Note on the circumference of a graph and its complement

R.J. Faudree a, Linda Lesniak b, Ingo Schiermeyer c, *

a Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
b Mathematics and Computer Science Department, Drew University, NJ 07940, USA
c Institut für Diskrete Mathematik und Algebra, Technische Universität Bergakademie Freiberg, 09596 Freiberg, Germany

Received 6 June 2007
Accepted 30 May 2008
Available online 7 July 2008

Keywords:
Graph
Complement
Circumference
Ramsey numbers

1. Results

We use [3] for terminology and notation not defined here and consider finite and simple graphs only.

In this note we will show a lower bound for the circumference of a graph and its complement. For the proof we will consider 2-edge colorings of the complete graph and make use of the Ramsey numbers for cycles.

Theorem 1. Let G be a graph of order n ≥ 6 and circumference c(G). Let \(\widehat{G} \) be the complement of G. Then

\[
\max\{c(G), c(\widehat{G})\} \geq \left\lceil \frac{2n}{3} \right\rceil
\]

and this bound is sharp.

Proof (of lower bound). We consider a 2-edge coloring of the complete graph \(K_n \) with colors red and blue such that all edges of \(G(\widehat{G}) \) are red (blue). Let R and B denote the subgraphs of \(K_n \) induced by the red and the blue edges, respectively. We consider and apply the Ramsey number \(r(C_r, C_s) \) for two even cycles \(C_r, C_s \). The following is known:

Theorem 2 ([4,7]). If \(4 \leq s \leq r \) with \(s \) and \(r \) even, \((r, s) \neq (4, 4) \), then

\[
r(r, s) = r(C_r, C_s) = r + \frac{1}{2}s - 1.
\]

It is easy and straightforward to verify the results for \(6 \leq n \leq 9 \). We now consider three cases, and assume that \(n \geq 10 \).

Case \(n = 3k \)

Since \(r(2k, 2k) = 2k + k - 1 = 3k - 1 \leq n \); \(3k = n \) it follows that there is a red \(C_{2k} \) or a blue \(C_{2k} \). Hence \(\max\{c(G), c(\widehat{G})\} \geq 2k = \left\lceil \frac{2n}{3} \right\rceil \).

Case \(n = 3k + 2 \)

Since \(r(2k + 2, 2k + 2) = 2k + 2 + k + 1 - 1 = 3k + 2 \) it follows that there is a red \(C_{2k+2} \) or a blue \(C_{2k+2} \). Hence \(\max\{c(G), c(\widehat{G})\} \geq 2k + 2 = \left\lceil \frac{2n}{3} \right\rceil \).

* Corresponding author.
E-mail addresses: rfaudree@memphis.edu (R.J. Faudree), llesniak@drew.edu (L. Lesniak), schierme@tu-freiberg.de (I. Schiermeyer).

0012-365X/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.05.041
Case \(n = 3k + 1\).
In this case \(\lfloor \frac{n}{k} \rfloor = 2k + 1\). We have \(r(2k + 2, 2k) = 2k + 2 + k - 1 = 3k + 1\). Assume there is no red \(C_{2k+2}\), but a blue \(C_{2k}\). Denote the blue cycle by \(C\).

Let us consider a graph \(G\) which has a maximum number of red edges. Thus, any additional red edge increases the circumference in \(R\) to \(2k + 1\). The property “\(G\) has circumference \(c(G)\)” is \(n\)-stable (see [2] and the Bondy–Chvátal closure concept [1]). Hence for every blue edge \(xy\) we have \(d^B(x) + d^B(y) \geq n\); where \(d^B(z)\) denotes the degree of \(z\) in the red graph \(R\).

Let \(H = \overline{C} - V(C)\). Then \(|V(H)| = k + 1\). We now distinguish three subcases.

Subcase 1: \(H\) contains a blue cycle

Then for every edge \(xy\) of this blue cycle \(C'\) there is a blue \(xy\)-path in \(H\) of order \(\geq 3\). Now let \(xy\) be an arbitrary edge of this blue cycle \(C'\).

Claim 1. \(d^B_i(x) + d^B_i(y) \leq k\)

Let the vertices of the blue cycle \(C\) be denoted by \(v_1, v_2, \ldots, v_{2k}\). Choose an orientation of \(C\) such that for every vertex \(v_i\) its successor is \(v_{i+1}\). If \(v_1 \in N^B(x) \cap N^B(y)\), then \(v_{k+1} \in N^B(x) \cup N^B(y)\), since \(C\) is a longest blue cycle. If \(v_1 \in N^B(x) \setminus N^B(y)\), then \(v_{k+1} \in N^B(y)\) and \(v_{k+1} \in N^B(x)\). Hence \(|N^B(x) \cap \{v_1, v_{k+1}, v_{k+2}, v_{k+3}\}| + |N^B(y) \cap \{v_1, v_{k+1}, v_{k+2}, v_{k+3}\}| \leq 2\) for every vertex \(v_i \in (V(C)).\) Therefore, \(d^B_i(x) + d^B_i(y) \leq \frac{2k}{2} = k\).

Thus \(d^B(x) + d^B(y) \leq k + 2k = 3k\). If \(d^B(x) + d^B(y) \geq 3k\), then \(d^B(x) + d^B(y) \geq 3k + 1\), a contradiction. So assume that \(d^B(x) + d^B(y) = 3k\). Then \(d^B_i(x) = d^B_i(y) = k\). Hence \(K_{k+1} - K_1 \subseteq H, \) (i.e. the edge \(xy\) is contained in a “blue book”). Let \(z \in N^B(x) \cap N^B(y)\). Then the edge \(xz\) is contained in a blue \(C_d\) for \(k \geq 3\). Now \(d^B(x) + d^B(z) \leq k\), since this follows immediately from the argument used in the previous claim for appropriate choice of \(x\) and \(z\). This implies \(d^B(x) + d^B(z) \leq k + (2k - 1) = 3k - 1\), and so \(d^B(x) + d^B(z) \geq 3k + 1\), a contradiction.

Case 2 \(H\) contains an induced blue forest

Let \(x\) and \(y\) be endvertices of a path in the blue forest. As in the previous case we obtain \(|N^B(x) \cap \{v_1, v_{k+1}, v_{k+2}\}| + |N^B(y) \cap \{v_1, v_{k+1}, v_{k+2}\}| \leq 2\) for every vertex \(v_i \in (V(C))\). Hence \(d^B(x) + d^B(y) = d^B_i(x) + d^B_i(y) \geq d^B_i(x) + d^B_i(y) \leq \frac{2k}{2} + k + 1\); 3k; a contradiction.

Case 3 \(H\) contains no blue edges

Claim 2. Consecutive vertices \(v_i, v_{i+1} \in (V(C))\), cannot both have blue neighbors in \(H\).

Suppose there are two consecutive vertices \(x_1, x_2 \in (V(C))\) and two vertices \(y_1, y_2 \in (V(H))\) such that \(x_1y_1, x_2y_2 \in (E(B))\).
Since \(C\) is a longest cycle, we have (using an Ore type argument [6]) \(d^B_i(x_1) + d^B_i(y_2) \leq 2k\), and \(d^B_i(x_2) + d^B_i(y_1) \leq 2k\). Since \(C\) is a longest cycle we have \(N^B_i(x_1) \cap N^B_i(x_2) = \emptyset\). Hence \(d^B_i(x_1) + d^B_i(x_2) + d^B_i(y_1) + d^B_i(y_2) \leq 2(2k) + k + 1 = 5k + 1\); 6k. Therefore, \(d^B(x_1) + d^B(y_1) \geq 3k\) or \(d^B(x_2) + d^B(y_2) \geq 3k\), a contradiction.

Hence, there are at least \(k\) vertices of the cycle \(C\) which have no blue neighbors in \(H\). But then we can find a red \(C_{2k+1}\) using these \(k\) vertices along with the \(k + 1\) vertices of \(H\), a contradiction.

2. Examples and conjectures

Example 1. Consider a complete graph \(K_n\) of order \(n = p(k + 1)\) with vertex set \(V(K_n) = \cup_{i=1}^{k+1} V_i\), with \(|V_i| = p\) for each \(i\).
Color all edges of \(G(V_i)\) with color \(i\) for \(1 \leq i \leq k\) and all edges of \(G(V_{k+1})\) with color \(k\). For every pair \(i, j\) with \(1 \leq i \neq j \leq k + 1\) all edges between \(V_i\) and \(V_j\) are colored with color \(i\). Denote this \(k\)-edge colored graph by \(F_k(n)\).

The edges of the graph \(F_k(n)\) are colored with \(k\) colors, and the largest monochromatic cycle in \(F_k(n)\) has order \(2n\). For \(k = 2\), this implies the bound in Theorem 1 is sharp. For \(k = 3\), this implies that one cannot expect a monochromatic cycle of order greater than \(n/2\) in a 3-edge colored \(K_n\). Andras Gyárfás drew our attention to the following example.

Example 2. For \(k \geq 2\) the affine plane of index \(k\) and order \(k^2\) induces a \((k + 1)\)-coloring of the edges of a complete graph \(K_{k^2} + k + 1\) subgraphs \(H_i\) of color \(i\) for \(1 \leq i \leq k + 1\) such that each \(H_i = kK_k\). Let \(G_k(n)\) be the graph of order \(n\) obtained by replacing each vertex of \(K_{k^2} + k + 1\) by a \(K_{n/(k^2)}\), extending the coloring of \(K_{k^2} + k + 1\) to \(G_k(n)\), and arbitrarily coloring the edges in each of the \(K_{k^2} + k + 1\).

The edges of the graph \(G_k(n)\) are colored with \(k + 1\) colors, and the largest monochromatic cycle in \(F_k(n)\) has order \(n/k\). This leads to the following conjecture.

Conjecture 1. For \(k \geq 2\) let \(K_n\) be a \((k + 1)\)-edge colored graph and let \(G_i\) be the graph induced by color \(i\) for \(1 \leq i \leq k + 1\).

Then \(\max\{c(G_1), c(G_2), \ldots, c(G_{k+1})\} \geq \frac{n}{k}\).

Some support for the conjecture in the case when \(k = 2\) is given by the following theorem of Gyárfás, Ruszinkó, Sárközy, and Szemerédi, which implies there is a monochromatic path with at least \(n/2\) vertices in a 3-edge colored \(K_n\).

Theorem 3 ([5]). For \(m\) sufficiently large, \(r(P_m, P_m, P_m) < 2m\).
Acknowledgements

We would like to thank the referees for some valuable comments. Part of this research was done while the third author was on sabbatical visiting the University of Memphis. Hospitality is gratefully acknowledged.

References