RFID-based Logistics Information Service with Semantic Web

DaeWon Park and HyukChul Kwon

2005.08.27
Contents

- RFID based Logistics Environment
 - Logistics Environment
 - RFID technologies
 - Logistics Environment applying RFID technology
- Logistics Information Service
 - RFID-based Logistics Information
 - Logistics Information Service
- Semantic Web in Logistics Information Service
- Summary
- Future Work
Research Goal

● Main Goal
 - Effective management logistics information and retrieval
 - Globally connected logistics information service using Semantic Web
 • Support data integration
 • Support Interoperability

● Goal of current step
 - Managing different types of data in a system
 - Information retrieving in the system
RFID-based Logistics Environment

- Logistics Environment
 - Physical flow of products
 - Information (about products, shipment, business transaction, etc)
RFID-based Logistics Environment

★ Case: Baggage transit (airplane)
 - Attaching barcode to the baggage
 - And then?

Send baggage (Code: KE3xxxx) → Transfer (1 baggage transit) → Not Arrived (Where’s my baggage?/Lost?)

Request Information?
RFID-based Logistics Environment

- **Management Logistics**
 - Managing physical flow
 - Manage and control movement of products
 - Movement of products
 - From manufacturer to manufacturer distribution center
 - From manufacturer distribution center to retail distribution center
 - etc
 - Logistics companies are looking for lowest-cost or fastest path/method
 - Managing logistics information
 - Information of products, and movements of products
 - Ex: “Is the product valid for sale?”
 - Ex: “Where the product is now?”
 - Ex: “When the products arrive at the destination?”
RFID-based Logistics Environment

- RFID technology
 - RFID (Radio Frequency Identification)
 - Means of automatically identifying objects
 - Alternative technologies
 - Barcodes
 - Magnetic strips
 - Being applied to many areas
 - Ex: SCM (Supply Chain Management)
RFID-based Logistics Environment

● EPC Network (typical research on using RFID technology)
 - Auto ID center
 • Connecting information and physical flows
 • Automatic, reliable transfer and update of information based on physical operations
 - EPCglobal
 • Standards Development
 • Implementation Support (Commercialization)
 - EPC (Electronic Product Code)
 • Unique ID
 - Header : Company : Object Class : Serial Number
 • Under processing of standardization
RFID-based Logistics Environment

“Managing Logistics Information”
Elements of RFID-based Logistics System

- **RFID & RFID reader**
- **RFID Middleware**
 - Application Level Event: Filtering Event
- **Information Service**
 - Manage EPC-related data & product data
- **Discovery Service of Information Service**
 - Handle Which information services have observation data of a product
- **Naming Service**
 - Provide location of Products’ Information
RFID-based Logistics Information Service

- Logistics Information

![Diagram showing Observation Data, Attribute Data, Containment Data, and Transaction Data]
RFID-based Logistics Information Service

- Logistics Information
 - Observation data
 - RFID sensed data by RFID reader
 - Time-stamped data
 - \{ EPC, Sensed-Location, Sensed-Time \} + \{ additional info \}
 - Attribute data
 - Information of product (instance level)
 - Information of each product
 - Information of product type (class level)
 - Information of a product model
● Logistics Information (Cont.)
 - Containment data
 • Information of Packaging
 - Ex: 10 cellular phones are packed in a box
 • Relation of container and contents
 - Container loads products without data conflict
 - Transaction data
 • Business transaction
 - order, shipment, delivery, etc
 - Information Relation of business transaction and products
RFID-based Logistics Information Service

- Logistics Information Service
 - Manage and retrieve logistics information
Semantic Web in Information Service

- Define Ontology for Information Service
 - Ex: EPC, time, attribute, value,,

- Representation of logistics information
 - Using Semantic Web
 - For effective data sharing information with various applications
 - Data Integration
 - Consistency of data

```
<rdf:RDF
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:epc="http://durumi.cs.pusan.ac.kr/ontology/epc#"
  xmlns:dc="http://purl.org/dc/elements/1.1/">
  <epc:RFID_SensedData>
    <epc:ReadDateTime>2005-06-10 11:34:50</epc:ReadDateTime>
    <epc:ReaderID>rd345612</epc:ReaderID>
    <epc:ReaderLocation>Jang-jeon, Busan</epc:ReaderLocation>
    <epc:ReaderType>Normal</epc:ReaderType>
  </epc:RFID_SensedData>
</rdf:RDF>
```
Type Conversion
- Time
 - Local time \leftrightarrow Standard time (G.M.T.)
- Temperature
 - Fahrenheit \leftrightarrow Celsius
- Unit
 - Length, Weight, Volume, etc
- Etc

Time(G.M.T) \rightarrow Time(Korea) $= G.M.T + 9$ hours

Time(G.M.T) \rightarrow Time(Finland) $= G.M.T + 3$ hours
Data Constraint Check
- Type Checking
- Validity of product in certain condition

<table>
<thead>
<tr>
<th>EPC Code</th>
<th>Product</th>
<th>Valid Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.203D2A.916E8B.8719BAE03A</td>
<td>Electronics</td>
<td>12 ~ 30</td>
</tr>
<tr>
<td>01.203D2A.916E8B.8719BAE03B</td>
<td>Disc</td>
<td>10 ~ 25</td>
</tr>
<tr>
<td>01.203D2A.916E8B.8719BAE03C</td>
<td>Clothes</td>
<td>5 ~ 20</td>
</tr>
<tr>
<td>01.203D2A.916E8B.8719BAE03D</td>
<td>Snack</td>
<td>0 ~ 15</td>
</tr>
</tbody>
</table>
Data Constraint Check (Cont’)

- Containment Data
 - For instance
 - Container CA
 » Contains product P1 and product P2
 - Product P1
 » Food-stuff with moisture
 - Product P2
 » Electronics
 » Cannot be loaded with something moisture

=> P1 and P2 cannot be in the same container
Semantic Web in Information Service

- Containment Data Constraint Check

Diagram:

- Container: urn:epc:id:sgtin:15025.87.485
 - Containment Data
 - ContainerID: urn:epc:id:sgtin:12825.87.485
 - ProductID: urn:epc:id:sgtin:15025.31.110
 - ContainmentRelation: packing
 - Date: 2005-06-09 08:10:50

- Product: urn:epc:id:sgtin:15025.31.110
 - ProductID: urn:epc:id:sgtin:15025.31.110
 - ProductName: SPH-V6900
 - OriginatedCountry: ko
 - ClassIdentifier: unspsc:43191501
 - CommodityName: Mobile Phone
 - BasisPrice: 60,000

- Product: urn:epc:id:sgtin:15025.31.111
 - ProductID: urn:epc:id:sgtin:15025.31.111
 - ProductName: SPH-V6900
 - OriginatedCountry: ko
 - ClassIdentifier: unspsc:43191501
 - CommodityName: Mobile Phone
 - BasisPrice: 60,000

Constraint Conflict
Summary

● Applying Semantic Web to logistics information service
 - For interoperability with applications
 - For data integration
 - Consistency

● Developing Ontology for logistics information service
 - Representing logistics information using that ontology
 • Ease to expand
 • Data type checking and conversion
 - Constraint Checking
 • Containment data, attribute data
Future work

- Development Information Service System
 - Implementation of information service
 - Globally connected information service

- Inference of logistics information
 - Set relationship between logistics information
 - Developing inference engine
Thank you!

DaeWon Park
bluepepe@pusan.ac.kr