CHARACTER SUMS AND DETERMINISTIC POLYNOMIAL ROOT FINDING IN FINITE FIELDS

JEAN BOURGAIN, SERGEI V. KONYAGIN, AND IGOR E. SHPARLINSKI

Abstract. We obtain a new bound of certain double multiplicative character sums. We use this bound together with some other previously obtained results to obtain new algorithms for finding roots of polynomials modulo a prime p.

1. Introduction

Let \mathbb{F}_q be a finite field of q elements of characteristic p. The classical algorithm of Berlekamp [1] reduces the problem of factoring polynomials of degree n over \mathbb{F}_q to the problem of factoring squarefree polynomials of degree n over \mathbb{F}_p that fully split in \mathbb{F}_p, see also [7, Chapter 14]. Shoup [14, Theorem 3.1] has given a deterministic algorithm that fully factors any polynomial of degree n over \mathbb{F}_p in $O(n^{2+o(1)}p^{1/2}(\log p)^2)$ arithmetic operations over \mathbb{F}_p; in particular it runs in time $n^2p^{1/2+o(1)}$. Furthermore, Shoup [14, Remark 3.5] has also announced an algorithm of complexity $O(n^{3/2+o(1)}p^{1/2}(\log p)^2)$ for factoring arbitrary univariate polynomials of degree n over \mathbb{F}_p.

We remark, that although the efficiency of deterministic polynomial factorisation algorithms falls far behind the fastest probabilistic algorithms, see, for example, [8, 10, 11], the question is of great theoretic interest.

Here we address a special case of the polynomial factorisation problem when the polynomial f fully splits over \mathbb{F}_p (as we have noticed there is a polynomial time reduction between factoring general polynomials and polynomials that split over \mathbb{F}_p). That is, here we deal with the root finding problem. We also note that in order to find a root (or all roots) of a polynomial $f \in \mathbb{F}_p[X]$, it is enough to do the same for the polynomial $\gcd(f(X), X^{p-1} - 1)$ which is squarefree fully splits over \mathbb{F}_p.

We consider two variants of the root finding problem:

2010 Mathematics Subject Classification. 11L40, 11T06, 11Y16, 68Q25.

Key words and phrases. finite field, root finding, character sums, multiplicative energy.
Given a polynomial \(f \in \mathbb{F}_p[X] \), find all roots of \(f \) in \(\mathbb{F}_p \).

Given a polynomial \(f \in \mathbb{F}_p[X] \), find at least one root of \(f \) in \(\mathbb{F}_p \).

For the case of finding all roots we show that essentially the initial approach of Shoup [14] together with the fast factor refinement procedure of Bernstein [2] lead to an algorithm of complexity \(np^{1/2+o(1)} \). In fact this result is already implicit in [14] but here we record it again with a very short proof. We use this as a benchmark for our algorithm for the second problem.

In the case of finding just one root, we obtain a faster algorithm, which is based on bounds of double multiplicative character sums

\[
T_\chi(I,S) = \left| \sum_{u \in I} \sum_{s \in S} \chi(u + s) \right|^2,
\]

where \(I = \{1, \ldots, h\} \) is an interval of \(h \) consecutive integers, \(S \subseteq \mathbb{F}_p \) is an arbitrary set and \(\chi \) is a multiplicative character of \(\mathbb{F}_p^* \). More precisely, here we use a new bound on \(T_\chi(I,S) \) to improve the bound \(np^{1/2+o(1)} \) in the case when \(n \) is large enough, namely if it grows as a power of \(p \). We believe that our new bound of the sums \(T_\chi(I,S) \) as well as several auxiliary results (based on some methods from additive combinatorics) are of independent interest as well.

Throughout the paper, any implied constants in symbols \(O \) and \(\ll \) may depend on two real positive parameters \(\varepsilon \) and \(\delta \) and are absolute otherwise. We recall that the notations \(U = O(V) \) and \(U \ll V \) are all equivalent to the statement that \(|U| \leq cV \) holds with some constant \(c > 0 \). We also use \(U \asymp V \) to denote that \(U \ll V \ll U \).

2. Bounds on the Number Solutions to Some Equations and Character Sums

2.1. Uniform distribution and exponential sums. The following result is well-known and can be found, for example, in [12, Chapter 1, Theorem 1] (which is a more precise form of the celebrated Erdős–Turán inequality).

Lemma 1. Let \(\xi_1, \ldots, \xi_M \) be a sequence of \(M \) points of the unit interval \([0, 1]\). Then for any integer \(K \geq 1 \), and an interval \([0, \rho] \subseteq [0, 1] \), we have

\[
\# \{ m = 1, \ldots, M : \gamma_m \in [0, \rho] \} - \rho M \ll \frac{M}{K} + \sum_{k=1}^{K} \left(\frac{1}{K} + \min\{\rho, 1/k\} \right) \left| \sum_{m=1}^{M} \exp(2\pi ik\xi_m) \right|.
\]
2.2. Preliminary bounds. Throughout this section we fix some set \(S \subseteq \mathbb{F}_p \) of and interval \(I = \{1, \ldots, h\} \) of \(h \leq p^{1/2} \) consecutive integers.

We say that a set \(D \subseteq \mathbb{F}_p \) is \(\Delta \)-spaced if no elements \(d_1, d_2 \in D \) and positive integer \(k \leq \Delta \) satisfy the equality \(d_1 + k = d_2 \).

Here we always assume that the set \(S \) is \(h \)-spaced.

Finally, we also fix some \(L \) and denote by \(\mathcal{L} \) the set of primes of the interval \([L, 2L]\).

We denote

\[
\mathcal{W} = \left\{ (u_1, u_2, \ell_1, \ell_2, s_1, s_2) \in I^2 \times \mathcal{L}^2 \times S^2 : \frac{u_1 + s_1}{\ell_1} \equiv \frac{u_2 + s_2}{\ell_2} \pmod{p} \right\}.
\]

The following result is based on some ideas of Shao [13].

Lemma 2. If \(L < h \) and \(2hL < p \) then

\[
\#\mathcal{W} \ll (\#ShL)^2 p^{-1} + \#ShLp^{o(1)}.
\]

Proof. Clearly

(1) \[
\#\mathcal{W} = \#\mathcal{W}^* + O(\#ShL),
\]

where

\[
\mathcal{W}^* = \{(u_1, u_2, \ell_1, \ell_2, s_1, s_2) \in \mathcal{W} : \ell_1 \neq \ell_2\}.
\]

Denote

\[
\mathcal{S} = S + I = \{u + s : (u, v) \in I \times S\}, \quad I = \{-h, \ldots, h\}.
\]

Clearly

\[
\mathcal{W}^* \ll h^{-2} \left\{ (u_1, u_2, \ell_1, \ell_2, s_1, s_2) \in I^2 \times \mathcal{L}^2 \times \mathcal{S}^2 : \ell_1 \neq \ell_2,
\frac{u_1 + s_1}{\ell_1} \equiv \frac{u_2 + s_2}{\ell_2} \pmod{p} \right\}.
\]

Note that for fixed \(\ell_1, \ell_2 \in \mathcal{L}, \ell_1 \neq \ell_2 \) and integer \(x, |x| \leq 2hL \) the congruence

\[u_1\ell_2 - u_2\ell_1 \equiv x \pmod{p}\]

is equivalent to the equation \(u_1\ell_2 - u_2\ell_1 = x \) (since \(2hL < p \)) and thus has \(O(h/L) \) solutions. We rewrite

\[
\frac{u_1 + s_1}{\ell_1} \equiv \frac{u_2 + s_2}{\ell_2} \pmod{p}
\]

as

\[
s_1\ell_2 - s_2\ell_1 \equiv x \equiv u_1\ell_2 - u_2\ell_1 \pmod{p}.
\]
One can consider that $x \geq 0$. We now bound the cardinality of
\[U = \left\{ (x, \ell_1, \ell_2, s_1, s_2) \in [0, 2hL] \times \mathbb{L}^2 \times \mathbb{S}^2 : s_1 \ell_2 - s_2 \ell_1 \equiv x \pmod{p} \right\}. \]

The above argument shows that
\[W^* \leq h^{-2} (h/L) \#U = h^{-1} L^{-1} \#U. \]

We now apply Lemma 1 to the sequence of fractional parts
\[\left\{ \frac{s_1 \ell_2 - s_2 \ell_1}{p} \right\}, \quad (\ell_1, \ell_2, s_1, s_2) \in \mathbb{L}^2 \times \mathbb{S}^2, \]
with $M = (\#L)^2 (\#S)^2$, $\rho = 2hLp^{-1}$ and $K = \lceil \rho^{-1} \rceil$. This yields the bound
\[\#U \ll (\#L)^2 (\#S)^2 \rho \]
\[+ \rho \sum_{k=1}^{K} \left| \left| \sum_{(\ell_1, \ell_2, s_1, s_2) \in \mathbb{L}^2 \times \mathbb{S}^2} \exp \left(2\pi i k (s_1 \ell_2 - s_2 \ell_1) \right) \right| \right|^2 = (\#L)^2 (\#S)^2 \rho + \rho \sum_{k=1}^{K} \left| \left| \sum_{(\ell, s) \in \mathbb{L} \times \mathbb{S}} \exp \left(2\pi i k s \ell \right) \right| \right|^2. \]

Using the Cauchy inequality, denoting $r = k\ell$ and then using the classical bound on the divisor function, we derive
\[\#U \ll (\#L)^2 (\#S)^2 \rho + \rho \sum_{k=1}^{K} \left| \left| \sum_{\ell \in \mathbb{L}} \sum_{s \in \mathbb{S}} \exp \left(2\pi i k s \ell \right) \right| \right|^2 \]
\[\ll (\#L)^2 (\#S)^2 \rho + \rho \sum_{r=0}^{p-1} \left| \sum_{s \in \mathbb{S}} \exp \left(2\pi i r s \right) \right|^2, \]
since $r \in [1, 2KL] \subseteq [0, p-1]$ provided that p is sufficiently large. Thus, using the Parseval inequality and recalling the values of our parameters, we obtain
\[\#U \ll hL^3 (\#S)^2 p^{-1} + hL^2 \#S \rho^{\alpha(1)} \]

Using the trivial bound $\#S \ll \#S h$, we obtain
\[\#U \ll h^3 L^3 (\#S)^2 p^{-1} + h^2 L^2 \#S \rho^{\alpha(1)} \]

Thus, recalling (1) and (2) we conclude the proof. \qed
Denote
\[W(x, y) = \# \left\{ (u, \ell, s, t) \in I \times L \times S^2 : \frac{u + s}{\ell} = x, \frac{u + s_2}{\ell} = y \right\}. \] (3)

Lemma 3. We have
\[\sum_{x, y \in \mathbb{F}_p} W(x, y)^2 \ll (\#S)^3(hL)^2p^{-1} + (\#S)^2hLp^\omega(1). \]

Proof. Clearly
\[\sum_{x, y \in \mathbb{F}_p} W(x, y)^2 = \# \left\{ (u_1, u_2, \ell_1, s_1, t_1, s_2, t_2) \in I^2 \times L^2 \times S^4 : \frac{u_1 + s_1}{\ell_1} = \frac{u_2 + s_2}{\ell_2}, \frac{u_1 + t_1}{\ell_1} = \frac{u_2 + t_2}{\ell_2} \right\}. \]

For each \((u_1, u_2, \ell_1, s_1, s_2) \in W\) and \(t_1 \in S\) there is only one possible values for \(t_2\). The result now follows from Lemma 2. \(\square\)

2.3. **Character sum estimates.** The following estimate improves and generalises [4, Lemma 14] and [5, Theorem 8].

Lemma 4. For any positive \(\delta > 0\) there is some \(\eta > 0\) such that for an interval \(I = \{1, \ldots, h\}\) of \(h \leq p^{1/2}\) consecutive integers and any \(h\)-spaced set \(S \subseteq \mathbb{F}_p\) with
\[\#S h > p^{1/2+\delta}, \]
for any nontrivial multiplicative character \(\chi\) of \(\mathbb{F}_p^*\) we have
\[T_\chi(I, S) \ll (\#S)^2hp^{-\eta}. \]

Proof. We choose a sufficiently small \(\varepsilon\) and define
\[L = \left\lfloor hp^{-2\varepsilon} \right\rfloor \quad \text{and} \quad T = \left\lfloor p^{\delta} \right\rfloor. \]

As in Section 2.2, we denote by \(\mathcal{L}\) the set of primes of the interval \([L, 2L]\). Note that
\[(\#S)^2TL \ll (\#S)^2hp^{-\varepsilon}. \]

Then
\[T_\chi(I, S) = \frac{1}{(T + 1)\#\mathcal{L}^\sigma} + O((\#S)^2TL) \]
(4)
\[= \frac{1}{(T + 1)\#\mathcal{L}^\sigma} + O((\#S)^2hp^{-\varepsilon}), \]
where

\[
\sigma = \sum_{\ell \in \mathcal{L}} \sum_{t=0}^{T} \sum_{u \in \tilde{I}} \sum_{s_1, s_2 \in S} \chi(u + s_1 + t\ell) \overline{\chi}(u + s_2 + t\ell)
= \sum_{t=0}^{T} \sum_{\ell \in \mathcal{L}} \sum_{s_1, s_2 \in S} \chi\left(\frac{u + s_1}{\ell} + t\right) \overline{\chi}\left(\frac{u + s_2}{\ell} + t\right).
\]

Furthermore,

\[
\sigma = \sum_{x, y \in \mathbb{F}_p} W(x, y) \sum_{t=0}^{T} \chi(x + t) \overline{\chi}(y + t),
\]

where \(W(x, y)\) is defined by (3).

Therefore, for any integer \(\nu \geq 1\) by the Hölder inequality, we have

\[
\sigma^{2\nu} \leq \sum_{x, y \in \mathbb{F}_p} W(x, y)^2 \left(\sum_{x, y \in \mathbb{F}_p} W(x, y)\right)^{2\nu - 2} \sum_{x, y \in \mathbb{F}_p} \left| \sum_{t=0}^{T} \chi(x + t) \overline{\chi}(y + t) \right|^{2\nu}.
\]

(5)

Clearly

\[
\sum_{x, y \in \mathbb{F}_p} W(x, y) \ll \#I \#\mathcal{L} (\#S)^2 \ll (\#S)^2 hL.
\]

(6)

We also have

\[
\sum_{x, y \in \mathbb{F}_p} \left| \sum_{t=0}^{T} \chi(x + t) \overline{\chi}(y + t) \right|^{2\nu} = \sum_{t_1, \ldots, t_{2\nu} = 0}^{T} \left| \sum_{x \in \mathbb{F}_p} \prod_{i=1}^{\nu} \chi(x + t_i) \prod_{i=\nu + 1}^{2\nu} \overline{\chi}(x + t_i) \right|^2.
\]

Using the Weil bound in the form given by [9, Corollary 11.24] if \((t_1, \ldots, t_{\nu})\) is not a permutation of \((t_{\nu+1}, \ldots, t_{2\nu})\) and the trivial bound otherwise, we derive

\[
\sum_{x, y \in \mathbb{F}_p} \left| \sum_{t=0}^{T} \chi(x + t) \overline{\chi}(y + t) \right|^{2\nu} \ll T^{2\nu} p + T^\nu p^2.
\]
(see also [9, Lemma 12.8] that underlies the Burgess method). Taking \(\nu \) to be large enough so that \(T^{2\nu}p > T^\nu p^2 \) we obtain

\[
(7) \quad \sum_{x,y \in \mathbb{F}_p} \left| \sum_{t=0}^T \chi(x+t) \chi(y+t) \right|^{2\nu} \ll T^{2\nu}p.
\]

Substituting (6) and (7) in (5) we obtain

\[
\sigma^{2\nu} \ll T^{2\nu}p \left((\#S)^2 hL \right)^{2\nu-2} \sum_{x,y \in \mathbb{F}_p} W(x,y)^2.
\]

We now apply Lemma 3 to derive

\[
(8) \quad \sigma^{2\nu} \ll T^{2\nu}p \left((\#S)^2 hL \right)^{2\nu-2} \left((\#S)^3 hLp^{-1} + (\#S)^2 hLp^{o(1)} \right)
\ll T^{2\nu}p^{1+o(1)} \left((\#S)^2 hL \right)^{2\nu} \left((\#S)^{-1} p^{-1} + (\#S)^{-2} h^{-1} L^{-1} \right).
\]

Taking a sufficiently small \(\epsilon > 0 \), we obtain

\[
(\#S)^2 hL > p^{1+\epsilon}
\]

which together with (4) concludes the proof. \(\square \)

3. Root Finding Algorithms

3.1. Finding all roots. Here we address the question of finding all roots of a polynomial \(f \in \mathbb{F}_p[X] \).

We refer to [7] for description of efficient (in particular, polynomial time) algorithms of polynomial arithmetic over finite fields such as multiplication, division with remainder and computing the greatest common divisor.

Theorem 5. There is a deterministic algorithm that, given a squarefree polynomial \(f \in \mathbb{F}_p[X] \) of degree \(n \) that fully splits over \(\mathbb{F}_p \), finds all roots of \(f \) in time \(np^{1/2+o(1)} \).

Proof. We set

\[
h = \left[p^{1/2}(\log p)^2 \right].
\]

We now compute the polynomials

\[
(9) \quad g_u(X) = \gcd \left(f(X), (X+u)^{(p-1)/2} - 1 \right), \quad u = 0, \ldots, h.
\]

We remark that to compute the greatest common divisor in (9) we first use repeated squaring to compute the residue

\[
H_u(X) \equiv (X+u)^{(p-1)/2} \pmod{f(X)}, \quad \deg H_u < n
\]

and then compute

\[
g_u(X) = \gcd \left(f(X), H_u(X) \right).
\]
If \(a \in \mathbb{F}_p \) is a root of \(f \) then \((X - a) | g_u(X)\) if and only if \(a + u \neq 0 \) and \(a + u \) is a quadratic residue in \(\mathbb{F}_p \).

We now note that the Weil bound on incomplete character sums implies that for any two roots \(a, b \in \mathbb{F}_p \) of \(f \) there is \(u \in [0, h] \) such that
\[
(X - a) | g_u(X) \quad \text{and} \quad (X - b) \nmid g_u(X).
\]

Note that the argument of [15, Theorem 1.1] shows that one can take \(h = \left\lfloor Cp^{1/2} \right\rfloor \) for some absolute constant \(C > 0 \) just getting some minor speed up of this and the original algorithm of Shoup [14].

We now recall the factor refinement algorithm of Bernstein [2], that, in particular, for any set of \(N \) polynomial \(G_1, \ldots, G_N \in \mathbb{F}_p[X] \) of degree \(n \) over \(\mathbb{F}_p \) in time \(O(nNp^{o(1)}) \) finds a set of relatively prime polynomials \(H_1, \ldots, H_M \in \mathbb{F}_p[X] \) such that any polynomial \(G_i, i = 1, \ldots, N, \) is a product of powers of the polynomials \(H_1, \ldots, H_M \). Applying this algorithm to the family of polynomials \(g_u, u = 0, \ldots, h, \) and recalling (10), we see that it outputs the set of polynomials with
\[
\{H_1, \ldots, H_M\} = \{X - a : f(a) = 0\},
\]
which concludes the proof. \(\square \)

3.2. Finding one root

Here we give an algorithm that finds one root of a polynomial over \(\mathbb{F}_p \). It is easy to see that up to a logarithmic factor this problem is equivalent to a problem of finding any nontrivial factor of a polynomial.

Lemma 6. There is a deterministic algorithm that, given a squarefree polynomial \(f \in \mathbb{F}_p[X] \) of degree \(n \) that fully splits over \(\mathbb{F}_p \), finds in time \((n + p^{1/2})p^{o(1)} \) a factor \(g \mid f \) of degree \(1 \leq \deg g < n \).

Proof. It suffices to prove that for any \(\delta > 0 \) there is a desirable algorithm with running time at most \((n + p^{1/2})p^{\delta + o(1)} \). If \(n \leq p^{\delta} \) then the result follows from Theorem 5. Now assume that \(\delta \) is small and \(n > p^{\delta} \). Let
\[
h = \left\lfloor (1 + n^{-1}p^{1/2})p^{\delta/2} \right\rfloor.
\]

We start with computing the polynomials
\[
gcd(f(X), f(X + u)), \quad u = 1, \ldots, h,
\]
see [7] for fast greatest common divisor algorithms. Clearly, if \(f \) has two distinct roots \(a \) and \(b \) with \(|a - b| \leq h \) then one of the polynomials (11) gives a nontrivial factor of \(f \). It is also easy to see that the complexity of this step is at most \(nhp^{o(1)} \).
If this step does not produce any nontrivial factor of f then we note that the set S of the roots of f is h-spaced. We now again compute the polynomials $g_u(X)$, given by (9), for every $u \in \mathcal{I}$.

So, we see that for the above choice of h the condition of Lemma 4 holds and implies that there is $u \in \mathcal{I}$ with

$$\left| \sum_{s \in S} \left(\frac{s + u}{p} \right) \right| \ll \#S p^{-\eta} = np^{-\eta}.$$

for some $\eta > 0$ that depends only on δ, and thus the sequence of Legendre symbols $((s + u)/p)$, $s \in S$, cannot be constant.

Therefore, at least one of the polynomials (9) gives a nontrivial factor of f. As in [14], we see that the complexity of this algorithm is again $O\left(nh(\log p)^{O(1)}\right)$. Since $\delta > 0$ is an arbitrary, we obtain the desired result.

\[\square\]

Theorem 7. There is a deterministic algorithm that, given a squarefree polynomial $f \in \mathbb{F}_p[X]$ of degree n that fully splits over \mathbb{F}_p, finds in time $(n + p^{1/2})p^{o(1)}$ a root of f.

Proof. We use Lemma 6 to find a polynomial factor g_1 of f with $1 \leq \deg g \leq 0.5 \deg f$. Next, we find a polynomial factor g_2 of g_1 with $1 \leq \deg g_2 \leq 0.5 \deg g_1$, and so on. The number of iterations is $O(\log n)$, and the complexity of each iteration, by Lemma 6, does not exceed $(n + p^{1/2})p^{o(1)}$. This completes the proof. \[\square\]

References

Institute for Advanced Study, Princeton, NJ 08540, USA

E-mail address: bourgain@ias.edu

Steklov Mathematical Institute, 8, Gubkin Street, Moscow, 119991, Russia

E-mail address: konyagin@mi.ras.ru

Department of Pure Mathematics, University of New South Wales, Sydney, NSW 2052, Australia

E-mail address: igor.shparlinski@unsw.edu.au