ALL RAMSEY NUMBERS FOR FIVE VERTICES AND SEVEN OR EIGHT EDGES

Heiko HARBORTH and Ingrid MENGERSEN

Technische Universität Braunschweig, F.R. Germany

Received 21 March 1987

For five vertices there are four graphs with seven edges and two graphs with eight edges. For all these six graphs the exact Ramsey numbers are given. Hence, for graphs with at most five vertices only the Ramsey number of the complete graph K_5 remains unknown.

For graphs G and H the Ramsey number $r(G, H)$ is defined to be the least number p such that every 2-coloring (say green and red) of the edges of the complete graph K_p contains either a subgraph G with all its edges green, or a subgraph H with all its edges red. The diagonal Ramsey numbers $r(G, G) = r(G)$ for $G = K_n$ are of particular interest. The values $r(K_3) = 6$, and $r(K_4) = 18$ are well known, but $r(K_5)$ is still unknown; all that is presently known is that $42 \leq r(K_5) \leq 55$.

If the numbers $r(G)$ are considered only for graphs G with at most five vertices, then for all G with at most six edges the Ramsey numbers are listed in [1]. For nine edges only one graph, $K_5 - e$, exists, and $r(K_5 - e) = 22$ recently was proved in [3]. For ten edges $r(K_5)$ remains open. Thus it remains to consider (except for K_5) only graphs with seven or eight edges (Figs. 1 and 2). It will be seen that the corresponding Ramsey numbers are:

$$
\begin{align*}
 r(H_1) &= 10, & r(H_2) &= 10, & r(H_3) &= 14, & r(H_4) &= 18, \\
 r(H_5) &= 15, & r(H_6) &= 18.
\end{align*}
$$

That $r(H_5) = 14$ is already known [8]. It is the purpose of this paper to give the proofs of the remaining five Ramsey numbers. It should be noted that Hendry [7] very recently has sent an unpublished table, where all but 9 values $r(G, H)$ for G and H with five vertices are listed without proofs, and which contain the above values. Moreover, in [5] a hint was given to an announcement of the result $14 \leq r(H_5) \leq 15$ of Bondy and Chvátal; however, a proof seems not to have been published so far.

A similar number in this context is $r_5(5)$, which denotes the least number p such that every 2-coloring of the edges of K_p contains some monochromatic subgraph of the set of all graphs with 5 vertices and q edges. The values $r_5(5) = 6$, $r_4(5) = 10$, and $r_6(5) = 14$ were proved in [6].

Theorem 1. $r(H_1) = r(H_2) = 10$.

0012-365X/88/$3.50 \text{ © } 1988$, Elsevier Science Publishers B.V. (North-Holland)
Since H_1 and H_2 both contain a $K_4 - e$ as a subgraph, $r(K_4 - e) = 10$ (see [2]) implies $r(H_1) \geq 10$, and $r(H_2) \geq 10$. The proof of "≤ 10" is partitioned into Lemmas 1 to 3.

Lemma 1. Any 2-coloring of K_{10} with a monochromatic K_4 contains monochromatic graphs H_1 and H_2.

Proof. Let 1, 2, 3, 4 be the vertices of a green K_4 in a 2-coloring of K_{10}. Two green edges from one vertex of 5, 6, ..., 10 to the green K_4 yield a green H_1, and a green H_2. Thus, there are at least three red edges from each of vertices 5, 6, ..., 10 to the green K_4, so that one vertex, say 1, has at least 5 red edges, say to a subgraph F with vertices 5, 6, ..., 9. No green 4-spoked wheel W_5 in F can occur since G_1 and G_2 both are subgraphs of W_5. From this, it is immediate that F contains a red P_3, say with red edges (5, 6) and (6, 7). Finally, one vertex of 2, 3, 4 exists with red edges to 5 and 7, and this yields a red H_1, and one vertex of 2, 3, 4 exists with red edges to 5 and 6, and this yields a red H_2.

In the following, $r(v)$ and $g(v)$ denote the numbers of red and green edges incident to a vertex v in a 2-coloring of a graph. Moreover, G_v and R_v will denote the subgraphs induced by those vertices joined to v by green and red edges, respectively.

Lemma 2. Any 2-coloring of K_{10} with $r(v) \geq 6$, or $g(v) \geq 6$ for some vertex v contains monochromatic graphs H_1 and H_2.

Proof. Without loss of generality, $g(v) \geq 6$ can be assumed.

(H2): In the subgraph [1, 2, ..., 6] of G_v either a red H_2, or a green P_3 exists, say (1, 2, 3), where (1, 3) is red (Lemma 1). In [4, 5, 6] at least one edge is red
(Lemma 1). Vertices 4, 5, 6 are connected only in red to 1 and 3 to avoid a green H_2. Then, however, a red H_2 occurs.

(H1): In any 2-coloring of K_{10} consider a subgraph $F = [1, 2, \ldots, 7]$ containing at least 6 vertices of G_u.

Case 1. There exists in F a green cycle $C_i, 3 \leq i \leq 7$.

(1.1) $i = 4$: A green C_4 in F yields a green H_1.

(1.2) $i = 3$: A green $C_3 = [1, 2, 3]$ with $(v, 2)$ and $(v, 3)$ green forces $(v, 1)$ red (Lemma 1). Then only red edges from 1 to $[4, 5, 6, 7]$ avoid a green H_1. In $[4, 5, 6, 7]$ either a green C_4 occurs, or a red P_3 with red edges $(4, 5)$ and $(5, 6)$ can be assumed. Lemma 1 forces $(4, 6)$ to be green. If both edges from 2 to 3 and 4 and 6 are red, then a red H_1 occurs, otherwise a green H_1 is guaranteed.

(1.3) $i = 5$: If neither a green C_3 nor a green C_4 occur in F, then a green C_5 forces a red C_3 as its complement; moreover, each of the remaining two vertices of F has at least 4 red edges to the vertices of the green and red C_5. Then a red H_1 is guaranteed.

(1.4) $i = 6$: In F with neither a green C_3, C_4 nor C_5 all diagonals of a green C_6, so as at least 5 edges from the vertices of this C_6 to the remaining vertex of F, have to be red. Thus F contains a red H_1.

(1.5) $i = 7$: All diagonals of a green C_7 in F with neither a green C_3, C_4 nor C_5 have to be red, so that a red H_1 occurs.

Case 2. No green cycle occurs in F.

One vertex, say 1, exists with $g(1) \leq 1$. Let $[2, 3, 4, 5, 6]$ be connected only red to 1. No green C_3 and no green C_5 imply a red C_3 in $[2, 3, 4, 5, 6]$. Together with vertex 1 a red K_4 occurs, and a monochromatic H_1 follows by Lemma 1.

Lemma 3. Any 2-coloring of K_{10} with $g(v) \leq 5$ and $r(v) \leq 5$ for all vertices v contains monochromatic graphs H_1 and H_2.

Proof. There are \(\binom{10}{3} - 10 \cdot 5 \cdot 4 \cdot \frac{1}{2} = 20\) monochromatic triangles in any 2-coloring of K_{10}, if $g(v) = 5$ and $r(v) = 4$, or $g(v) = 4$ and $r(v) = 5$ for all vertices v. Thus one vertex w exists which is a vertex of at least 6 monochromatic triangles, which means that the numbers of green edges in G_w and of red edges in R_w are together at least 6. It can be assumed $g(w) = 5$, $r(w) = 4$, $G_w = [1, 2, 3, 4, 5]$, and $R_w = [6, 7, 8, 9]$.

Case 1. There are at most 3 green edges in G_w, and therefore at least 3 red edges in R_w.

(1.1) R_w contains a red C_4 or a red C_5: A red C_3 implies a red K_4, and Lemma 1 guarantees monochromatic graphs H_1 and H_2. A red C_4 implies a red wheel W_5 with red subgraphs H_1 and H_2.

(1.2) \(R_w \) contains a green triangle, and a red \(K_{1,3} \): let 7, 8, 9 be the vertices of the green triangle in \(R_w \).

In \(G_w \) a green \(P_3 \) exists, since otherwise a red \(H_1 \), and a red \(H_2 \) occur. Let (1, 2) and (2, 3) be green edges, then (1, 3) is red, or Lemma 1 guarantees monochromatic graphs \(H_1 \) and \(H_2 \).

At least one edge from 2 to 7, 8, 9, say (2, 7), is red, otherwise a green \(K_4 \) occurs (Lemma 1). If (2, 6) is red, then a red \(H_2 \) is fixed and \(r(6) \leq 5 \) implies (1, 6) and (1, 3) green, which means a green \(H_1 \). If, however, (2, 6) is green, then \(g(2) \leq 5 \) forces (2, 8) or (2, 9) red and hence a green \(H_2 \).

(1.3) \(R_w \) contains a green \(P_4 \) and a red \(P_4 \): A red \(H_2 \) is fixed at once.

As in (1.2) a green \(P_3 \) exists in \(G_w \), and again it can be assumed (1, 2) and (2, 3) green and (1, 3) red. If there is no third green edge in \(G_w \), or if the third green edge is (4, 5), then a red \(H_1 \) exists in \(G_w \). If the 3 green edges of \(G_w \) are those of a \(K_{1,3} \), then a red \(K_4 \) occurs in \(G_w \) (Lemma 1). It remains that the 3 green edges are those of a \(P_4 \), and (3, 4) can be assumed to be the third green edge. If now 2 and 3 are both connected red to 7 and 8, then avoidance of a red \(H_1 \) forces a green \(K_4 = [2, 3, 6, 9] \) (Lemma 1). Thus (2, 7) can be assumed to be green, which implies (4, 7) red, (3, 7) green, and (1, 7) red, if monochromatic graphs \(H_1 \) are avoided. At last (5, 7) red yields a red \(K_4 \) (Lemma 1), and (5, 7) green determines a green \(H_1 \) in \([w, 2, 3, 5, 7]\).

Case 2. There are at least 4 green edges in \(G_w \).

(2.1) \(G_w \) contains a green cycle \(C_i \), \(3 \leq i \leq 5 \): A green \(C_3 \) yields a green \(K_4 \) (Lemma 1). A green \(C_4 \) determines a green \(H_1 \) and a green \(H_2 \). A green \(C_5 \) in \(G_w \) forces a green \(H_2 \) at once, and avoidance of a green \(C_4 \) also forces a red \(C_5 \) in \(G_w \).

Let (1, 2), (2, 3), (3, 4), (4, 5), (1, 5) be the edges of the green \(C_5 \).

At least one edge in \(R_w \), say (6, 7), is red. Any vertex of \(R_w \) is connected by at most 2 green edges to 2 vertices of \(G_w \) which are connected by a green edge, since otherwise a green \(H_1 \) occurs. Vertices 6 and 7 each has at most 3 red edges to \(G_w \) if a red \(H_1 \) is avoided. If a red \(K_4 \) (Lemma 1) and a red \(H_1 \) are avoided, it can be assumed (1, 6), (2, 6), (3, 7), (4, 7) are green, and the remaining edges from 6 and 7 to \(G_w \) are red. Since \(r(6) \leq 5 \), it follows that (6, 8) and (6, 9) are both green. To avoid a red \(H_1 \) the edges (5, 8) and (5, 9) are green. If one edge of the triangle \([1, 8, 9]\) is green, then a green \(H_1 \) occurs in \([1, 5, 6, 8, 9]\). Finally a red triangle \([1, 8, 9]\) yields a red \(H_1 \) in \([w, 1, 7, 8, 9]\).

(2.2) The green subgraph of \(G_w \) is a tree: It follows that there are exactly 4 green edges in \(G_w \).

(2.2.1) If the green tree is a \(K_{1,4} \), then a red \(K_4 \) occurs (Lemma 1).

(2.2.2) If the green tree contains a \(K_{1,3} \), say (1, 2), (1, 3) and (1, 4) are green, then (4, 5) can also be assumed to be green, and the remaining edges of \(G_w \) are red. Then a green \(H_2 \) is already fixed. Since \(r(5) \geq 4 \), it can be assumed (5, 6) is red. This yields (4, 6) green, or a red \(H_1 \) occurs. To avoid a red \(K_4 \) (Lemma 1) either (2, 6) or (3, 6) has to be green, and in both cases a green \(H_1 \) is forced.
It remains, that the green tree is a P_5, say $(1, 2)$, $(2, 3)$, $(3, 4)$ and $(4, 5)$ are green. A green H_5 is guaranteed. Since $g(3) \geq 4$, it can be assumed $(3, 6)$ is green. Avoiding a green H_1, it follows $(1, 6)$ and $(5, 6)$ are red, and either $(2, 6)$ or $(4, 6)$ is red. In both cases, however, a red H_1 occurs.

Theorem 2. $r(H_5) = 15.$

Proof. The lower bound $r(H_5) > 14$ follows from the 2-coloring in Fig. 3, where only the green edges are drawn. It is easily seen that no green wheel $W_5 = H_5$ occurs, since for every vertex v the green subgraph of G_v is a cycle C_6, and since the red subgraph of R_v is a cycle C_7 together with both diagonals of order 2 incident to one vertex of that C_7.

To prove $r(H_5) \leq 15$, notice first that a 2-coloring of K_{15} with $g(v) = r(v) = 7$ for all vertices v is impossible. Thus for at least one vertex w it can be assumed that $g(w) \geq 8$. The rest of the proof of $r(H_5) \leq 15$ is partitioned into the following Lemmas 4 and 5.

Lemma 4. The green subgraph of any 2-coloring of K_8 without a green C_4, and without a red H_5 is isomorphic to the graph in Fig. 4.

Proof.

Case 1. $g(v) \leq 1$ for one vertex v of K_8.

Since R_v has at least 6 vertices and $r(C_4, C_4) = 6$ (see [2]), a green C_4, or with v a red H_5 is guaranteed.

Fig. 3. The green subgraph of a 2-coloring of K_{14} without a monochromatic wheel $W_5 = H_5$.
Case 2. $g(v) \geq 4$ for one vertex v of K_8.

Let $[1, 2, 3, 4]$ be a subgraph of G_v. Any green P_3 in $[1, 2, 3, 4]$ yields a green C_4, and thus $(1, 2)$, $(2, 3)$, $(3, 4)$ and $(1, 4)$ can be assumed to be red. More than one, or no green edge from each of the vertices $5, 6, 7$ to $[1, 2, 3, 4]$, forces a green C_4 or a red H_5, respectively. More than one green edge from 1, 2, 3, or 4 to $[5, 6, 7]$ forces a red H_5. Therefore $(1, 5)$, $(2, 6)$ and $(3, 7)$ can be assumed to be all possible green edges from $[1, 2, 3, 4]$ to $[5, 6, 7]$. To avoid a red H_5 in $[1, 2, 3, 4, 7]$ it follows that $(1, 3)$ is green. Then $(5, 7)$ green determines a green C_4 in $[1, 3, 5, 7]$, and $(5, 7)$ red forces a red H_5 in $[2, 3, 4, 5, 7]$.

Case 3. $g(v) = 2$ for all vertices of K_8.

To avoid a green C_4, only a green C_8 is possible, or a green C_5 together with a vertex disjoint C_3, and in both cases a red H_5 is easily found.

Case 4. $g(v) = 3$ for at least one vertex of K_8.

Then at least 2 vertices, say 1 and 2, exist with $g(1) = g(2) = 3$.

First it is assumed that for every pair u, w with $g(u) = g(w) = 3$ the graphs G_u and G_w are vertex disjoint. Then G_1 and G_2 each contain a red P_3 if no green C_4 occurs. Each vertex of G_1 or G_2 is connected by exactly one green edge to the 3 vertices of G_2 or G_1, respectively, since 3 red edges force a red H_5 and 2 green edges force a green C_4. Then the third edges in G_1 and G_2 are also red, since otherwise 2 vertices v and w exist with $g(v) = g(w) = 3$, and with a common vertex of G_v and G_w. Then, however, in G_1 together with G_2 red graphs H_5 occur.

In the remaining case 2 vertices, say 1 and 2, exist with $g(1) = g(2) = 3$ and $G_1 = [3, 4, 5]$, $G_2 = [5, 6, 7]$, since at least 2 common vertices force a green C_4. It follows that 8 is connected by at most one green edge to each of G_1 and G_2 (no green C_4), and together with $g(8) \geq 2$ it follows $(5, 8)$ is red, and it can be assumed $(4, 8)$ and $(6, 8)$ are red, and $(3, 8)$ and $(7, 8)$ are green. No red H_5 yields $(4, 6)$ green, and then no green C_4 implies $(3, 6)$, $(4, 7)$, $(5, 6)$ and $(4, 5)$ are red. If $(3, 5)$ and $(5, 7)$ are both green, then a green C_4 occurs. Thus by symmetry it can be assumed that $(3, 5)$ is red. Then a red H_5 is avoided by $(3, 4)$ green, and $g(3) \leq 3$ implies $(3, 7)$ red. The remaining 2 edges $(5, 7)$ and $(6, 7)$ are neither both red (a red H_5), nor both green $(g(7) < 3)$. At last both green subgraphs with $(5, 7)$ green, or with $(6, 7)$ green are isomorphic to that graph of Fig. 4 (unlabelled).
Lemma 5. Any 2-coloring of K_{15} with $g(w) \geq 8$ for one vertex w contains a monochromatic graph H_5.

Proof. Consider 8 vertices $1, 2, \ldots, 8$ in G_w. The induced green subgraph can be assumed to be the graph of Fig. 4 (Lemma 4). Next consider any vertex x of the graph $F = [9, 10, \ldots, 14]$.

If $(1, x)$ and $(5, x)$ are both red, and no red H_5 occurs, then green edges from x to $2, 4, 6, 8$ are forced, and also $(3, x)$ or $(7, x)$, say $(3, x)$, has to be green. Then $[w, 2, 3, 4, x]$ contains a green H_5. Thus $(1, x)$ can be assumed to be green.

If $(2, x)$ and $(8, x)$ are both red, and no red H_5 occurs, then $(3, x)$ and $(7, x)$, and $(4, x)$ or $(6, x)$, say $(4, x)$, have to be green. Then $[w, 3, 4, 7, x]$ contains a green H_5. Thus $(2, x)$ can be assumed as green edge.

It follows by symmetry, that every vertex of F is connected in green to both vertices of at least one of the edges $(1, 2), (4, 5), (5, 6)$ and $(1, 8)$. It can be assumed that 2 vertices of F, say a and b, are both connected by green edges to 1 and 2. If no green H_5 occurs, then all edges from $3, 4$ and 8 to a and b have to be red, and $[3, 4, 8, a, b]$ contains a red H_5.

Theorem 3. $r(H_4) = r(H_6) = 18$.

Proof. Since H_4 and H_6 both contain a subgraph K_4, the Ramsey number $r(K_4) = 18$ (see [2]) immediately ensures $r(H_6) \geq 18$. Since H_6 is a subgraph of H_6, it remains to prove $r(H_6) \leq 18$.

Any 2-coloring of K_{18} contains a monochromatic (say green) $K_4 = [1, 2, 3, 4]$, since $r(K_4) = 18$. Every vertex of $F_1 = [5, 6, \ldots, 18]$ is connected by at least 3 red edges to $[1, 2, 3, 4]$, if no green H_6 occurs. Altogether there are at least 42 red edges between F_1 and $[1, 2, 3, 4]$, so that at least one vertex of $[1, 2, 3, 4]$, say 1, is connected by red edges to at least 11 vertices of F_1, say to $5, 6, \ldots, 15$. Since $r(K_{13} + e, K_4) = 10$ [2], either these 11 vertices yield a green K_4, or together with 1 they yield a red H_6.

Again every vertex of $F_2 = [9, 10, \ldots, 15]$ is connected by at least 3 red edges to $[5, 6, 7, 8]$, if no green H_6 occurs. Altogether there are at least 21 red edges between F_2 and $[5, 6, 7, 8]$, so that at least one vertex of $[5, 6, 7, 8]$, say 5, is connected by red edges to at least 6 vertices of F_2, say to $9, 10, \ldots, 14$. At last either a red edge in $[9, 10, \ldots, 14]$ determines a red H_6, or $[9, 10, \ldots, 14]$ is a green K_6, which contains a green H_6.

Hence, the Ramsey numbers are now known for all graphs with at most 5 vertices, excluding the complete graph K_5.

References

