GigaMesh and Gilgamesh – 3D Multiscale Integral Invariant Cuneiform Character Extraction

Hubert Mara¹, Susanne Krömker¹, Stefan Jakob² and Bernd Breuckmann³

¹IWR – Interdisciplinary Center for Scientific Computing of the Heidelberg University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
²Seminar für Sprachen und Kulturen des Vorderen Orient, Assyriologie, Heidelberg University, Hauptstr. 126, 69117 Heidelberg, Germany
³Breuckmann GmbH, Torenstr. 14, 88709 Meersburg, Germany

Abstract
As assyriologists have to handle tremendous amounts of important documents of ancient history written in cuneiform script, like the epic of Gilgamesh, we are developing an efficient system to support their daily tasks. Previous projects demonstrated the application of holography and early close-range 3D scanners for this task. Based on experiences from our previous projects in archaeology, we are focusing on processing the vast amounts of data of high resolution 3D models (µm-range) from today’s close-range 3D scanners like the Breuckmann smartSCAN-3D-HE. The presented method exploits the high-resolution of the 3D models to extract the impressed characters as well as other features like fingerprints. Previous work typically used rendering techniques from computer graphics to visualize the characters, which then had to be processed manually. More recent approaches use methods from differential geometry for detection and extraction of coarse contour lines. These methods are computationally fast, and well-established for industrial application, but cannot cover the variations of human handwriting in form of the – wedge shaped – cuneiform script. To overcome the variations in size of the wedges, we choose a multiscale approach using integrating geometry. A transformation invariant function is achieved by calculating the volumes of multiple concentric spheres intersecting the volume below the 3D model’s surface at each point. Due to this multiscale approach, this function is represented by the so-called feature vector. By classifying these feature vectors using auto-correlation, our system – called GigaMesh – can automatically extract characters, requiring only one parameter: the approximated line (wedge) width in mm.

Results are shown for cuneiform tablets from the collections of the Assyriologie Heidelberg as well as from the Uruk-Warka Sammlung. Finally an outlook regarding character (en)coding and integration into related projects like the Cuneiform Digital Library Initiative (CDLI) is given.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]: Edge and feature detection—I.7.5 [Document and Text Processing]: Optical Character Recognition (OCR)—I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture—J.5 [Arts and Humanities]: Linguistics—

1. Introduction
Motivated by the demand of epigraphy to document and analyze large quantities of “writings in 3D”, which are inscriptions and the handwritten cuneiform script [vS94], we are developing a highly automated system using state-of-the-art 3D technology [KMT08]. As our current main focus is on cuneiform script, which is most famous for the epic of Gilgamesh [Mau05], we call our system GigaMesh as it is meant to process the tremendously large meshed structures of high-resolution 3D scans [MBLA09] of cuneiform tablets. The traditional first step of documentation for all “writings in 3D” is done by taking photographs for cuneiform script and/or creating chalkings [MHK09] for inscriptions. Both methods are non-reversible projections on pieces of plane paper, which are used to manually copy the characters by drawing for transliteration and finally translation [NDE91, Feu00]. Being aware of the influence of the projections properties (e.g. illumination while taking the
photographs) to the final translation, scholars often handcopy objects in situ by casting them into gisump, clay or latex. These casts give them the possibility to study objects back home in the office in almost the same way as the originals, which have to stay within an excavation storage or a museum.

The fact that producing casts costs time, perhaps damages the original and the casts themselves are more fragile than the originals lead to the idea to document cuneiforms using holography [vBVD’94, WGD’98, DKK’02]. Even today, as holography is part of many objects of daily life like banknotes, the process of taking holographic images requires large and power consuming equipment, rendering this approach impracticable for assyriologists. Nevertheless, early projects had the proper foresight and added pattern recognition and image processing techniques to their approach [Ros97]. Consequently this lead to the Digital Hammarabi [WS03] project and the Cuneiform Digital Forensic Project (CDFP) [WTN’02] experimenting with various types of close range 3D scanners. Thanks to the Initiative for Cuneiform Encoding (ICE) [Feu00] at the same time as the CDFP, cuneiform script became part of the Unicode standard [Uni06]. Free TrueType fonts became available e.g. for \LaTeX.

By present day the most active project using modern technologies in a Web 2.0 spirit is the Cuneiform Digital Library Initiative (CDLI), which follows the idea of focusing more on working with the content of the tablets like the database project from Göttingen [GWLU05, Wei10]. This left us with a digital workflow for presenting and publishing content like [Hil08] of the CDLJournal, but only a sketchy workflow to replace the cast copies and photographs by new technologies.

2. Data Acquisition and Resolution

As shown in [WTN’02] and from our experience in archaeological projects, we decided to use a 3D scanner based on the principles of structured light and stereo vision [SM92]. After extensive tests of different models from different vendors, we choose a Breuckmann smartSCAN-3D-HE, because it features the highest spatial resolution and acquisition of a colored texture map using two color cameras. Color acquisition is important to match broken tablets as well as for other projects related to cultural heritage [MBLA09]. For the smartSCAN-3D-HE exists a wide range of different optics, which is categorized by the range image diagonal – also called Field of View (FOV) – and not the focal length.

For many archaeological finds the FOV of 150 mm has proven to be the best choice to acquire small details like fingerprints. When objects contain smaller details, like seal imprints and toolmarks, the FOV with 60 mm is recommended. The FOV’s of 470, 600 and 1.000 mm are suitable to acquire larger objects like reliefs and statues – even whole temples [QTK’09]. For flat objects – as tablets sometimes are – a comparison with flat bed scanners can be roughly estimated in Dots Per Inch (DPI) by dividing the cardinality of the measuring points (vertices) by the acquired surface (in square inch) of the resulting 3D model. Having a 3D scanner based on 5,0 megapixels cameras we can achieve \(\approx 1,000 \text{ DPI} \) for the FOV of 60 mm, \(\approx 300 \text{ DPI} \) for the FOV of 150 mm down to \(\approx 100 \text{ DPI} \) for the larger FOV’s. Recently a FOV of 35 mm has been added for forensic sciences, which pushes the resolution up to \(\approx 2,500 \text{ DPI} \) – equaling a spatial resolution within the 10 \(\mu \text{m} \)-range. Figure 1 shows the smartSCAN-3D-HE during acquisition using the 60 mm FOV.

A single 3D scan requires a few seconds independent of the chosen optics. For first experiments with cuneiform tablets, the whole acquisition workflow took between 5 and 45 minutes depending on the size of the tablet as well as the quality, condition and utilization/density of the cuneiform characters.

![Figure 1: Tablet Inv. No. BM 90922, King, Boundary Stones, No. XXVIII, acquired by a Breuckmann smartSCAN-3D-HE using the 60 mm field of view optics.]

3. Data Processing

Considering the manufacturing process of a cuneiform tablet, it is a smooth piece of clay having wedges impressed by a stylus. This lead to a first approach, which is virtually smoothing the surface to the tablets overall shape having no small details, like an empty tablet. One expects that having a virtual empty tablet its distance [CRS01] to the measured surface will allow to segment the cunei (Latin for wedges).

In this context the distance map can also be called displacement map or height map. Figure 2a shows a tablet and Figure 2b shows in different colors the distances to its smoothed surface. The coloring in Figure 2b is similar to height maps from cartography and it shows that the expectation is only partially fulfilled.

Ambient occlusion [Bun05] from computer graphics promises to shade corners darker, but the output data structure is a projected 2D raster image, which limits any further processing, as it also has low differences in contrast between wedges and the overall surface. A better approach...
for cuneiform tablets is shown in [AL02], where spheres are fit onto the surface, which trace the wedges like a virtual stylus. The benefit of using spheres of different sizes (scales) instead of one rectangular structure representing a real stylus is its invariance to rotation. However, there is no conclusion about performance; nor about scripts of lower quality; nor any segmentation of the surface despite the achieved displacement map shows a satisfying result for visual autopsy. As we experienced drawbacks in segmentation of distorted surfaces for pottery fragments in our previous projects, a hypothesis is that curvature estimation using differential geometry [Sto69] might be the problem. In contrast one can argue that it is widely successfully applied, computationally fast and robust. This is true for industry grade objects with distinct features like rectangular edges, where often the comparison with a synthetic 3D model is possible. [HFG’06, PWHY09] demonstrates for acquired 3D models of fractured objects with arbitrary shaped features the predominance of integral invariants over methods of differential geometry.

3.1. Feature Estimation

The consequent step was to adopt the integral invariant method as Multi Scale Integral Invariant (MSII) filtering for extracting cuneiform characters. The principle of this approach is to intersect the volume below the surface with the volume of multiple spheres. Normalizing the volume descriptor [PWHY09] \(V_j(p_i) \) by \(4(\pi r_j^3)/3 \) for all spheres defined by \(r_j \) centered about all points \(p_i = (x_i, y_i, z_i)^T \) of the surface enables a local classification into convex (\(V_j'(p_i) < 0.5 \)) and concave (\(V_j'(p_i) > 0.5 \)).

Having concentric spheres in multiple scales we get a discrete, real-valued feature function – shortly called feature vector \(f(p_i) \). Let \(n \) be the number of scales and let \(M_2 \) be the surface of a 3D model:

\[
f : \mathcal{M}_2 \rightarrow [0,1]^n
\]

\[
p_i \rightarrow f(p_i) = (v_1, \ldots, v_n)^T
\]

with \(v_j = V_j'(p_i) = \frac{3V_j}{4\pi r_j^3} \) for \(1 \leq j \leq n \). We get:

\[
f_i = (v_1, \ldots, v_n)^T = \frac{3}{4\pi} \left(\frac{V_i(p_i)}{r_1^3}, \ldots, \frac{V_i(p_i)}{r_n^3} \right)^T
\]

Figure 3 shows an example for a vertex \((i = 25562) \) on a plane part of a cuneiform tablet and for a vertex \((i = 141142) \) right at the bottom of a wedge. For uniformly spread radii \(r_1 = 0.2 \text{ mm} < r_2 \ldots < r_{n=5} = 1.0 \text{ mm} \) the respective feature vectors compute to:

\[
f_{25562} = (0.499, 0.499, 0.498, 0.498, 0.498)^T
\]

\[
f_{141142} = (0.578, 0.644, 0.710, 0.750, 0.732)^T
\]
below the surface converges to 50%. This is due to the accumulated imprecision of the surface, caused by a worn-out stylus, dirt and measuring errors.

Figure 3 shows the principle visually. The volume estimation of \(V(p_i) \) and its intersection with the spheres is achieved by transforming mesh and sphere into a volume based representation using voxels instead of the surface representation by vertices and faces. The benefit of this transformation is that it can be used in a modular manner, so that the voxel filter mask for the sphere can be easily changed to a non-invariant (anisotropic \([\text{PM90}]\)) filter. In similar manner any kind of surface representation can be quantized into voxels and simply intersected by boolean operation with any kind of filter mask. Despite anisotropy in scale-space is always an interesting method for segmentation, we choose to investigate further into the isotropic filtering using spheres due to performance reasons.

The treatment of surface borders as measured surfaces have discontinuities – shortly called holes – and require an anisotropic filtering. In case the marching front \([\text{NK02}]\) for triangle selection within a sphere hits a border introduced by a hole, the sphere volume used for normalization is decremented by an estimated ratio between the existing surface and a planar filled hole.

Planar filling is the fastest method and heuristics have shown that the error of planar filling in contrast to more sophisticated methods is lower than errors in measurement near holes. As the single 3D scan from Figure 2a has several small holes and the border of the visualization is the actual border of the 3D scan, \(\approx 15\% \) (using \(r_v = 1.5\ mm \)) of the surface would have been ignored or faulty when border treatment would have been skipped or done incorrectly. Figure 4 using the same data as Figure 2a shows that the feature vectors are correctly determined for the whole surface.

Performance is a crucial issue as MSII done by the textbook is computationally expensive, which we overcome by designing the filtering in voxel representation using sparse matrices \([\text{Tew73}]\) and using a filter size (in byte) smaller than the CPUs cache as well as using parallel processing with \POSIX\-threads \([\text{But97}]\). The result was a dramatic gain in performance far beyond what one expects in regard to Amdahl’s law \([\text{Amd67}]\).

Choosing the right parameters – especially \(r_n \) – influences performance as the marching front has \(O(r_n \log(r_n)) \) to \(O(r_v^2) \) complexity. \([\text{PWHY09}]\) and \([\text{AL02}]\) suggest to choose a certain percentage of the bounding box of the model size, which contradicts the Shannon Theorem \([\text{Sha48}]\) for character extraction. This theorem also tells us that we have to set the sphere diameter \((2r_v) \) to more than half of the wedge size to determine its outlining edges. In short terms: \(r_v \) has to be slightly larger than the largest wedge width found on a tablet. The number \(n \) of scales mostly influences memory usage and not performance. Similar is valid for the voxel space, which has to fit into the CPU cache. On recent computer hardware having a 2.8 \(\text{GHz} \) CPU and more than 8 GB of RAM, \(n = 10 \) and a sparse voxel space of 256\(^3\) has proven to be a good choice.

3.2. Character Extraction

Having feature vectors for all vertices describing the surface, the next step is to decide which vertices belong to characters. When we interpret the feature vectors as points in an \(n \)-dimensional space a classification can be done by their feature distances \(\Delta f_i = |f_i - f_k| \) using the arbitrarily chosen vertex \((k = 141142) \) on the bottom of a wedge. Then histogram equalized gray values are mapped to the surface vertices \(p_i \) – shown in Figure 4a. Finding a threshold to use \(\Delta f_i \) for segmentation is not trivial for a wider range of cuneiform script variations as well as it is not very user-friendly when it has to be set manually.

Looking at our feature vectors as a function (or signal) depending on \(r_n \), a classification in Fourier space using Fast Fourier Transform (FFT) can be applied as done in signal processing. FFT is used in many applications – e.g. it is used in \([\text{PWHY09}]\) in an approach to estimate surface integral invariants. The result of the FFT applied to a feature vector is another vector, which has no satisfying result for segmentation by thresholding in similar manner as segmentation of the feature vectors themselves.

An alternative to segmentation by thresholding is e.g. the use of neural networks. \([\text{Ros97}]\) proposed this kind of classification for holographic (raster) images. As neural networks are known to perform well for small tasks, but are difficult to configure and train for complex tasks we did not investigate them any further. More interesting is the classification of the border sum of tiles of raster images using correlation in \([\text{Ros97}]\) as it is also used in \textit{Optical Character Recognition} (OCR) in general and for cuneiform script \([\text{AL02}]\). The application of cross-correlation to the feature vectors by convolution \((f \ast f_k)\) using the arbitrarily chosen vertex \((k = 141142)\) is shown in Figure 4b, where dark colors mean high correlation. Additionally we experimented with different color scales to visualize other surface features in detail (e.g. fingerprints or seal impressions).

Investigating into correlation, FFT and signal processing moved our focus on autocorrelation \([\text{Bra65}]\), which does not require any arbitrarily chosen vertex. The autocorrelation function \(R_{ff} \) for a continuous function \(f \) is the convolution with the complex conjugate \(\tilde{f} \):

\[
R_{ff} = f \ast \tilde{f} = \int_{-\infty}^{+\infty} f(\tau) \tilde{f}(\tau - t) dt = \int_{-\infty}^{+\infty} \tilde{f}(\tau) f(\tau + t) dt.
\]

(3)
As our feature vectors $f_i = f$ are real, we can substitute \tilde{f} by f, and as f_i is discrete, we can continue to interpret f_i as a discrete signal convoluted by itself:

$$R_i = \sum_j R_j(l) \text{ with } R_i(l) = (f_i * f_i)(l) = \sum_{j \in \mathbb{Z}} v_j R_{l-j}$$

with $v_j \equiv 0$ for $j \leq 1 \land j \geq n$

$R_i(l)$ has $2n$ non-zero elements for n even and $2n - 1$ non-zero elements for n odd. $R_i(l)$ in Equation 4 means that the feature vector is understood as signal extended with zeros to both directions. The signal

$$\ldots, 0, 0, 0, v_1, \ldots, v_n, 0, 0, 0, 0, \ldots$$

is convoluted with itself:

$$\ldots, v_1, \ldots, v_n, 0, 0, 0, 0, 0, 0, \ldots$$

$$\ldots, 0, 0, v_1, \ldots, v_n, 0, 0, 0, 0, \ldots$$

$$\ldots, 0, 0, 0, v_1, \ldots, v_n, 0, 0, 0, 0, \ldots$$

$$\ldots, 0, 0, 0, 0, v_1, \ldots, v_n, 0, 0, 0, \ldots$$

$$\ldots, 0, 0, 0, 0, 0, v_1, \ldots, v_n \ldots$$

Let R_i indicate the autocorrelation of the signal: Small values of R_i are located at inflection points and are shown as dark colors in Figure 5b. They mark the borders of the wedges as contour lines. Figure 5b also shows that vertices outside the contour lines can have the same autocorrelation as the vertices inside the wedges. The automatic decision, which vertices belong to wedges, is based on local minima of M_2, which are shown in Figure 5c as bright spots. The local minima are used as seed vertices for labeling having the contour lines as stop criteria. The label borders equaling the wedge outlines are then extracted as closed polygonal lines from M_2 for further processing as a vectorized, scalable drawing. Such a reduction from surfaces having typically 10 to 50 million vertices to a vector representation having a few thousand vertices enables new means of OCR using 3D models – instead of using raster images. Figure 5a shows the 3D model with the acquired color of the tablet having the same illumination as Figure 5b,c.

Figure 4: Inv. No. 88/677 with topological texture map calculated by (a) distance and (b) correlation to one selected feature vector representative for a wedge. Both visualization are rendered without any virtual light source.

Figure 5: Four lines with Omina from the shaded 3D model W20430,101, Uruk-Warka Sammlung (a) with acquired texture map, (b) with contour lines and (c) with local minima.

4. Results

For first experiments we choose 25 cuneiform tablets and two clay nails with credit of donations in cuneiform script. The selection was done to test the robustness of the proposed method in contrast to the typical corpora publications. The objects acquired vary in cuneiform script over different millennia; languages; originals and copies made of different materials (ceramic and gypsum casts).

While the previous Figures show objects of rather high quality, Figure 6 is a common example including all the hussle one can expect: bad handwriting; corroded and worn-out surface; writings around the edges; strongly curved front face, which is difficult to illuminate. Additionally it is a cast copy with cast flashes and air pockets. Nevertheless, we were able to automatically extract the same amount of characters as shown in the manual autography. Figure 8 is another example for an object which is difficult to read, draw and photograph. It also demonstrates the various possibilities to visualize 3D models, while our focus otherwise is on character extraction. Rendering orthographic true to scale views from all six sides – also called *fat cross* by the CDLI – can be done as well as rollouts of clay nails.
5. Summary

Summarizing the results, we could show that using state-of-the-art 3D technology in conjunction with GigaMesh provides a robust and fast workflow for a wide range of cuneiform tablets – especially those which are difficult to process manually. The working time using the 3D scanner including post-processing (e.g. using Breuckmann OP-TOCAT) of the 3D scans is less than for manual drawing. Having a highly automated method for character extraction with just one, simple parameter to be set when the post-processing of the 3D model is finished, our system needs a few minutes of offline computing time depending on the resolution (FOV) used for acquisition as well as the size of a tablet. Common and free file formats are supported (e.g. Stanford PLY, Wavefront OBJ and W3C VRML).

6. Outlook

Future work will use the extracted polygonal representation of cuneiform characters for character (en)coding and further data reduction, which will enable a smoother scaling of characters, e.g. by fitting splines [Sch07]. This will also simplify the integration into the CDLI, which aims to enable virtual access to all major cuneiform collections via the internet. A precise, but compressed representation of extracted characters will allow fast access e.g. for stylistic analysis, while scholars rarely will have to inspect a 3D model in highest resolution.

As 3D models acquired with the 35 and 60 mm FOV are interesting for research regarding traces from the stylus or seals, they also require tremendous amounts of off-line computing time, which will be improved by making more efficient use of modern hardware like using Graphics Processing Units (GPUs). For our future work we will utilize nVidia Compute Unified Device Architecture (CUDA) or the recently evolved Open Computing Language (OpenCL) as it was done for analysing chalkings of inscriptions [MHK09].

Acknowledgement

We thank Prof. Willi Jäger, Prof. Stefan M. Maul, Prof. Markus Hilgert and the Deutsches Archäologisches Institut (DAI) for their support and granting access to the collections of the Assyriologie and the Uruk-Warka Sammlung in Heidelberg. The 3D scanners used for this work were provided by the Heidelberger Akademie der Wissenschaften (HAW) and the Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp). This work is part of the IWR Pioneering Projects (IPP) and partially funded by the HGS MathComp – DFG Graduate School 220.

References

[PM90] PERONA P., MALIK J.: Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 7 (July 1990), 629–639. 4

[Uni06] UNICODE CONSORTIUM: The Unicode Standard, Version 5.0, 5 ed. Addison-Wesley, Boston, MA, USA, 2006. 2

Figure 8: True to scale (1:3/4) orthographic projections of the 3D model of Inv. No. W51617 of the Assyriologie Heidelberg collection. The acquired tablet is a ceramic cast copy having a dark red, shiny surface similar to the Roman Terra Sigillata. From a technical point of view this 3D model contains most measuring errors as dark and shiny surfaces have adverse reflection properties for acquisition using any kind of light source. Additionally it also adds deformation from casting and calcination, typically resulting in smoother edges of the wedges. A virtual scale paper with a mm raster is shown in the background.

Top: Visualization of the acquired texture map illuminated by two light sources located above the top-left corner of the tablet. Bottom: Visualization using a texture map, where the labeled wedges, lines and fractures are colored in black. Additionally one light source on the top-left was used to reduce the hard contrast from the black and white labeled image for the human reader.