Rainbow Numbers for Cycles in Plane Triangulations

Mirko Horňák,1 Stanislav Jendrol’,1 Ingo Schiermeyer,2 and Roman Soták1

1 INSTITUTE OF MATHEMATICS
P. J. ŠAFÁRIK UNIVERSITY KOŠICE
SLOVAKIA
E-mail: mirko.hornak@upjs.sk; stanislav.jendrol@upjs.sk; roman.sotak@upjs.sk

2 INSTITUT FÜR DISKRETE MATHEMATIK UND ALGEBRA
TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG
FREIBERG, GERMANY
E-mail: ingo.schiermeyer@tu-freiberg.de

Received May 22, 2013; Revised March 26, 2014

Published online in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt.21803

Abstract: In the article, the existence of rainbow cycles in edge colored plane triangulations is studied. It is shown that the minimum number \(rb(T_n, C_3)\) of colors that force the existence of a rainbow \(C_3\) in any \(n\)-vertex plane triangulation is equal to \(\left\lfloor \frac{3n-4}{2} \right\rfloor\). For \(k \geq 4\) a lower bound and for \(k \in \{4, 5\}\) an upper bound of the number \(rb(T_n, C_k)\) is determined. © 2014 Wiley Periodicals, Inc. J. Graph Theory 00: 1–10, 2014

Keywords: edge coloring; rainbow number; rainbow subgraph; triangulation

Contract grant sponsor: Slovak Science and Technology Assistance Agency; Contract grant number: APVV-0023-10; Contract grant sponsor: Slovak VEGA; Contract grant number: 1/0652/12; Contract grant sponsor: P. J. Šafárik University within the project EXPERT; Contract grant number: ITMS 26110230056.

Journal of Graph Theory
© 2014 Wiley Periodicals, Inc.
1. INTRODUCTION

We use [1] for terminology and notation not defined here and consider finite and simple graphs only. If \(G \) is edge colored in a given way and a graph \(H \subseteq G \) contains no two edges of the same color, \(H \) is called a rainbow subgraph of \(G \) or, in other words, a rainbow (copy of) \(H \). On the other hand, if all edges of \(H \) are colored with the same color, \(H \) is called monochromatic. Let \(f(G, H) \) denote the maximum number of colors in an edge coloring of \(G \) with no rainbow copy of \(H \). The number \(f(K_n, H) \) is called anti-Ramsey number and has been introduced by Erdős, Simonovits, and Sós in [2] (and denoted there by \(f(n, H) \)). It is closely related to the rainbow number \(\text{rb}(G, H) \) representing the minimum number \(c \) of colors such that any edge coloring of \(G \) with at least \(c \) colors contains a rainbow subgraph isomorphic to \(H \). Evidently, \(\text{rb}(G, H) = f(G, H) + 1 \).

Let \(H \) be a graph and \(G \) a class of graphs containing at least one graph \(G \) such that \(H \subseteq G \). The rainbow number of \(H \) in \(G \), in symbols \(\text{rb}(G, H) \), is the minimum number of colors \(c \) such that, if \(H \subseteq G \in G \), then any edge coloring of \(G \) with at least \(c \) colors contains a rainbow copy of \(H \).

For cycles the following result (which has been conjectured by Erdős, Simonovits, and Sós [2]) has been shown by Montellano-Ballesteros and Neumann-Lara [9].

Theorem 1. If \(n \geq k \geq 3 \), then \(\text{rb}(K_n, C_k) = \left\lfloor \frac{n}{k-1} \right\rfloor \left(\binom{k-1}{2} + (r) + \left\lfloor \frac{n}{k-1} \right\rfloor \right) \), where \(r \in \{0, \ldots, k-2\} \) is the residue of \(n \) modulo \(k-1 \).

Rainbow numbers for cycles with one or two additional edges have been studied in [4,5,8,10]. Jendrol’ et al. in [7] investigated the problem of finding the minimum number of colors that forces the existence of a rainbow face in any edge coloring of a fixed plane graph. A recent survey concerning rainbow numbers is given in [3].

In this article we study the numbers \(\text{rb}(T_n, C_k) \), where \(T_n \) is the class of all plane triangulations of order \(n \). Obviously, these numbers are defined for any \(n, k \) with \(n \geq k \geq 3 \).

For the computation of \(\text{rb}(K_n, H) \) often an induction can be applied by deleting a vertex \(v \in V(K_n) \) and considering the graph \(K_n-1 = K_n - v \). However, if \(G \in T_n \), then \(G - v \) may be out of \(T_n-1 \). So, we have to look for other proof methods.

2. RAINBOW 3-CYCLES

Theorem 2. If \(n \geq 4 \), then \(\text{rb}(T_n, C_3) = \left\lfloor \frac{3n-4}{2} \right\rfloor \).

Proof. We first construct a plane triangulation \(T_n^3 \in T_n \) for all \(n \geq 6 \) and its edge coloring with \(\left\lfloor \frac{3n-6}{2} \right\rfloor \) colors that contains no rainbow 3-cycle.

In the first step, we construct a sequence of quadrangulations \(Q_r \) on \(r \geq 4 \) vertices starting with \(Q_4 \approx C_4 \). From \(Q_r \) we construct \(Q_{r+1} \) by choosing an arbitrary 4-face, inserting a new vertex in it and making it adjacent to two antipodal vertices of this 4-face. So \(Q_r \) has \(r \) vertices, \(2r - 4 \) edges, \(r - 2 \) faces and we color its edges in a rainbow way. In the second step, we insert \(r - 2 \) vertices, one in each quadrangle of \(Q_r \) and make it...
adjacent to all vertices of that quadrangle. All these four edges are colored with a new color. An operation of this kind will be called in the sequel adding a monochromatic star.

In this way we obtain a plane triangulation T^3_{2r-2} with $n = 2r - 2$ vertices whose edges are colored with $3r - 6 = \lfloor \frac{3n-6}{2} \rfloor$ colors. Adding a monochromatic star $K_{1,3}$ to one of the faces of T^3_{2r-2} results in a triangulation $T^3_n \in \mathcal{T}_n$ with $n = 2r - 1$ vertices, whose edges are colored with $3r - 5 = \lfloor \frac{3n-5}{2} \rfloor$ colors.

Finally observe that T^3_n contains no rainbow 3-cycle, which proves that $rb(T_n, C_3) \geq \lfloor \frac{3n-4}{2} \rfloor + 1$.

In the case $n = 4, 5$ we start from a 2-colored K_3 and (subsequently) add $n - 3$ monochromatic stars $K_{1,3}$. In this way we have found an edge coloring of $T_n \in \mathcal{T}_n$ with $n - 1$ colors, which means that $rb(T_n, C_3) \geq n = \lfloor \frac{3n-4}{2} \rfloor$.

For the proof of the upper bound we use the following

Claim 1. Let C_k with $k \geq 4$ be a rainbow cycle in an edge colored graph G. If $G[C_k]$ has a chord, then there exists a rainbow cycle in G of length smaller than k.

Proof. A chord in C_k spans two cycles C_{k_1}, C_{k_2} with $k_1 + k_2 = k + 2$, where $k_1, k_2 < k$. At least one of them is a rainbow cycle. ■

Let $T_n \in \mathcal{T}_n$ be edge colored using at least $\lfloor \frac{3n-4}{2} \rfloor$ colors and let $G = (V, E, F)$ be a rainbow map with $|E| = \lfloor \frac{3n-4}{2} \rfloor$ that originates from the given coloring of T_n. (From each of the $\lfloor \frac{3n-4}{2} \rfloor$ color classes one edge is taken to E.) Then, since $\lfloor \frac{3n-4}{2} \rfloor \geq n$, G contains a (rainbow) cycle C_k for some $k \geq 3$. If $k = 3$, we are done. Otherwise, we distinguish two cases.

Case 1 G has a cycle $\tilde{C} \cong C_k$ (for some $k \geq 4$) with no inner vertices. As $T_n[\tilde{C}]$ has a chord, using Claim 1 (repetitively, if necessary) we obtain a rainbow C_3 in T_n.

Case 2 Every cycle C_k in G has an inner vertex. We are going to show that this assumption leads to a contradiction.

Let $G' = (V', E', F')$ be the graph obtained from G by deleting all bridges. Denote by ω the number of components of G and by ω' the number of components of G'. Evidently, $V = V', |F'| = |F'|$ and (an easy exercise) $\omega' = \omega + |E| - |E'|$. Then each face of G' has a disconnected boundary.

Claim 2. $|F'| \leq \omega' - 1$.

Proof. For each face $f \in F'$ choose two vertices of f belonging to distinct (topological) components of the boundary of f and join them by an arc lying in f. The resulting plane graph has the number of components equal to $\omega' - |F'| \geq 1$.

By Euler’s formula we have $|E'| = |V'| + |F'|- 1 - \omega'$. Since G' has no 3-face, we have $2|E'| \geq 4|F'|$ and

$$2 + 2 \omega' = 2|V'| - 2|E'| + 2|F'| \leq 2|V'| - 2|E'| + |E'| = 2|V'| - |E'|,$$

hence

$$|F'| = |E'| - |V'| + 1 + \omega' \leq |V'| - 1 - \omega',$$

and, consequently (using Claim 2),

$$2|F'| - 2 - 2 \omega' \leq |F'| + |V'| - 3 - 3 \omega' \leq \omega' - 1 + |V'| - 3 - 3 \omega' = |V'| - 4 - 2 \omega'.$$

Journal of Graph Theory DOI 10.1002/jgt
Finally,
\[|E| = |E'| + \omega' - \omega = |V'| + |F'| - 1 - \omega' + \omega' - \omega \]
\[\leq |V'| + \frac{1}{2} (|V'| - 4 - 2 \omega') + \omega' - \omega = \frac{1}{2} (3n - 4) - \omega < \left\lceil \frac{3n - 4}{2} \right\rceil, \]
a contradiction.

3. RAINBOW 4-CYCLES

A. A lower bound

Theorem 3. If \(n \geq 42, r \in \{0, \ldots, 19\} \) and \(n \equiv 2 + r \mod 20 \), then
\(\text{rb}(T_n, C_4) \geq \frac{9}{5} (n - 2) - \frac{4}{5} r + 1. \)

Proof. Jendrol’ and Jucovič [6] have shown that for each integer \(t \geq 0 \) there exists a 3-connected plane map \(M'_t \) having only vertices of degree 4 and 6 and only 3-faces and 5-faces, in which no two faces of the same size share an edge. This map has \(n'_4 = 30 + 12t \) vertices of degree 4, \(n'_6 = 2t \) vertices of degree 6, \(f'_3 = 20 + 10t \) triangular faces and \(f'_5 = 12 + 6t \) pentagonal faces.

Then \(3f'_3 = e' = 5f'_5 = 2n'_4 + 3 \cdot 2t \), which gives \(n'_4 = \frac{e'}{2} - 3t \). Now using Euler’s formula we obtain \((f'_3 + f'_5) + (n'_4 + 2t) = e' + 2 \). Substituting from above we have \((\frac{e'}{2} + \frac{e'}{5}) + (\frac{e'}{2} - 3t + 2t) = e' + 2 \). This leads to \(\frac{e'}{2} - 2 = t \) and, consequently, to \(n'_4 = \frac{2}{5} e' + 6 \).

Let us color \(M'_t \) in a rainbow way and add a monochromatic star \(K_{1,3} \) into each 5-face of \(M'_t \). The constructed plane triangulation \(T' \) has
\[n'_4 + n'_6 + f'_5 = \left(\frac{2}{5} e' + 6 \right) + \left(\frac{e'}{15} - 4 \right) + \frac{e'}{5} = \frac{2}{5} e' + 2 = 20t + 42 \]
vertices. Finally, for \(n \equiv 2 + r \mod 20 \) with \(r \in \{0, \ldots, 19\} \) we subsequently add \(r \) monochromatic stars \(K_{1,3} \) to \(T' \) to obtain \(T'_n \in T_n \). Observe that we have used
\[e' + f'_5 + r = \frac{6}{5} e' + r = \frac{9}{5} (n - r - 2) + r = \frac{9}{5} (n - 2) - \frac{4}{5} r \]
colors on the edges of \(T'_n \) and that \(T'_n \) has no rainbow 4-cycle. □

B. An upper bound

Let \(W_d \) be a wheel with a central vertex \(v \), rim vertices \(v_i \), spokes \(s_i = vv_i \), and rim edges \(r_i = v_i v_{i+1}, i = 1, \ldots, d \) (with indices modulo \(d \)). A cycle \(C \subseteq W_d \) is said to be central if it passes through the centre of \(W_d \). In each triangulation \(T \) on at least four vertices the subgraph of \(T \) induced by the closed neighborhood of \(v \in V(T) \) is a supergraph of the graph \(W(v) \cong W_d \) with central vertex \(v \) and \(d = \text{deg}(v) \). Moreover, for an edge coloring \(\varphi \) of \(T \) we denote by \(C_{\varphi}(v) \) the set of colors used by \(\varphi \) for the edges of \(W(v) \).

The following two lemmas will be useful for our investigation.
Lemma 1. Let T be a triangulation and $\varphi : E(T) \to A$ a surjection. Then

$$\sum_{v \in V(T)} |C_\varphi(v)| \geq 4|A|.$$

Proof. Each edge of T belongs to exactly two 3-faces and therefore to exactly four wheels in T. Since φ is a surjection, any color $c \in A$ appears in $C_\varphi(v)$ for at least four distinct vertices of T. Thus, we have

$$\sum_{v \in V(T)} |C_\varphi(v)| = \sum_{v \in V(T)} \sum_{c \in A} 1 = \sum_{c \in A} \sum_{v \in V(T)} 1 \geq \sum_{c \in A} 4 = 4|A|. \qed$$

Recall that $\text{rb}(W_d, C_k)$ denotes the rainbow number of the k-cycle in the wheel W_d.

Lemma 2. \[\text{rb}(W_d, C_4) = \left\lceil \frac{4}{3} d \right\rceil + 1. \]

Proof. First, we construct a coloring $\tilde{\varphi}$ of W_d that does not create a rainbow 4-cycle. Put for $i = 1, \ldots, d$

$$\tilde{\varphi}(s_i) = i$$

$$\tilde{\varphi}(r_i) = \begin{cases}
\tilde{\varphi}(s_{i+1}), & \text{if } i \equiv 1 \pmod{3} \\
\tilde{\varphi}(s_i), & \text{if } i \equiv 2 \pmod{3} \\
d + \frac{i}{3}, & \text{if } i \equiv 0 \pmod{3}
\end{cases}$$

Since $\tilde{\varphi}$ uses $\left\lceil \frac{4}{3} d \right\rceil$ colors, we see that $\text{rb}(W_d, C_4) \geq \left\lceil \frac{4}{3} d \right\rceil + 1$.

To prove the opposite inequality suppose there is a surjection $\varphi : E(W_d) \to A$ with $|A| \geq \left\lceil \frac{4}{3} d \right\rceil + 1$ containing no rainbow C_4. Then in each of d central cycles of length 4 there are two distinct edges having the same color. Therefore, if A_i is the set of colors used i times by φ, $q_j(c)$ the number of central 4-cycles containing j edges of a color $c \in A$ and $q(c) = \sum_{j=2}^{4} q_j(c)$, then

$$d \leq \sum_{c \in A} q(c) = \sum_{i \geq 2} \sum_{c \in A_i} q(c). \quad (1)$$

Two edges colored with a color from A_2 can prevent at most one central 4-cycle from being rainbow, hence

$$\sum_{c \in A_2} q(c) \leq |A_2|. \quad (2)$$

Next, we show that $q(c) \leq i$ for every pair i, c with $i \geq 3$ and $c \in A_i$. For this purpose let $q_j(c)$ denote the number of central 4-cycles containing j edges of the color c for $1 \leq j \leq 4$. Since every edge is contained in two central 4-cycles, we deduce that

$$2i = \sum_{j=1}^{4} jq_j(c) \geq 2 \sum_{j=2}^{4} q_j(c) = 2q(c),$$

and then

$$\sum_{i \geq 3} \sum_{c \in A_i} q(c) \leq \sum_{i \geq 3} \sum_{c \in A_i} i = \sum_{i \geq 3} i|A_i|. \quad (2)$$

Journal of Graph Theory DOI 10.1002/jgt
Now from (1) and (2) it follows $|A_2| + \sum_{i \geq 3} i|A_i| \geq d$ so that, using $\sum_{i \geq 1} i|A_i| = 2d$, we obtain $|A_1| + |A_2| \leq d$. On the other hand, we have

$$2d = \sum_{i \geq 1} i|A_i| \geq |A_1| + |A_2| + 3\left(\sum_{i \geq 1} |A_i| - |A_2| - |A_1|\right) \geq -2|A_1| - 2|A_2| + 3\left(\left\lfloor \frac{4}{3} d \right\rfloor + 1\right) \geq -2d + 3\left\lfloor \frac{4}{3} d \right\rfloor + 3 \geq 2d + 1,$$

a contradiction.

Theorem 4. \(rb(T_n, C_4) \leq 2(n - 2) + 1\) for all \(n \geq 4\).

Proof. Consider \(T \in T_n\) and suppose there is a surjection \(\varphi : E(T) \to A\) with \(|A| \geq 2(n - 2) + 1\) that does not create a rainbow \(C_4\). Note that then no rainbow \(C_4\) is present in the restriction of \(\varphi\) to \(W(v), v \in V(T)\). Therefore, by Lemmas 1 and 2,

$$4|A| \leq \sum_{v \in V(T)} |C_\varphi(v)| \leq \sum_{v \in V(T)} (rb(W(v), C_4) - 1) \leq \sum_{v \in V(T)} \frac{4}{3} \deg(v) = \frac{4}{3} \cdot 2 |E(T)| = \frac{8}{3} (3n - 6) = 8(n - 2),$$

a contradiction. So, \(rb(T_n, C_4) \leq 2(n - 2) + 1\).

4. RAINBOW 5-CYCLES

A. A lower bound

Theorem 5. If \(n \geq 20\), \(r \in \{0, \ldots, 17\}\) and \(n - 2 \equiv r \pmod{18}\), then

$$rb(T_n, C_5) \geq \frac{19}{9}(n - 2) - \frac{10}{9}r + 1.$$

Proof. We start our construction with a plane triangulation \(M'\) having \(n'\) vertices, \(e'\) edges and \(f' = 2n' - 4\) faces. Replace each edge \(xy \in E(M')\) by a configuration given in Fig. 1. For the resulting map \(M''\) we have \(n'' = |V(M'')| = n' + 5e' = 16n' - 30\), and \(e'' = |E(M'')| = 12e' = 36n' - 72\).

We color the edges of \(M''\) in a rainbow way and add a monochromatic star \(K_{1,9}\) into each 9-face of \(M''\). The triangulation created so far has \(n'' + f'' = (16n' - 30) + (2n' - 4) = 18n' - 34 \geq 20\) vertices and we used in it \(e'' + f'' = (36n' - 72) + (2n' - 4) =
there is no
be the number of
i,
≤|5
≤
r
2
4
c
r=
i
∈
n
5
3
2
2
j
2
for containing
i
i
r∈
2
using
3
n
If d
and
with
C
(1
and let
1. Therefore,
d+
the number
2
1
central
i
c
monochromatic stars
W
≤
≤
1
d
4
·
c
to obtain a
A
(p
W
8
+
additional colors that form monochromatic
r
A
c
E
76
colors. Finally, we subsequently add
r
be the set of colors used
d
|W
=2
3
8
4
rainbow way
and rim edges of
W
using \(\left\lfloor \frac{d}{3} \right\rfloor \) additional colors that form monochromatic
P_3s (and one monochromatic
P_4 if
d
is odd).

The proof of the upper bound is similar to the proof of Lemma 2. Suppose there is a
surjection
φ : E(W_d) \to A
with |A| ≥ \(\left\lfloor \frac{3i}{2} \right\rfloor \) + 1 that does not create a rainbow
C_5 and let
A_i
be the set of colors used
i
times by
φ.
For a color
c \in A
let
p_j(c)
be the number of
j
central 5-cycles in
W_d
containing
j
edges colored
c,
p(c) = \sum_{j=2}^{5} p_j(c), s(c) the number of
speaks colored
c
and
r(c)
the number of rim edges colored
c.
Note that each spoke is
in exactly two central 5-cycles, each rim edge is in exactly three central 5-cycles and if
\(c \in A_i \), then
s(c) + r(c) = i.
Because of that for
\(c \in A_i \)
we have
\[2p(c) \leq 2p(c) + p_1(c) \leq \sum_{j \geq 1} j p_j(c) = 2s(c) + 3r(c) \leq 3i \]
and
\[p(c) \leq \left\lfloor \frac{3i}{2} \right\rfloor. \]
Moreover, it is easy to see that
\[p(c) \leq 2 \text{ for } c \in A_2. \]
Each of
\(d \) central 5-cycles of
W_d
contains a color
c
with
p(c) ≥ 1.
Therefore,
\[d \leq \sum_{i \geq 2} \sum_{c \in A_i} p(c) \leq 2|A_2| + 4|A_3| + \sum_{i \geq 4} \frac{3i}{2} |A_i|, \]
and, consequently,
\[\frac{2d}{3} \leq \frac{4}{3} |A_2| + \frac{8}{3} |A_3| + \sum_{i \geq 4} i |A_i|. \]
Since
\[2d = \sum_{i \geq 1} i |A_i|, \]
from the last inequality we obtain
\[\frac{4d}{3} \geq |A_1| + \frac{2}{3} |A_2| + \frac{1}{3} |A_3| = \sum_{i=1}^{3} \frac{4 - i}{3} |A_i| \]
and then
\[\left\lfloor \frac{3}{2} d \right\rfloor + 1 \leq |A| = \sum_{i=1}^{3} |A_i| + \sum_{i \geq 4} i |A_i| \leq \sum_{i=1}^{3} |A_i| + \sum_{i \geq 4} \frac{i}{4} |A_i| \]
\[= \sum_{i=1}^{3} \left(1 - \frac{i}{4} \right) |A_i| + \frac{1}{4} \sum_{i \geq 1} i |A_i| = \sum_{i=1}^{3} \frac{4 - i}{4} |A_i| + \frac{1}{4} \cdot 2d \]
\[= \frac{3}{4} \sum_{i=1}^{3} \frac{4 - i}{3} |A_i| + \frac{d}{2} \leq \frac{3}{4} \cdot \frac{4d}{3} + \frac{d}{2} = \frac{3d}{2}, \]
a contradiction. \[\blacksquare \]
In the next auxiliary result we bound from above the number $v_3(T)$ of 3-vertices in a triangulation belonging to \mathcal{T}_n.

Lemma 4. If $T \in \mathcal{T}_n$ with $n \geq 5$, then $v_3(T) \leq \lceil \frac{2(n-2)}{3} \rceil$.

Proof. The average degree of T is

$$\frac{\sum_{v \in V(T)} \deg(v)}{n} = \frac{2(3n-6)}{n} = \frac{6 - \frac{12}{n}}{n} \geq 3.$$

Thus, removing all v_3 vertices of degree 3 from T ($n \geq 5$ implies that they form an independent set) we obtain a (nonempty) triangulation T' with n' vertices and $f' = 2n' - 4$ faces. Then $n' = n - v_3$ and $v_3 \leq f' = 2(n - v_3) - 4$, which implies the desired result.

Now we are able to prove

Theorem 6. If $n \geq 5$, then $\text{rb}(\mathcal{T}_n, C_5) \leq \frac{5}{2} (n - 2) + 1$.

Proof. Proceeding by the way of contradiction suppose that for some $T \in \mathcal{T}_n$ there is A with $|A| > \frac{5}{2} (n - 2)$ and a surjection $\varphi : E(T) \to A$ with no rainbow 5-cycle. For each $v \in V(\tilde{T})$ the restriction of φ to $W(v)$ contains no rainbow C_5. Therefore if $d = \deg(v) \geq 4$, by Lemma 3 we see that $|C_\varphi(v)| \leq \text{rb}(W_d, C_5) - 1 = \lceil \frac{3d}{2} \rceil$. On the other hand for $d = 3$ we have $|C_\varphi(v)| \leq |E(W(v))| = 6$. Using Lemmas 1 and 4 then

$$4|A| \leq \sum_{v \in V(T)} |C_\varphi(v)| \leq 6v_3(T) + \sum_{v \in V(T), \deg(v) \geq 4} \left[\frac{3 \deg(v)}{2} \right] \leq 3v_3(T) + \frac{3}{2} \sum_{v \in V(T)} \deg(v) \leq \frac{3}{2} \cdot \frac{2(n-2)}{3} + \frac{3}{2} \cdot 2(3n-6) = 10(n-2),$$

which implies $|A| \leq \frac{5}{2} (n - 2)$, a contradiction.

\section{Rainbow Cycles of Length at Least 6}

Theorem 7. If $6 \leq k \leq n$, then $\text{rb}(\mathcal{T}_n, C_k) \geq (3n-6) \cdot \frac{k-3}{k-2} - \frac{k-5}{k-2}$.

Proof. Let $b = \lceil \frac{n-2}{k-2} \rceil - 1 \geq 1$. We first construct an auxiliary plane triangulation \tilde{T} on $2b + 4$ vertices as follows: $V(\tilde{T}) = X \cup Y$, where $X = \{x_1, x_2, x_3\}$, $Y = \{y_i : 1 \leq i \leq 2b + 1\}$, and

$$E(\tilde{T}) = \{x_1x_2, x_1x_3, x_2x_3\} \cup \{y_iy_{i+1} : 1 \leq i \leq 2b\} \cup \{y_{2i-1}y_{2i+1} : 1 \leq i \leq b\} \cup \{x_1y_{2i+1} : 0 \leq i \leq b\} \cup \{x_3y_i : 4 \leq i \leq 2b + 1\}$$

Expressing n in the form

$$n = (k - 2)(b + 1) + 2 - r, \ 0 \leq r \leq k - 3 \quad (3)$$

it is possible to insert $v_0 \in [k-5, k-4]$ vertices in the face $x_1x_2x_3$ and $v_i \leq k-4$ vertices in the face $y_{2i-1}y_{2i}y_{2i+1}, 1 \leq i \leq b$, in such a way that $\sum_{i=0}^{b} v_i = n - |V(\tilde{T})|$.

Journal of Graph Theory DOI 10.1002/jgt
Indeed, for that we need
\[k - 5 \leq \sum_{i=0}^{b} v_i \leq (k - 4)(b + 1); \]
since \(n - |V(\tilde{T})| = (k - 2)(b + 1) + 2 - r - (2b + 4) = (k - 4)(b + 1) - r \), the required inequalities follow from \(b \geq 1 \) and from \(0 \leq r \leq k - 3 \). We now triangulate the face with \(v_i \) inserted vertices using \(3v_i \) additional edges, \(0 \leq i \leq b \), to obtain a triangulation \(T_n^k \in T_n \). To be sure that \(T_n^k \) contains \(C_k \) we triangulate the face \(x_1x_2x_3 \) in such a way that there is a path \(P \) of length \(v_0 + 3 \) from \(x_1 \) to \(x_2 \) traversing all vertices of \(\{x_3\} \cup V_0 \), where \(V_0 \) is the set of \(v_0 \) vertices inserted in \(x_1x_2x_3 \). Then \(P \) together with either the path \(x_2y_2x_1 \) (if \(v_0 = k - 4 \)) or the path \(x_2y_2y_1x_1 \) (if \(v_0 = k - 5 \)) forms a cycle of length \(k \) in \(T_n^k \).

We color all the edges of \(T_n^k \) joining \(X \) to \(Y \) with the same color and all remaining edges of \(T_n^k \) in a rainbow way without repeating the “frequent” color. Evidently, no rainbow \(C_k \) has been created, and, because of (3), the number of colors is
\[
p = \sum_{i=0}^{b} (3v_i + 3) + 1 = 3(b + 1)(k - 3) - 3r + 1 = (3n - 6) \cdot \frac{k - 3}{k - 2} - \frac{3r}{k - 2} + 1.
\]
As a consequence from \(r \leq k - 3 \) we obtain \(\text{rb}(T_n^k, C_k) \geq p + 1 \geq (3n - 6) \cdot \frac{k - 3}{k - 2} - \frac{3r}{k - 2} \).

If \(k = n \geq 6 \), then Theorem 7 yields \(\text{rb}(T_n, C_n) \geq (3n - 6) \cdot \frac{n - 3}{n - 2} - \frac{n - 5}{n - 2} = 3n - 10 + \frac{3}{n - 2} \), hence \(\text{rb}(T_n, C_n) \geq 3n - 9 \). This bound can be improved as follows:

Proposition 1. If \(n \geq 4 \), then \(\text{rb}(T_n, C_n) \geq 3n - 7 \).

Proof. It is easy to see that for each \(n \geq 4 \) there is \(H_n \in T_n \) that is Hamiltonian and contains a vertex \(x \) of degree 3. In any edge coloring of \(H_n \), that uses \(3n - 8 \) colors in such a way that all edges incident to \(x \) have the same color, there is no rainbow (Hamiltonian) cycle \(C_n \). Thus, \(\text{rb}(T_n, C_n) \geq 3n - 7 \).

Finally, notice that for bounding \(\text{rb}(T_n, C_k) \) from above we have only the trivial bound \(3n - 6 \).

REFERENCES

Journal of Graph Theory DOI 10.1002/jgt