\beta = \bigcap_{0 < \beta < \alpha} \{ \lambda \times \mu \mid \lambda \in L_\beta, \mu \in M_\beta \} = \{ \lambda \times \mu \mid \lambda \in \bigcap_{0 < \beta < \alpha} L_\beta, \mu \in \bigcap_{0 < \beta < \alpha} M_\beta \} = \{ \lambda \times \mu \mid \lambda \in L_\alpha, \mu \in M_\alpha \} = K_\alpha,$$

which means that condition (3) of Proposition 2.1 holds.

Hence, there is a one - to - one correspondence between the family $(K_\alpha)_{\alpha \in L_0}$ of the prefilters on $X \times X$, defined by (2.3), and the L - filter $L \times M$ on $X \times X$, according to Proposition 2.1, where

$$(L \times M)(u) = \bigvee_{v \in K_\alpha, v \leq u} \alpha \text{ and } \alpha - \text{pr} (L \times M) = K_\alpha$$

for all $u \in L^{X \times X}$ and for all $\alpha \in L_0$. □

3. U - cauchy filters

This section is devoted to speak of the cauchy filters in the L - uniform spaces defined in [15].

L - uniform spaces. An L - filter U on $X \times X$ is called L - uniform structure on X [15] if the following conditions are fulfilled:

(U1) $(x, x) \leq U$ for all $x \in X$;
(U2) $U = U^{-1}$;
(U3) $U \circ U \leq U$.

Where $(x, x) (u) = u(x, x)$, $U^{-1}(u) = U(u^{-1})$ and $(U \circ U)(u) = \bigvee_{v \leq u} U(v \wedge w)$ for all $u \in L^{X \times X}$, and $u^{-1}(x, y) = u(y, x)$ and $(v \circ w)(x, y) = \bigvee_{z \in X} (w(x, z) \wedge v(z, y))$ for all $x, y \in X$.

5
A set X equipped with an L-uniform structure \mathcal{U} is called an L-uniform space.

To each L-uniform structure \mathcal{U} on X is associated a stratified L-topology $\tau_\mathcal{U}$. The related interior operator $\text{int}_\mathcal{U}$ is given by:

$$\text{int}_\mathcal{U}(\lambda)(x) = \mathcal{U}[[x]](\lambda)$$

for all $x \in X$ and all $\lambda \in L^X$, where $\mathcal{U}[[x]](\lambda) = \bigvee_{\mu | \lambda} (\mathcal{U}(\mu) \wedge \mu(x))$ and $u[\mu](x) = \bigvee_{y \in X} (\mu(y) \wedge u(y, x))$. For all $x \in X$ we have

$$\mathcal{U}[[x]] = \mathcal{N}(x)$$

where $\mathcal{N}(x)$ is the L-neighborhood filter of the space $(X, \tau_\mathcal{U})$ at x. That is, an L-filter \mathcal{M} in an L-uniform space (X, \mathcal{U}) is said to converge to $x \in X$ if $\mathcal{M} \leq \mathcal{U}[[x]]$.

Let \mathcal{U} be an L-uniform structure on a set X. Then $u \in L^{X \times X}$ is called a surrounding provided $\mathcal{U}(u) \geq \alpha$ for some $\alpha \in L_0$ and $u = u^{-1}$ [8].

A subset $A \subseteq X$, for a surrounding u in (X, \mathcal{U}), is called small of order u if $u(x, y) \geq \alpha$ for all $x, y \in A$ and for some $\alpha \in L_0$.

Definition 3.1 In an L-uniform space (X, \mathcal{U}), an L-filter \mathcal{M} on X is said to be a \mathcal{U}-cauchy filter provided for any surrounding u, there exists a set $B \subseteq X$ such that $\mathcal{M} \leq \hat{B}$ and B is small of order u.

Now, we have the following expected result for the convergent L-filters.

Proposition 3.1 Every convergent L-filter in an L-uniform space (X, \mathcal{U}) is a \mathcal{U}-cauchy filter.

Proof. Let \mathcal{M} be an L-filter on X which converges to $x \in X$. Since $\mathcal{M} \leq \mathcal{U}[[x]]$, then we can choose a set $B \subseteq X$ such that $\mathcal{M} \leq B = \mathcal{U}[[x]]$, that is,

$$\mathcal{M}(\lambda) \geq \bigvee_{\mu | \lambda} (\mathcal{U}(\mu) \wedge \mu(x)) = \bigwedge_{y \in B} \lambda(y) = \hat{B}(\lambda)$$

for all $\lambda \in L^X$. Since $(x, x)^* \leq \mathcal{U}$ for all $x \in X$, then $u(x, x) \geq \mathcal{U}(u) \geq \alpha$ for any surrounding u and for some $\alpha \in L_0$, that is, $u(x, x) \geq \alpha$ for all $x \in X$ and for some $\alpha \in L_0$. Now, $x \in B$ where $\hat{x} \leq \mathcal{U}[[x]] = \hat{B}$. Also, for any $y \in B$ we get that $\bigwedge_{\mu | \lambda} (\alpha \wedge \mu(x)) \leq \lambda(y)$, for which $\bigwedge_{\mu | \lambda} (u(z, y) \wedge \mu(z)) \leq \lambda(y)$, and so $\alpha \wedge \mu(x) \leq u(x, y) \wedge \mu(x) \leq \lambda(y)$, and thus for all $x, y \in B$, we have $u(x, y) \geq \alpha$ for some $\alpha \in L_0$ and $\mathcal{M} \leq \hat{B}$. Hence, there is a set $B \subseteq X$ small of order any surrounding u in (X, \mathcal{U}) and $\mathcal{M} \leq \hat{B}$, and therefore \mathcal{M} is a \mathcal{U}-cauchy filter on X. \qed

Let A be a subset of a set X, \mathcal{U} an L-uniform structure on X and $i : A \hookrightarrow X$ the inclusion mapping of A into X. Then the initial L-uniform structure $\mathcal{F}_i(L)(i \times i)(\mathcal{U})$ of \mathcal{U} with respect to i, denoted by \mathcal{U}_A, is called an L-uniform substructure of \mathcal{U} and (A, \mathcal{U}_A) an L-uniform subspace of (X, \mathcal{U}) [4].

In particular, we have the following result.
Lemma 3.1 Let \((X, U)\) be an \(L\)-uniform space and \(A\) a non-empty subset of \(X\). Then an \(L\)-filter on \(A\) is a \(U_A\)-cauchy filter if and only if it is a \(U\)-cauchy filter.

Proof. Let \(\mathcal{M}\) be a \(U_A\)-cauchy filter on \(A\), then there exists \(B \subseteq A\) with \(\mathcal{M} \leq \hat{B}\) and \(B\) is small of order any surrounding \(u_A\) in \((A, U_A)\), which means that there is \(\hat{B} \subseteq A \subseteq X\) such that \(\mathcal{M} \leq \hat{B}\) and \(u_A(x, y) \geq \alpha\) for all \(x, y \in B\) and for some \(\alpha \in L_0\), that is, for any surrounding \(u\) in \((X, U)\),

\[
u(x, y) = (u \circ (i \times i))(x, y) = u_A(x, y) \geq \alpha
\]

for all \(x, y \in B\) and for some \(\alpha \in L_0\), and then \(\mathcal{M} \leq \hat{B}\) and \(B \subseteq X\) is small of order any surrounding \(u\) in \((X, U)\). Hence, \(\mathcal{M}\) is a \(U\)-cauchy filter.

Conversely, there exists \(B \subseteq A \subseteq X\) with \(\mathcal{M} \leq \hat{B}\) and \(B\) is small of order any surrounding \(u\) in \((X, U)\), that is, \(u(x, y) \geq \alpha\) for all \(x, y \in B\) and for some \(\alpha \in L_0\), which means that, for every surrounding \(u_A\) in \((A, U_A)\),

\[
u(x, y) = (u \circ (i \times i))(x, y) = u(x, y) \geq \alpha
\]

for all \(x, y \in B\) and for some \(\alpha \in L_0\). Hence, \(\mathcal{M} \leq \hat{B}\) and \(B \subseteq A\) is small of order any surrounding \(u_A\) in \((A, U_A)\), and thus \(\mathcal{M}\) is a \(U_A\)-cauchy filter. \(\square\)

A mapping \(f : (X, U) \rightarrow (Y, V)\) between \(L\)-uniform spaces \((X, U)\) and \((Y, V)\) is said to be \(L\)-uniformly continuous (or \((U, V)\)-continuous) provided

\[
\mathcal{F}_L(f \times f)(U) \leq V
\]

holds.

We shall use this result.

Lemma 3.2 Let \((X, U)\) and \((Y, V)\) be \(L\)-uniform spaces and \(f : X \rightarrow Y\) a \((U, V)\)-continuous mapping. If \(\mathcal{M}\) is a \(U\)-cauchy filter, then \(\mathcal{F}_L f(\mathcal{M})\) is a \(V\)-cauchy filter.

Proof. \(\mathcal{M}\) is a \(U\)-cauchy filter on \(X\) means that there exists \(B \subseteq X\) such that \(\mathcal{M} \leq \hat{B}\) and \(B\) is small of order any surrounding \(u\) in \((X, U)\), that is, \(\mathcal{M} \leq \hat{B}\) and \(u(x, y) \geq \alpha\) for all \(x, y \in B\) and for some \(\alpha \in L_0\), which implies that,

\[
\mathcal{F}_L f(\mathcal{M}) \leq \mathcal{F}_L f(\hat{B}) = (f(\hat{B}))
\]

for the set \(f(B) \subseteq Y\). Let \(v\) be a surrounding in \((Y, V)\), then from being \(f\) is \((U, V)\)-continuous, we have

\[
\alpha \leq V(v) \leq U(v \circ (f \times f)) = \mathcal{F}_L(f \times f)(U)(v)
\]

for some \(\alpha \in L_0\), and \(v = v^{-1}\) implies that \((v \circ (f \times f))^{-1} = v^{-1} \circ (f \times f) = v \circ (f \times f)\), that is, \(u = v \circ (f \times f)\) is a surrounding in \((X, U)\), which means that

\[
\alpha \leq u(x, y) = (v \circ (f \times f))(x, y) = v(f(x), f(y))
\]

for all \(f(x), f(y) \in f(B)\) and for some \(\alpha \in L_0\). Hence, \(\mathcal{F}_L f(\mathcal{M}) \leq (f(\hat{B}))\) for the set \(f(B) \subseteq Y\) and \(f(B)\) is small of order every surrounding in \((Y, V)\), and thus \(\mathcal{F}_L f(\mathcal{M})\) is a \(V\)-cauchy filter. \(\square\)
4. The completion of L-uniform spaces

Firstly, we give these general notes.

If (Y, σ) is an L-topological space and X is a non-empty subset of Y, then the initial L-topology of σ, with respect to the inclusion mapping $i : X \hookrightarrow Y$, is the L-topology $i^{-1}(\sigma) = \{i^{-1}(\lambda) \mid \lambda \in \sigma\}$ on X and is denoted by σ_X.

An L-topological space (Y, σ) is called an extension of the L-topological space (X, τ) if $X \subseteq Y$, $\tau = \sigma_X$ and X is σ-dense in Y.

The extension (Y, σ) of (X, τ) is called reduced if for any $x \neq y$ in Y and $x \in Y \setminus X$, we have $\mathcal{N}_\sigma(x) \neq \mathcal{N}_\sigma(y)$, where $\mathcal{N}_\sigma(x)$ denotes the L-neighborhood filter of (Y, σ) at a point $x \in Y$.

In [2, 3, 7, 8], we have introduced and studied the notion of GT_i-spaces for all $i = 0, 1, 2, 3, \frac{3}{2}, 4$.

GT_i-spaces. An L-topological space (X, τ) is called [2, 3, 7]:

(1) GT_0 if for all $x, y \in X$ with $x \neq y$ we have $\bar{x} \not\subseteq \mathcal{N}(y)$ or $\bar{y} \not\subseteq \mathcal{N}(x)$.

(2) GT_1 if for all $x, y \in X$ with $x \neq y$ we have $\bar{x} \not\subseteq \mathcal{N}(y)$ and $\bar{y} \not\subseteq \mathcal{N}(x)$.

(3) GT_2 if for all $x, y \in X$ with $x \neq y$, we have $\mathcal{M} \not\subseteq \mathcal{N}(x)$ or $\mathcal{M} \not\subseteq \mathcal{N}(y)$ for all L-filters \mathcal{M} on X.

(4) regular if for all $x \notin F$ and $F = \text{cl}_\tau F$, we have $\mathcal{N}(x) \land \mathcal{N}(F)$ does not exist.

(5) GT_3 if it is GT_1 and regular.

(6) completely regular if for all $x \notin F \in \tau'$, there exists a L- continuous mapping $f : (X, \tau) \to (I_L, 3)$ such that $f(x) = \bar{1}$ and $f(y) = \bar{5}$ for all $y \in F$.

(7) $GT_{3\frac{1}{2}}$ (or L-Tychonoff) if it is GT_1 and completely regular.

Denote by GT_i-space the L-topological space which is GT_i, $i = 0, 1, 2, 3, \frac{3}{2}$.

Proposition 4.1 [2, 3, 7] Every GT_i-space is GT_{i-1}-space for each $i = 1, 2, 3$, and every $GT_{3\frac{1}{2}}$-space is a GT_3-space.

Lemma 4.1 If the extension (Y, σ) of (X, τ) is a GT_0-space, then (Y, σ) is a reduced extension of (X, τ).

Proof. Clear. □

Lemma 4.2 For a GT_0-space (X, τ), the reduced extension (Y, σ) also is a GT_0-space.

Proof. For all $x \neq y$ in $Y \setminus X$, we have $\mathcal{N}_\sigma(x) \neq \mathcal{N}_\sigma(y)$. Also for all $x \neq y$ in X, we have $\mathcal{N}_\mathcal{\sigma}(x) \neq \mathcal{N}_\mathcal{\sigma}(y)$. Hence, for all $x \neq y$ in Y we get that $\mathcal{N}_\mathcal{\sigma}(x) \neq \mathcal{N}_\mathcal{\sigma}(y)$, and thus (Y, σ) is a GT_0-space. □
Remark 4.1 Let \((X, \tau)\) be an L-topological space and \(X \subseteq Y\). If we succeed in defining an L-topology \(\sigma\) on \(Y\) such that \((Y, \sigma)\) is an extension of \((X, \tau)\), then \(X\) is a \(\sigma\)-dense in \(Y\) implies that every \(\sigma\)-neighborhood of each \(y \in Y\) intersects \(X\), hence the infimum \(N_\sigma(y) \land \bar{X}\) exists where, for all \(f, g \in L^X\), \(\text{int}_\sigma f(y) = f(x)\) for some \(x \in X\) implies \(\text{int}_\sigma f(y) \land \bigwedge_{x \in X} g(x) \leq f(x)\) for some \(x \in X\) and also \(\text{int}_\sigma f(y) \land \bigwedge_{x \in X} g(x) \leq g(x)\) for all \(x \in X\), and thus \(\text{int}_\sigma f(y) \land \bigwedge_{x \in X} g(x) \leq \sup(f \land g)\) for all \(f, g \in L^X\).

Definition 4.1 Let \((X, \tau), (Y, \sigma)\) be two L-topological spaces and \((Y, \sigma)\) an extension of \((X, \tau)\). Then the L-filter \(N_\sigma(x) \land \bar{X}\) on \(X\), denoted by \(M_x\), will be called a \textit{trace filter at} \(x \in Y\) into \(Y\) and \(M_x = N_\tau(x)\) whenever \(x \in X\). Clearly, \(M_x \not\rightarrow x\).

Definition 4.2 Let \((X, \tau)\) and \((Y, \sigma)\) be two L-topological spaces, \((X', \tau^*)\) an extension of \((X, \tau)\) and let \(f : X \rightarrow Y\) be a \((\tau, \sigma)\)-continuous mapping. Then the restriction mapping \(g|_X\) on \(X\) of the \((\tau^*, \sigma)\)-continuous mapping \(g : X' \rightarrow Y\), which coincides with \(f\), is called a \textit{continuous extension of} \(f\) into \(X'\).

Remark 4.2 Let \((X, \tau)\) and \((Y, \sigma)\) be two L-topological spaces, \((X', \tau^*)\) an extension of \((X, \tau)\), \(f : X \rightarrow Y\) a mapping and \(M_x = N_\tau(x) \land \bar{X}\) a trace filter on \(Y\) at \(x \in X'\). For the existence of a continuous extension \(g : X' \rightarrow Y\), it is necessary that \(f\) is \((\tau, \sigma)\)-continuous and \(F_L f(M_x) \not\rightarrow x\) for a trace filter \(M_x\) at \(x \in X'\). If \((Y, \sigma)\) is a regular space, then these conditions also are sufficient. It is clear that \(M_x \not\rightarrow x\).

Lemma 4.3 With the notations in Remark 4.2, let \(g_1 : X' \rightarrow Y\) and \(g_2 : X' \rightarrow Y\) be \((\tau^*, \sigma)\)-continuous, \((Y, \sigma)\) is a GT$_2$-space and \(g_1|_X = g_2|_X = f\). Then \(g_1 = g_2\).

Proof. Let \(x \in X'\) be arbitrary and \(M_x \not\rightarrow x\). From Lemma 2.1, we get that \(F_L g_1(M_x) \not\rightarrow g_1(x)\) and \(F_L g_2(M_x) \not\rightarrow g_2(x)\), and also we have \(F_L g_1(M_x) = F_L g_2(M_x) = F_L f(M_x)\) an L-filter on \(Y\), and since \((Y, \sigma)\) is a GT$_2$-space, then \(g_1(x) = g_2(x)\). Thus \(g_1 = g_2\). □

Lemma 4.4 An extension \((Y, \sigma)\) of \((X, \tau)\) is reduced if and only if \(M_x \neq M_y\) for all \(x \neq y\) in \(Y\) and \(x \in Y \setminus X\).

Proof. The proof comes from that

\[M_x = N_\sigma(x) \land \bar{X} \neq N_\sigma(y) \land \bar{X} = M_y \]

if and only if \(N_\sigma(x) \neq N_\sigma(y)\). □

Definition 4.3 An L-uniform space \((Y, U^*)\) is called an \textit{extension} of the L-uniform space \((X, U)\) if \(X \subseteq Y\), \(U = U_X^*\) and \(X\) is a \(\tau_U^*\)-dense in \(Y\).

Definition 4.4 An L-uniform space \((Y, U^*)\) is called a \textit{reduced extension} of the L-uniform space \((X, U)\) if \((Y, \tau_U^*)\) is a reduced extension of \((X, \tau_U)\).
An L-uniform structure \mathcal{U} on a set X is called separated [5] if for all $x, y \in X$ with $x \neq y$ there is $u \in L^{X \times X}$ such that $\mathcal{U}(u) = 1$ and $u(x, y) = 0$. The space (X, \mathcal{U}) is called separated L-uniform space.

Proposition 4.2 [5] Let X be a set, \mathcal{U} an L-uniform structure on X and $\tau_\mathcal{U}$ the L-topology associated with \mathcal{U}. Then (X, \mathcal{U}) is separated if and only if $(X, \tau_\mathcal{U})$ is GT_0-space.

Lemma 4.5 If (X, \mathcal{U}) is a separated L-uniform space and (Y, \mathcal{U}^*) is a reduced extension of (X, \mathcal{U}), then (Y, \mathcal{U}^*) is separated as well.

Proof. From Proposition 4.2, we get that $(X, \tau_\mathcal{U})$ is a GT_0-space and since $(Y, \tau_\mathcal{U}^*)$ is a reduced extension of $(X, \tau_\mathcal{U})$, then by Lemma 4.2 we have $(Y, \tau_\mathcal{U}^*)$ is a GT_0-space. Again by Proposition 4.2, we get that (Y, \mathcal{U}^*) is separated. □

Now, we give this definition.

Definition 4.5 An L-uniform space (X, \mathcal{U}) is called complete if every \mathcal{U}-cauchy filter \mathcal{M} on X is convergent.

Definition 4.6 An L-uniform space (Y, \mathcal{U}^*) is called a completion of the L-uniform space (X, \mathcal{U}) if it is a reduced extension of (X, \mathcal{U}) and \mathcal{U}^* is complete.

Lemma 4.6 The completion of a separated L-uniform space is separated as well.

Proof. The proof comes from Lemma 4.5. □

5. The completion of L-topological groups

In this section, we introduce the main notion of this paper, that the completion of L-topological groups using the completion of L-uniform spaces.

L-topological groups. Let G be a multiplicative group. We denote, as usual, the identity element of G by e and the inverse of an element a of G by a^{-1}.

Definition 5.1 [1, 6] Let G be a group and τ an L-topology on G. Then (G, τ) will be called an L-topological group if the mappings

$$\pi : (G \times G, \tau \times \tau) \to (G, \tau)$$

defined by $\pi(a, b) = ab$ for all $a, b \in G$

and

$$i : (G, \tau) \to (G, \tau)$$

defined by $i(a) = a^{-1}$ for all $a \in G$

are L-continuous. π and i are the binary operation and the unary operation of the inverse on G, respectively.
For all \(\lambda \in L^G \), denote by \(\lambda^i \) the L-set \(\lambda \circ i \) in \(G \), that is, \(\lambda^i(x) = \lambda(x^{-1}) \) for all \(x \in G \). We also denote \(\mathcal{F}_L \pi (\mathcal{L} \times \mathcal{M}) \) by \(\mathcal{LM} \) and \(\mathcal{F}_L i(\mathcal{M}) \) by \(\mathcal{M} \), which means that \(\mathcal{LM}(\lambda) = \mathcal{L} \times \mathcal{M}(\lambda \circ \pi) \), and \(\mathcal{M}(\lambda^i) = \mathcal{M}(\lambda^t) \) for all L-filters \(\mathcal{L}, \mathcal{M} \) on \(G \) and all L-sets \(\lambda \in L^G \).

A surrounding \(u \in L^{X \times X} \) is called \textit{left (right) invariant} provided

\[
u(ax, ay) = u(x, y) \quad (u(xa, ya) = u(x, y)) \text{ for all } a, x, y \in X.
\]

\(\mathcal{U} \) is called a \textit{left (right) invariant} L-uniform structure if \(\mathcal{U} \) has a valued L-filter base consists of left (right) invariant surroundings \[8\].

Proposition 5.1 \[8\] Let \((G, \tau)\) be an L-topological group. Then there exist on \(G \) a unique left invariant L-uniform structure \(\mathcal{U}^l \) and a unique right invariant L-uniform structure \(\mathcal{U}^r \) compatible with \(\tau \), constructed using the family \((\alpha \text{-pr} \mathcal{N}(e))_{\alpha \in \mathcal{L}_0}\) of all filters \(\alpha \text{-pr} \mathcal{N}(e) \), where \(\mathcal{N}(e) \) is the L-neighborhood filter at the identity element \(e \) of \((G, \tau)\), as follows:

\[
\mathcal{U}^l(u) = \bigvee_{v \in \mathcal{U}^{\alpha}_u, v \leq u} \alpha \quad \text{and} \quad \mathcal{U}^r(u) = \bigvee_{v \in \mathcal{U}^\alpha_u, v \leq u} \alpha, \tag{5.1}
\]

where

\[
\mathcal{U}^{\alpha}_u = \alpha \text{-pr} \mathcal{U}^l \quad \text{and} \quad \mathcal{U}^{\alpha}_u = \alpha \text{-pr} \mathcal{U}^r \tag{5.2}
\]

are defined by

\[
\mathcal{U}^{\alpha}_u = \{u \in L^{G \times G} \mid u(x, y) = (\lambda \land \lambda^t)(x^{-1}y) \text{ for some } \lambda \in \alpha \text{-pr} \mathcal{N}(e)\} \tag{5.3}
\]

and

\[
\mathcal{U}^{\alpha}_u = \{u \in L^{G \times G} \mid u(x, y) = (\lambda \land \lambda^t)(xy^{-1}) \text{ for some } \lambda \in \alpha \text{-pr} \mathcal{N}(e)\} \tag{5.4}
\]

We should notice that we shall fix the notations \(\mathcal{U}^l, \mathcal{U}^r, \mathcal{U}^{\alpha}_u, \mathcal{U}^{\alpha}_u \) along the paper to be these defined above.

Definition 5.2 \(\mathcal{U}^b = \mathcal{U}^l \lor \mathcal{U}^r \) is called the \textit{bilateral} L-uniform structure of the L-topological group \((G, \tau)\), where \(\mathcal{U}^l \) and \(\mathcal{U}^r \) are defined in (5.1) - (5.4).

Remark 5.1 \(\mathcal{M} \) is a \(\mathcal{U}^b \)-cauchy filter if it is \(\mathcal{U}^l \)-cauchy filter and \(\mathcal{U}^r \)-cauchy filter simultaneously.

Remark 5.2 \(\text{(cf. \[8\])} \) For the L-topological group \((G, \tau)\), the elements of \(\mathcal{U}^{\alpha}_u \) (\(\mathcal{U}^{\alpha}_u \)) are left (right) invariant surroundings. Moreover, \((\mathcal{U}^{\alpha}_u)_{\alpha \in \mathcal{L}_0}\) \((\mathcal{U}^{\alpha}_u)_{\alpha \in \mathcal{L}_0}\) is a valued L-filter base for the left (right) invariant L-uniform structure \(\mathcal{U}^{\lambda}_u \) \((\mathcal{U}^{\lambda}_u) \) defined by (5.1) - (5.4), respectively.

Now, suppose that \((G, \tau)\) has a countable L-neighborhood filter \(\mathcal{N}(e) \) at the identity \(e \). Since any L-topological group, from Proposition 5.1, is uniformizable, then the left and the right invariant L-uniform structures \(\mathcal{U}^l \) and \(\mathcal{U}^r \), constructed also in Proposition 5.1, has, from Remark 5.2, a countable L-filter base \(\mathcal{U}^{\lambda}_n \) \((\mathcal{U}^{\lambda}_n) \) respectively, \(n \in \mathbb{N} \).

We may recall that if \((G, \tau)\) is an L-topological group and \(A \) is a subgroup of \(G \), then the L-topological subspace \((A, \tau_A)\) is called an L-topological subgroup \([6]\).
Proposition 5.2 Let \((A, \tau_A)\) be an \(L\)-topological subgroup of an \(L\)-topological group \((G, \tau)\), and further \(U\) be a complete \(L\)-uniform structure on \(G\) compatible with \(\tau\) and \(U_A\) is the \(L\)-uniform structure on \(A\) compatible with \(\tau_A\). Then

(d1) If \(L\) and \(M\) are \(U_A\)-cauchy filters, then \(LM\) is a \(U_A\)-cauchy filter as well,
(d2) If \(M\) is a \(U_A\)-cauchy filter, then \(M^i\) is a \(U_A\)-cauchy filter as well.

Proof. By Lemma 3.1, \(L\) and \(M\) are both \(U\)-cauchy filters too, thus \(U\) is complete implies \(L \Rightarrow x\) and \(M \Rightarrow y\) for some \(x, y \in G\), that is, \(L \leq \mathcal{N}(x)\) and \(M \leq \mathcal{N}(y)\). Now, for each \(\xi \in L^G\) we have

\[
LM(\xi) = F_{L^\pi}(L \times M)(\xi) \\
= L \times M(\xi \circ \pi) \\
= \bigwedge_{\lambda \times \mu \leq \xi \circ \pi} L(\lambda) \wedge M(\mu) \\
\geq \bigwedge_{\lambda \times \mu \leq \xi \circ \pi} \mathcal{N}(x)(\lambda) \wedge \mathcal{N}(y)(\mu) \\
= \bigwedge_{\lambda \times \mu \leq \xi \circ \pi} \text{int}_x \lambda(x) \wedge \text{int}_y \mu(y) \\
\geq \text{int}_x \xi(xy) \\
= \mathcal{N}(xy)(\xi).
\]

That is, \(LM \Rightarrow xy\) and hence, \(LM\) is a \(U\)-cauchy filter and at the same time a \(U_A\)-cauchy filter from Proposition 3.1 and Lemma 3.1.

Similarly, if \(M\) is a \(U_A\)-cauchy filter, and thus a \(U\)-cauchy filter, then \(M \Rightarrow x\), and hence by Lemma 2.1, \(M^i(\lambda) = F_{L^i}(M) \Rightarrow i(x) = x^{-1}\). This means that \(M^i\) is a \(U\)-cauchy filter and also a \(U_A\)-cauchy filter.

\[\Box\]

Definition 5.3 Let us call an \(L\)-uniform structure \(U\) of an \(L\)-topological group \((G, \tau)\) admissible if \(\tau_U = \tau\) and the conditions (d1) and (d2) in Proposition 5.2 are fulfilled.

Definition 5.4 An \(L\)-topological group \((G, \tau)\) is called complete if its bilateral \(L\)-uniform structure \(U^b\) is complete. \((G, \tau)\) is called left complete (right complete) if it is complete and its left (right) \(L\)-uniform structure \(U^l\) (\(U^r\)) is admissible.

Lemma 5.1 The inverse mapping \(i : (G, \tau) \rightarrow (G, \tau), i(x) = x^{-1}\), of any \(L\)-topological group \((G, \tau)\) is \((U^l, U^r)\)-continuous and \((U^r, U^l)\)-continuous, and moreover \(U^r = F_{L}(i \times i)(U^l), U^l = F_{L}(i \times i)(U^r)\).

Proof. For \(u \in U^l_{0}\) and for some \(\lambda \in \alpha - \text{pr} \mathcal{N}(e)\), we have

\[
(u \circ (i \times i))(x, y) = u(x^{-1}, y^{-1}) = (\lambda \land \lambda^i)(xy^{-1}) = w(x, y)
\]
for some \(w \in \mathcal{U}_a^l \). Since \(\mathcal{F}_L(i \circ i)(\mathcal{U}^l)(u) = \mathcal{U}^l(u \circ (i \circ i)) \) for all \(u \in L^{X \times X} \), then \(\mathcal{F}_L(i \circ i)(\mathcal{U}^l)(u) = \mathcal{U}^l(u) \) for all \(u \in L^{X \times X} \), and hence \(i \) is a \((\mathcal{U}^l, \mathcal{U}^l)\)-continuous. Similarly, we get that \(\mathcal{F}_L(i \circ i)(\mathcal{U}^r) = \mathcal{U}^l \), and thus \(i \) is a \((\mathcal{U}^r, \mathcal{U}^l)\)-continuous. \(\square \)

Proposition 5.3 If \(\mathcal{M} \) is a \(\mathcal{U}^l \)-cauchy filter in an \(L \)-topological group \((G, \tau)\), then \(\mathcal{M}^l \) is a \(\mathcal{U}^r \)-cauchy filter and the converse.

Proof. Since, from Lemma 5.1, the mapping \(i : (G, \mathcal{U}^l) \to (G, \mathcal{U}^r) \) is \((\mathcal{U}^l, \mathcal{U}^r)\)-continuous, then \(\mathcal{M} \) is a \(\mathcal{U}^l \)-cauchy filter implies, from Lemma 3.2, that \(\mathcal{F}_L(i)(\mathcal{M}) = \mathcal{M}^l \) is a \(\mathcal{U}^r \)-cauchy filter. Similarly, the converse follows. \(\square \)

Proposition 5.4 [15] Let \((X, \mathcal{U})\) and \((Y, \mathcal{V})\) be two \(L \)-uniform spaces and \(f : X \to Y \) a mapping. Then the mapping \(f : (X, \tau_{\mathcal{U}}) \to (Y, \tau_{\mathcal{V}}) \) is \(L \)-continuous if and only if \(f \) is \((\mathcal{U}, \mathcal{V})\)-continuous.

Here, we give this result.

Lemma 5.2 If \(\mathcal{U} \) and \(\mathcal{V} \) are two \(L \)-uniform structures on an \(L \)-topological group \((G, \tau)\) and both \(\mathcal{L} \) and \(\mathcal{M} \) are \(\mathcal{U} \)- (\(\mathcal{V} \)-)cauchy filters on \(G \), then \(\mathcal{L} \times \mathcal{M} \) is a \(\mathcal{U} \times \mathcal{U} \)- (\(\mathcal{V} \times \mathcal{V} \)-)cauchy filter on \(G \times G \).

Proof. From Proposition 2.2, \(\mathcal{L} \times \mathcal{M} \) is an \(L \)-filter on \(G \times G \). Let \(\mathcal{L} \) and \(\mathcal{M} \) be \(\mathcal{U} \)-cauchy filters on \(G \), then there exist \(A, B \subseteq G \) such that \(\mathcal{L} \leq \hat{A} \) and \(\mathcal{M} \leq \hat{B} \) and \(A, B \) are small of order every surrounding \(u \) in \((G, \mathcal{U})\). Now,

\[
(\mathcal{L} \times \mathcal{M})(u) = \bigvee_{\lambda \times \mu \leq u} (\mathcal{L}(\lambda) \wedge \mathcal{M}(\mu))
\]

\[
\geq \bigvee_{\lambda \times \mu \leq u} (\hat{A}(\lambda) \wedge \hat{B}(\mu))
\]

\[
= \bigvee_{\lambda \times \mu \leq u} \left(\bigwedge_{x \in A, y \in B} \lambda(x) \wedge \mu(y) \right)
\]

\[
= \bigvee_{\lambda \times \mu \leq u} \left(\bigwedge_{x \in A, y \in B} \lambda \times \mu(x, y) \right)
\]

\[
= u(A, B)
\]

\[
= (A \times B)(u)
\]

for all \(u \in L^{G \times G} \). That is, there exists \(A \times B \subseteq G \times G \) such that \(\mathcal{L} \times \mathcal{M} \leq (A \times B) \).

Let \(\psi : (G \times G) \times (G \times G) \to L \) be a mapping and \(u \) a surrounding in \((G, \mathcal{U})\), then from Proposition 5.4, \(\pi \) is \((\mathcal{U} \times \mathcal{U}, \mathcal{U})\)-continuous, and then

\[
\alpha \leq \mathcal{U}(u) \leq \mathcal{F}_L(\pi \circ \pi)(\mathcal{U} \times \mathcal{U})(u) = \mathcal{U} \times \mathcal{U}(u \circ (\pi \circ \pi)) = \mathcal{U} \times \mathcal{U}(\psi)
\]

and also, \(u = u^{-1} \) implies that

\[
\psi^{-1} = (u \circ (\pi \times \pi))^{-1} = u^{-1} \circ (\pi \times \pi) = u \circ (\pi \times \pi) = \psi,
\]

13
that is, \(\psi \) is a surrounding in \((G \times G, U \times U)\), and for any surrounding \(\psi \) in \((G \times G, U \times U)\), there exists a surrounding \(u \) in \((G, U)\) such that \(\psi = u \circ (\pi \times \pi) \).

Now, \(\alpha \leq u(x, y) \) for all \(x, y \in A \) and \(\beta \leq u(r, s) \) for all \(r, s \in B \) and for some \(\alpha, \beta \in L_0 \) imply that \(\psi((x, r), (y, s)) = (u \circ (\pi \times \pi))((x, r), (y, s)) = u(xr, ys) \), and by choosing \((x, y) = (e, e) \) or \((r, s) = (e, e) \), we get that \(u(xr, ys) \geq \gamma \) for some \(\gamma \in L_0 \), that is, for all \((x, r), (y, s) \in A \times B \), we have \(\psi((x, r), (y, s)) \geq \gamma \) for some \(\gamma \in L_0 \), which means that \(A \times B \) is small of order every surrounding in \((G \times G, U \times U)\), and therefore \(L \times M \) is a \(U \times U \)-cauchy filter.

Proposition 5.5 If \(U_l \) and \(U_r \) are the left and the right \(L \)-uniform structures of an \(L \)-topological group \((G, \tau) \) and both of \(L \) and \(M \) are \(U_l \)-\((U_r \)-cauchy filters, then \(LM \) has the same property.

Proof. From Lemma 5.2 and Lemma 3.2, we have \(LM = F_L \pi(L \times M) \) is a \(U_l \)-\((U_r \)-cauchy filter. \(\square \)

Accordingly, the property of being admissible depends for \(U_l \) and \(U_r \) on the fact whether condition (d2) of Proposition 5.2 is fulfilled.

Proposition 5.6 The following statements are equivalent in any \(L \)-topological group \((G, \tau) \).

1. Together with \(M \), \(M^i \) is a \(U_l \)-cauchy filter,
2. Together with \(M \), \(M^i \) is a \(U_r \)-cauchy filter,
3. Every \(U_l \)-cauchy filter is a \(U_r \)-cauchy filter,
4. Every \(U_r \)-cauchy filter is a \(U_l \)-cauchy filter,
5. \(U_l \) is admissible,
6. \(U_r \) is admissible.

Proof. (1) \(\iff \) (5) and (2) \(\iff \) (6) come from Proposition 5.5.

(1) \(\iff \) (2) follows from Proposition 5.3 and that \((M^i)^i = M \).

From (1), since \(M \) is a \(U_l \)-cauchy filter implies that \(M^i \) is a \(U_l \)-cauchy filter, and thus \(M \) is a \(U_r \)-cauchy filter according to Proposition 5.3, then (1) \(\implies \) (3); On the other hand, if \(M \) is a \(U_l \)-cauchy filter, then it is a \(U_r \)-cauchy filter and thus \(M^i \) is a \(U_l \)-cauchy filter. That is, (1) \(\iff \) (3).

(2) \(\iff \) (4) is obtained similarly. \(\square \)

Proposition 5.7 If the left \(L \)-uniform structure \(U_l \) or the right \(L \)-uniform structure \(U_r \) of an \(L \)-topological group \((G, \tau) \) is complete, then the other one is complete as well and both are admissible.
Proof. If \mathcal{U}^t is complete and \mathcal{M} is a \mathcal{U}^t-cauchy filter, then from Proposition 5.3, \mathcal{M}^t is a \mathcal{U}^t-cauchy filter, thus $\mathcal{M}^t \overset{\tau}{\rightarrow} x$ in G and then $\mathcal{M} \overset{\tau}{\rightarrow} x^{-1}$. Hence, \mathcal{U}^t is complete, and the completeness of \mathcal{U}^t follows by the same way from the completeness of \mathcal{U}.

At last, \mathcal{M} is a \mathcal{U}^t-cauchy filter implies that \mathcal{M} converges to $x \in G$, that is, $\mathcal{M} \leq \mathcal{U}^t[\dot{x}]$, and then $\mathcal{M}^t \leq \mathcal{U}^t[\dot{x}^{-1}]$ and from Proposition 3.1, \mathcal{M}^t is a \mathcal{U}^t-cauchy filter. Proposition 5.6 implies that both \mathcal{U}^t and \mathcal{U} are admissible. □

Lemma 5.3 If \mathcal{U}^b is the bilateral L-uniform structure of an L-topological group (G, τ), then i is $(\mathcal{U}^b, \mathcal{U}^b)$-continuous.

Proof. From that $\mathcal{U}^t \leq \mathcal{U}^b$ and $\mathcal{U} \leq \mathcal{U}^b$, we get that $\mathcal{F}(i \times i) \mathcal{U}^t \leq \mathcal{U}^b$ and $\mathcal{F}(i \times i) \mathcal{U} \leq \mathcal{U}^b$, and thus

$$\mathcal{F}(i \times i) \mathcal{U}^b = \mathcal{F}(i \times i) \mathcal{U}^t \vee \mathcal{F}(i \times i) \mathcal{U} \leq \mathcal{U}^b.$$

Hence, i is $(\mathcal{U}^b, \mathcal{U}^b)$-continuous. □

L-metric spaces. We use here the notion of L-metric space defined by means of the notion of L-real numbers in [12]. By an L-real number is meant [12] a convex, normal, compactly supported and upper semi-continuous L-subset of the set of all real numbers \mathbb{R}. The set of all L-real numbers is denoted by \mathbb{R}_L. \mathbb{R} is canonically embedded into \mathbb{R}_L, identifying each real number a with the crisp L-number a^\sim defined by $a^\sim(\xi) = 1$ if $\xi = a$ and 0 otherwise. The set of all positive L-real numbers is defined and denoted by:

$$\mathbb{R}^*_L = \{ x \in \mathbb{R}_L \mid x(0) = 1 \text{ and } 0^\sim \leq x \}$$

A mapping $\varrho : X \times X \rightarrow \mathbb{R}^*_L$ is called an L-metric [12] on X if the following conditions are fulfilled:

1. $\varrho(x, y) = 0^\sim$ if and only if $x = y$
2. $\varrho(x, y) = \varrho(y, x)$
3. $\varrho(x, y) \leq \varrho(x, z) + \varrho(z, y)$.

If $\varrho : X \times X \rightarrow \mathbb{R}^*_L$ satisfied the conditions (2) and (3) and the following condition:

$$(1)' \quad \varrho(x, y) = 0^\sim \text{ if } x = y$$
then it is called an L-pseudo-metric on X.

A set X equipped with an L-pseudo-metric (L-metric) ϱ on X is called an L-pseudo-metric (L-metric) space.

To each L-pseudo-metric (L-metric) ϱ on a set X is generated canonically a stratified L-topology τ_ϱ on X which has $\{ \varepsilon \circ \varrho_x \mid \varepsilon \in \mathcal{E}, \ x \in X \}$ as a base, where $\varrho_x : X \rightarrow \mathbb{R}^*_L$ is the mapping defined by $\varrho_x(y) = \varrho(x, y)$ and

$$\mathcal{E} = \{ \overline{\alpha} \wedge R^\delta | \mathbb{R}^*_L \mid \delta > 0, \ \alpha \in L \} \cup \{ \overline{\alpha} \mid \alpha \in L \},$$

here $\overline{\alpha}$ has \mathbb{R}^*_L as domain.

15
An L-topological space (X, τ) is called pseudo-metrizable (metrizable) if there is an L-pseudo-metric (L-metric) ϱ on X inducing τ, that is, $\tau = \tau_0$.

An L-pseudo-metric ϱ is called left (right) invariant if

\[
\varrho(x, y) = \varrho(ax, ay) \quad (\varrho(x, y) = \varrho(xa, ya)) \quad \text{for all } a, x, y \in X.
\]

An L-topological group (G, τ) is called separated if for the identity element e, we have

\[
\bigwedge_{\lambda \in \alpha-\mu N(e)} \lambda(e) \geq \alpha, \quad \text{and} \quad \bigwedge_{\lambda \in \alpha-\mu N(e)} \lambda(x) < \alpha \quad \text{for all } x \in G \text{ with } x \neq e \text{ and for all } \alpha \in L_0 [8].
\]

Proposition 5.8 [9] Let (G, τ) be a (separated) L-topological group. Then the following statements are equivalent.

1. τ is pseudo-metrizable (metrizable);
2. e has a countable L-neighborhood filter $N(e)$;
3. τ can be induced by a left invariant L-pseudo-metric (L-metric);
4. τ can be induced by a right invariant L-pseudo-metric (L-metric).

Definition 5.5 An L-uniform structure \mathcal{U} on a set X is called pseudo-metrizable (metrizable) if there exists a countable L-uniform base for \mathcal{U} (and \mathcal{U} is separated).

Proposition 5.9 [8] Let (G, τ) be an L-topological group. Then there exist on G a unique left invariant L-uniform structure \mathcal{U}^l and a unique right invariant L-uniform structure \mathcal{U}^r compatible with τ, constructed with (5.1) - (5.4).

Proposition 5.10 For any (separated) L-topological group (G, τ), The L-uniform structures $\mathcal{U}^l, \mathcal{U}^r$ and \mathcal{U}^b constructed in (5.1) - (5.4) are pseudo-metrizable (metrizable).

Proof. From Proposition 5.8, $\tau = \tau_{e_1} = \tau_{e_2}$ where ϱ_1 is a left, ϱ_2 is a right invariant L-pseudo-metric (L-metric) on G, and then U_{e_1} is left invariant and U_{e_2} is right invariant. From Proposition 5.9, \mathcal{U}^l and \mathcal{U}^r are unique, that is, $U_{e_1} = \mathcal{U}^l$, $U_{e_2} = \mathcal{U}^r$ and \mathcal{U}^l, \mathcal{U}^r are pseudo-metrizable (metrizable). Moreover, $\tau_{U^b} = \tau_{\mathcal{U}^l \cup \mathcal{U}^r} = \tau_{\mathcal{U}^l} \lor \tau_{\mathcal{U}^r} = \tau$. Hence, \mathcal{U}^b is pseudo-metrizable (metrizable) as well. □

Proposition 5.11 [4] Let (X, \mathcal{U}) be an L-uniform space, (A, \mathcal{U}_A) an L-uniform subspace of (X, \mathcal{U}) and $(\tau_{\mathcal{U}})_A$ the L-subtopology of the L-topology $\tau_{\mathcal{U}}$ associated with \mathcal{U}. Then the L-topology associated to \mathcal{U}_A coincides with $(\tau_{\mathcal{U}})_A$, that is, $\tau_{(\mathcal{U}_A)} = (\tau_{\mathcal{U}})_A$.

Lemma 5.4 Let (A, τ_A) be an L-topological subgroup of an L-topological subgroup (G, τ), and $\mathcal{U}^l_A, \mathcal{U}^r_A$ and \mathcal{U}^b_A the left, the right and the bilateral L-uniform structures of (G, τ). Then the corresponding L-uniform structures of (A, τ_A) are $(\mathcal{U}^l)_A, (\mathcal{U}^r)_A$ and $(\mathcal{U}^b)_A$, respectively.
Proof. From Proposition 5.11, we have \(\tau(U^l)_A = (\tau(U^l))_A = \tau_A \) and, together with \(U^l \), \((U^l)_A \) is left invariant as well, and hence \((U^l)_A \) is the left invariant \(L \)-uniform structure of \((A, \tau_A)\). By the same \((U^r)_A \) is the right invariant \(L \)-uniform structure of \((A, \tau_A)\) as well. Moreover,

\[
\tau(\xi)_A = \tau(U^l_A \cup U^r_A) = \tau(U^l_A) \vee \tau(U^r_A) = (\tau(U^l))_A \vee (\tau(U^r))_A = (\tau(U^b))_A = \tau_A.
\]

Here, we give the essential result in this section.

Definition 5.6 For a separated \(L \)-topological group \((G, \tau)\), let us call \((H, \sigma)\) a completion of \((G, \tau)\) if it is complete separated \(L \)-topological group and in which \((G, \tau)\) is a dense subgroup.

In the following we need this result.

Proposition 5.12 [8] Let \((G, \tau)\) be an \(L \)-topological group. Then the following statements are equivalent.

1. The \(L \)-topology \(\tau \) is \(GT_0 \).
2. The \(L \)-topology \(\tau \) is \(GT_2 \).
3. The \(L \)-topological group \((G, \tau)\) is separated.

Proposition 5.13 Let \((G, \tau)\) be a separated \(L \)-topological group, \(U \) an admissible \(L \)-uniform structure on \(G \), and \((H, \nu)\) the completion of \((G, U)\). Then an operation \(\pi' : H \times H \to H \) can be defined on \(H \) in a unique way so that \(H \) equipped with \(\pi' \) is a group, and \((H, \nu)\) is an \(L \)-topological group of which \(G \) is a subgroup.

Proof. Let \(\sigma = \tau_V \). If \(\pi' : H \times H \to H \) is defined by \(\pi'(y, z) = yz \) for all \(y, z \in H \), then \(\pi'|_{G \times G} = \pi \). Now, let \(L_x \) and \(M_y \) be two trace filters on \(H \) at \(x \) and \(y \) into \(H \), respectively. Since \(L_x \xrightarrow{\sigma} x \) and \(M_y \xrightarrow{\sigma} y \), that is, \(L_x(\lambda) \geq \text{int}_\sigma \lambda(x) \) and \(M_y(\mu) \geq \text{int}_\sigma \mu(y) \), then

\[
L_x M_y(\xi) = \mathcal{F}_{L} \pi' (L_x \times M_y)(\xi) = L_x \times M_y(\xi \circ \pi') \geq \bigvee_{\lambda \times \mu \leq \xi} \text{int}_\sigma \lambda(x) \wedge \text{int}_\sigma \mu(y) \geq \text{int}_\sigma \xi(xy) = N_\sigma(xy)(\xi),
\]

and then \(L_x M_y \xrightarrow{\sigma} xy \). From that \(U \) is separated and from Lemma 4.6 and Proposition 5.12, we get \((H, \sigma)\) is a \(GT_2 \)-space, and therefore these properties, using Lemma 4.3
and Remark 4.2, define \(\pi' \) in a unique way as the only continuous extension of \(\pi \) into \(H \times H \). Also, if \(i': H \to H \) is defined by \(i'(y) = y^{-1} \) for all \(y \in H \), then \(i'|_G = i \) and \(\mathcal{F}_L i'(\mathcal{L}_x) = \mathcal{L}_x^L \xrightarrow{\sigma} x^{-1} \) for any trace filter \(\mathcal{L}_x \) on \(H \), and \(i' \) is \((\sigma, \sigma)\)-continuous, that is, as in before, \(i' \) is a continuous extension of \(i \) defined in a unique manner.

Hence, \(\pi' \) is \((\sigma \times \sigma, \sigma)\)-continuous and \(i' \) is \((\sigma, \sigma)\)-continuous imply that \((H, \sigma)\) is an \(L \)-topological group in which \((G, \tau)\) is an \(L \)-topological subgroup. \(\square \)

Proposition 5.14 Under the hypothesis of Proposition 5.13, if the left, the right or the bilateral \(L \)-uniform structure of \((H, \tau_U)\) is \(\U^{\ell}, \U^{\ell^*}, \) or \(\U^{\ell^*} \) respectively, then the corresponding \(L \)-uniform structures of \((G, \tau)\) are \((\U^{\ell^*})_G, (\U^{\ell^*})_G, \) or \((\U^{\ell^*})_G. \)

Proof. It is a consequence of Lemma 5.4. \(\square \)

Proposition 5.15 Let \((G, \tau)\) be a separated \(L \)-topological group, \(\U^b \) its bilateral \(L \)-uniform structure, and \((H, \sigma = \tau_V)\) the \(L \)-topological group constructed in Proposition 5.13 with the choice \(\mathcal{V} = \mathcal{V}^b \). Then \((H, \sigma)\) is a completion of \((G, \tau)\).

Proof. If \(\mathcal{U} = \U^b \), then Proposition 5.13 can be applied and \(\U^b \) is admissible where both of \(\U^\ell \) and \(\U^r \) are admissible. Also, \(\mathcal{V} \) is a complete separated \(L \)-uniform structure such that \(\sigma = \tau_V, G \) is \(\sigma \)-dense in \(H \) and \((\mathcal{V})_G = \U^b \). On the other hand, by Proposition 5.14, for the bilateral \(L \)-uniform structure \(\mathcal{V}^b \) of the \(L \)-topological group \((H, \sigma)\) we have \(\sigma = \tau_{(\mathcal{V}^b)} \) and \((\mathcal{V}^b)_G = \U^b \). Therefore, the bilateral \(L \)-uniform structure \(\mathcal{V}^b \) of \((H, \sigma)\) is complete and \((H, \sigma)\) is a completion of \((G, \tau)\). \(\square \)

References

