A Behavioral Distance for Fuzzy-Transition Systems

Yongzhi Cao, Member, IEEE, Huaiqing Wang, Sherry X. Sun, and Guoqing Chen

Abstract—In contrast to the existing approaches to bisimulation for fuzzy systems, we introduce a behavioral distance to measure the behavioral similarity of states in a nondeterministic fuzzy-transition system. This behavioral distance is defined as the greatest fixed point of a suitable monotonic function and provides a quantitative analogue of bisimilarity. The behavioral distance has the important property that two states are at zero distance if and only if they are bisimilar. Moreover, for any given threshold, we find that states with behavioral distances bounded by the threshold are equivalent. In addition, we show that two system combinators—parallel composition and product—are non-expansive with respect to our behavioral distance, which makes compositional verification possible.

Index Terms—Behavioral distance, bisimulation, fuzzy automaton, fuzzy-transition system, non-expansiveness, pseudo-ultrametric.

I. INTRODUCTION

One of the most important contributions of concurrency theory to computer science is the concept of bisimulation (see, for example, [1]–[3] and the bibliographies therein). It expresses when two systems can behave in the same way in the sense that one system simulates the other and vice versa; intuitively, two systems are bisimilar if they match each other’s moves. In addition to testing behavioral equivalence, bisimulation allows one to reduce the state space of a system by combining bisimilar states.

Recently, bisimulation techniques have been introduced to fuzzy automata, or more generally, fuzzy systems. Two general approaches can be recognized in the existing literature. One is based on a binary relation on the state space of a fuzzy system such that related states have exactly the same possibility degree of making a transition into every class of related states [4]–[8]. Roughly speaking, this approach is a fuzzy analogue of the classical probabilistic bisimulation initiated by Larsen and Skou [9]. More concretely, in [4], Petković introduced the notion of congruence for fuzzy automata by following the algebraic theory of classical automata. In fact, such a congruence is nothing other than a bisimulation. Based on the concept of congruence, an improved minimization algorithm for fuzzy automata has been developed. In [5], Buchholz has put forward a general definition of bisimulation for weighted automata over a generic semiring. By instantiating the semiring to the closed unit interval [0, 1] with binary operations max and min, Sun et al. addressed the forward and backward bisimulations for fuzzy automata [6]. More recently, the Cao et al. investigated bisimulation for deterministic and nondeterministic fuzzy systems, which may be infinite-state or infinite-event, in [7] and [8], respectively, and applied it to the specification of nondeterministic fuzzy discrete-event systems [8].

The other approach, from Ćirić and his colleagues [10]–[15], is based on a fuzzy relation on the state space. They introduced two types of simulations (forward and backward) and four types of bisimulations (forward, backward, forward-backward, and backward-forward) for fuzzy automata, which are all defined as fuzzy relations [13], [15]. In particular, they proved that the greatest (forward) bisimulation on a fuzzy automaton is a fuzzy equivalence relation. Furthermore, the state reduction of fuzzy automata and some related algorithms for computing the greatest simulations and bisimulations have been well developed. Remarkably, Ćirić et al. have found that the state reduction problem for fuzzy automata is closely related to the problem of solving certain systems of fuzzy relation equations [10], [12], [14], which provides a new insight into the theory of fuzzy relational equations and inequalities.

For the first approach, we observe that the bisimulation based on a crisp relation, in which states are either bisimilar or not, is not a robust concept, since states that used to be bisimilar may not be anymore or vice versa if some of the possibility degrees change slightly. This is particularly unfortunate for the reason that such possibility degrees are often obtained experimentally, or are given as approximations. Therefore, it may not make sense to say that two states are exactly bisimilar. In terms of robustness, the bisimulation based on a fuzzy relation is much better than the exact bisimulation. This advantage leads to many better results in the state reduction of fuzzy automata [12], [14].

Inspired by earlier work on probabilistic concurrent systems [16]–[21], in the present paper we exploit a pseudo-ultrametric to measure the similarity of states in a (nondeterministic) fuzzy-transition system (FTS). A pseudo-ultrametric is a function that yields a nonnegative real number distance for each pair of states. Such a pseudo-ultrametric gives rise to a quantitative analogue of exact bisimilarity in that the behavioral distance between states captures the similarity of the behavior of those states. The smaller the behavioral distance, the more the states behave similarly. In particular, the behavioral distance between states is 0 if and only if they are exactly bisimilar. Moreover, for any given threshold, we can partition the state space such that the behavioral distance between the states in the same block is bounded by the threshold. In other words, states with behavioral distances bounded by the threshold are...
equivalent. Technically, we define the behavioral distance as the greatest fixed point of a suitable monotonic function, while the post-fixed points of the monotonic function provide a characterization of exact bisimulation. We also show that two system combinators—parallel composition and product—are non-expansive with respect to our behavioral distance. This allows us to use the behavioral distance for compositional reasoning.

Some related research should be distinguished before introducing the organization of the paper. Broadly speaking, our behavioral distance is a fuzzy analogue of the Kantorovich metric raised by Repovš et al. or a fuzzy analogue of the pseudo-metric built by Cirić et al. in [10]–[15] in at least two aspects: One is that we are using the pseudo-ultrametric, which is related in spirit to the Hutchinson metric and the Hausdorff distance, to provide a robust and quantitative notion of behavioral equivalence, while the second approach is dependent on finding a solution to a particular system of fuzzy relation equations or inequalities. The main feature of the latter is the intensive use of fuzzy relation calculus and systems of fuzzy relation equations and inequalities. The other difference is that the underlying systems addressed by the second approach are deterministic in the sense that the next possibility distribution is determined by the current state and event, while we are concerned with more general nondeterministic fuzzy systems. It should be noted that nondeterminism is essential for modeling scheduling freedom, implementation freedom, the external environment, and incomplete information (see, for example, [23]).

The rest of the paper is organized as follows. In Section II, we collect a few necessary notations and notions of fuzzy sets and FTSs. Section III embarks upon the development of behavioral distance. It starts by lifting a pseudo-ultrametric from states to possibility distributions. Based on the lifting, we then define a function on a set of pseudo-ultrametrics and discuss the monotony of the function. Thanks to Tarski’s fixed point theorem, we get the greatest fixed point of the function and define it as our behavioral distance. In Section IV, after establishing a lifting of relation from states to possibility distributions, we justify the soundness of the behavioral distance by disclosing the relationship between the distance and bisimilarity. In the subsequent section, we investigate the non-expansiveness of the behavioral distance with respect to the parallel composition and product operators. The paper is concluded in Section VI with a brief discussion of future work.

II. FUZZY-TRANSITION SYSTEMS

In this section, we recall some basic notions of fuzzy sets and FTSs.

Let X be a universal set. A fuzzy subset X of X (or simply fuzzy set [24]), µ, is defined by a function assigning to each element x of X a value µ(x) in the closed unit interval [0, 1]. Such a function is called a membership function; the value µ(x) characterizes the degree of membership of x in µ. A fuzzy subset of X can be used to formally represent a possibility distribution on X.

The support of a fuzzy set µ is a crisp set defined as supp(µ) = {x ∈ X : µ(x) > 0}. Whenever supp(µ) is finite, say supp(µ) = {x1, x2, ..., xn}, we may write the fuzzy set µ in Zadeh’s notation as follows:

\[
\mu = \frac{\mu(x_1)}{x_1} + \frac{\mu(x_2)}{x_2} + \cdots + \frac{\mu(x_n)}{x_n}.
\]

With this notation, \(\frac{1}{\mu} \), denoted by \(\hat{\mu} \), is a singleton in X, i.e., the fuzzy subset of X with membership 1 at x and with zero membership for all the other elements of X.

We denote by \(\mathcal{F}(X) \) the set of all fuzzy subsets of X (i.e., possibility distributions on X) and by \(\mathcal{P}(X) \) the power set of X. For any \(\mu, \eta \in \mathcal{F}(X) \), we say that \(\mu \) is contained in \(\eta \) (or \(\eta \) contains \(\mu \)), denoted by \(\mu \subseteq \eta \), if \(\mu(x) \leq \eta(x) \) for all \(x \in X \). Notice that \(\mu = \eta \) if both \(\mu \subseteq \eta \) and \(\eta \subseteq \mu \). A fuzzy set is said to be empty if its membership function is identically zero on X. We use \(\emptyset \) to denote the empty fuzzy set.

For any family \(\lambda_i, i \in I \), of elements of \([0, 1]\), we write \(\bigvee_{i \in I} \lambda_i \) or \(\{ \lambda_i : i \in I \} \) for the supremum of \(\{ \lambda_i : i \in I \} \), and \(\bigwedge_{i \in I} \lambda_i \) or \(\{ \lambda_i : i \in I \} \) for the infimum. In particular, if I is finite, then \(\bigvee_{i \in I} \lambda_i \) and \(\bigwedge_{i \in I} \lambda_i \) are the greatest element and the least element of \(\{ \lambda_i : i \in I \} \), respectively.

For any given \(c \in [0, 1] \) and \(\mu \in \mathcal{F}(X) \), the scale product \(c \cdot \mu \) of c and \(\mu \) is defined by

\[
(c \cdot \mu)(x) = c \wedge \mu(x),
\]

for each \(x \in X \); this is again a fuzzy set. Given \(\mu, \eta \in \mathcal{F}(X) \), the union of \(\mu \) and \(\eta \), denoted \(\mu \cup \eta \), is defined by the membership function

\[
(\mu \cup \eta)(x) = \mu(x) \lor \eta(x)
\]

for all \(x \in X \). For any \(\mu \in \mathcal{F}(X) \) and \(U \subseteq X \), the notation \(\mu(U) \) stands for \(\bigvee_{x \in U} \mu(x) \).

We now review the concept of FTSs. In [7], an FTS is defined as a four-tuple \((S, A, \delta, s_0) \), where \(S \) is the set of states, \(A \) is the set of labels, \(\delta \) is a mapping from \(S \times A \) to \(\mathcal{F}(S) \), and \(s_0 \) is the initial state. Labels in an FTS can represent different things. Typical uses of labels include representing input expected, conditions that must be true to trigger the transition, or actions performed during the transition. If the label set is a singleton, the system is essentially unlabeled, and a simpler definition that omits the labels is possible. Intuitively, if the FTS is in state \(s \in S \) and the label \(a \in A \) occurs, then it may go into the state \(s' \in S \) with possibility degree \(\delta(s, a)(s') \). Such an FTS is deterministic in the sense that for each state \(s \) and label \(a \), only a possibility distribution \(\delta(s, a) \) is returned by \(\delta \).

Following [8], [25], in this work we address a more general FTS by taking into account nondeterminism. As a result, for each state \(s \) and label \(a \), more than one possibility distribution may be returned by \(\delta \).

Definition 1: A (nondeterministic) fuzzy-transition system (FTS) is a three-tuple \((S, A, \delta) \), where

1. \(S \) is the set of states,
(2) \(A \) is the set of labels, and

(3) \(\delta \), called a fuzzy transition function, is a mapping from \(S \times A \to \mathcal{P}(\mathcal{F}(S)) \).

If \((S, A, \delta) \) is an FTS such that \(s \in S \), \(a \in A \), \(\mu \in \mathcal{F}(S) \), and \(\mu \in \delta(s, a) \), we write \(s \leadsto_{\delta} a \mu \) and call it a fuzzy transition.

An FTS is said to be finite if both \(S \) and \(A \) are finite, and infinite otherwise. For simplicity, we have excluded the initial state from consideration and will work exclusively with finite FTSs in the paper.

III. Behavioral Distance

This section, consisting of three subsections, is devoted to quantifying the behavioral similarity between states of an FTS. This quantity, which is based upon the fuzzy transitions derived from the states, meets some desirable metric properties.

A. Lifting of Pseudo-Ultrametric

In this subsection, we lift a pseudo-ultrametric from states to possibility distributions. Let us first collect some basic notions on pseudo-ultrametric space.

Definition 2: Let \(X \) be a nonempty universe. A function \(d : X \times X \to [0,1] \) is called a pseudo-ultrametric on \(X \) if for all \(x, y, z \in X \),

- \((P1)\) \(d(x, x) = 0 \),
- \((P2)\) \(d(x, y) = d(y, x) \), and
- \((P3)\) \(d(x, z) \leq d(x, y) \vee d(y, z) \).

The couple \((X, d)\) is called a pseudo-ultrametric space. If the triangle inequality \((P3)\) is weakened by

- \((P3')\) \(d(x, z) \leq d(x, y) + d(y, z) \),

then \(d \) is called a pseudo-metric and \((X, d)\) is a pseudo-metric space. At the same time, if \((P1)\) is strengthened by

- \((P1')\) \(d(x, y) = 0 \) if and only if \(x = y \),

then \(d \) is called a metric and \((X, d)\) is a metric space.

To simplify notation, we sometimes write \(X \) instead of \((X, d)\). Trivially, the constant function that maps any pair \((x, y)\) to 0 is a pseudo-ultrametric. In addition, the discrete metric, where \(d(x, y) = 0 \) if \(x = y \) and \(d(x, y) = 1 \) otherwise, is a pseudo-ultrametric.

The notion of pseudo-ultrametric has an intuitive interpretation \([26]\). If \(G \) is an edge-weighted undirected graph, all edge weights are in \([0,1]\), and \(d(x, y) \) is the weight of the minimax path between vertices \(x \) and \(y \) (that is, the maximum weight of an edge, on a path chosen to minimize this maximum weight), then the vertices of the graph, with distance measured by \(d \), form a pseudo-ultrametric space, and all finite pseudo-ultrametric spaces can be represented in this way.

A special metric satisfying \((P3)\) appeared in several areas of mathematics in early 20th century (K. Hensel, 1904; R. Baire, 1909; F. Hausdorff, 1914). The corresponding metric space is called ultrametric or non-Archimedean. A brief review on ultrametrics, including a wide list of the references, can be found in Lemis’s paper \([27]\). Recently, some significant examples of pseudo-metric spaces have arisen in probabilistic transition systems \([20, 21]\), Markov chains \([16, 17]\), and Markov decision processes \([18, 19]\).

For simplicity, we restrict ourself to \([0,1]\)-valued pseudo-ultrametrics. Notice that every pseudo-ultrametric \(d'\) with codomain \([0, +\infty)\) can be homeomorphically transformed into a \([0,1]\)-valued pseudo-ultrametric \(d\) by defining

\[
d(x, y) = \frac{d'(x, y)}{1 + d'(x, y)},
\]

for all \(x \) and \(y \) in \(X \) \([28]\).

From now on, we fix a finite FTS \((S, A, \delta)\). Let \(\mathcal{D} \) be the set of all pseudo-ultrametrics on \(S \). Clearly, \(\mathcal{D} \neq \emptyset \). Given a \(d \in \mathcal{D} \), we need to lift it to a pseudo-ultrametric on \(\mathcal{F}(S) \). The lifting is based on the following observation.

Lemma 1: For any \(\mu, \eta \in \mathcal{F}(S) \), consider the following system:

\[
\begin{align*}
\forall t \in S S_{st} & = \mu(s), \quad \forall s \in S \\
\forall s \in S S_{st} & = \eta(t), \quad \forall t \in S \\
x_{st} & \geq 0, \quad \forall s, t \in S.
\end{align*}
\]

Then it has a solution if and only if \(\mu(S) = \eta(S) \).

Proof: See Appendix A.

To understand the above lemma and its proof, let us see a simple example.

Example 1: Letting \(S = \{s, t\} \), \(\mu = \frac{0.9}{s} + \frac{0.3}{t} \), and \(\eta = \frac{1}{s} + \frac{0.5}{t} \), the system \([1] \) reduces to

\[
\begin{align*}
x_{ss} \vee x_{st} & = 0.9 \\
x_{ts} \vee x_{tt} & = 0.3 \\
x_{ss} \vee x_{ts} & = 1 \\
x_{st} \vee x_{tt} & = 0.5 \\
x_{st} & \geq 0, \forall s, t
\end{align*}
\]

The third equation implies that either \(x_{ss} = 1 \) or \(x_{ts} = 1 \). If \(x_{ss} = 1 \), it contradicts with the first equation; while if \(x_{ts} = 1 \), it contradicts with the second equation. Therefore, the above system has no solution. However, if we consider \(\theta = \frac{0.9}{s} + \frac{0.5}{t} \) and take \(x_{st} \) by following the proof of the lemma, it gives rise to a solution to the system \([1]\): \(x_{ss} = 0.9, x_{st} = 0.5, x_{ts} = 0.3, \) and \(x_{tt} = 0 \).

With the aid of the above lemma, we can now state the concept of lifting.

Definition 3: Let \(d \in \mathcal{D} \). For any \(\mu, \eta \in \mathcal{F}(S) \), if \(\mu(S) \neq \eta(S) \), we define \(\hat{d}(\mu, \eta) = 1 \); otherwise, we define \(\hat{d}(\mu, \eta) \) as the value of the following mathematical programming problem:

\[
\begin{align*}
\text{minimize} & \quad \forall s, t \in S (d(s, t) \wedge x_{st}) \\
\text{subject to} & \quad \forall t \in S S_{st} = \mu(s), \quad \forall s \in S \\
& \quad \forall s \in S S_{st} = \eta(t), \quad \forall t \in S \\
& \quad x_{st} \geq 0, \quad \forall s, t \in S.
\end{align*}
\]

Let us revisit Example \([1]\) If \(d \) is the discrete metric on \(S = \{s, t\} \), then it follows readily from Definition \([3]\) that \(\hat{d}(\mu, \mu) = \hat{d}(\mu, \eta) = \hat{d}(\theta, \theta) = 0, \hat{d}(\mu, \eta) = \hat{d}(\eta, \mu) = 1, \hat{d}(\theta, \eta) = \hat{d}(\theta, \mu) = 1, \hat{d}(\mu, \theta) = \hat{d}(\theta, \mu) = 0.5 \). In terms of these values, \(\hat{d} \) satisfies all the requirements of pseudo-ultrametric. Before exploring the universality of this property, we pause to give two remarks.

Remark 1: Whenever \(\mu(S) = \eta(S) \), it follows from Lemma \([1]\) that the system \([1]\) has a solution. It implies that the mathematical programming problem \([\text{MP}] \) in Definition \([3]\)
has a feasible solution. In this case, it is not difficult to observe that there exists an optimal solution to (MP) by considering all the alternatives of x_{st} from the finite set $\{\mu(s) : s \in S\} \cup \{\eta(t) : t \in S\} \cup \{0\}$. Hence, Definition 3 is well-defined.

Remark 2: In fact, Definition 3 is inspired by the duality of Kantorovich metric on probability measures. Roughly speaking, the Kantorovich metric and its duality provide a way of measuring the distance between two probability distributions. We refer the reader to [29] for the history of the Kantorovich metric and to [30] for its applications in probabilistic concurrency, image retrieval, data mining, and bioinformatics. Definition 3 is derived from the duality of Kantorovich metric by replacing the sum and product operations therein by max and min, respectively. Most recently, Repovš et al. [22] posed an open question: Is there a fuzzy analogue of the Kantorovich metric on the set of possibility measures? Our Definition 3 offers up a solution to this problem.

The desirability of Definition 3 is justified by the following fact.

Theorem 1: For each $d \in D$, \hat{d} is a pseudo-ultrametric on $\mathcal{F}(S)$.

Proof: See Appendix A.

B. A Monotonic Function on a Complete Lattice

For later need, we start by discussing the lattice structure on D and then define a suitable monotonic function on D. To this end, we need to endow D an order.

Definition 4: The order \preceq on D is defined by

$$d_1 \preceq d_2 \text{ if } d_1(s, t) \geq d_2(s, t) \text{ for all } s, t \in S.$$

It is easy to check that \preceq is indeed a partial order on D.

Recall that a partially ordered set (X, \preceq) is called a complete lattice if every subset of X has a supremum and an infimum in (X, \preceq). We now show that D endowed with the order specified in Definition 4 forms a complete lattice.

Lemma 2: (D, \preceq) is a complete lattice.

Proof: See Appendix A.

For any $d \in D$, we can get by Theorem 1 a pseudo-ultrametric \hat{d} on possibility distributions. Further, let us extend \hat{d} to a distance measure on the sets of possibility distributions.

Recall that the well-known Hausdorff distance measures how far two subsets of a metric space are from each other. Informally, the Hausdorff distance is the longest distance of either set to the nearest point in the other set. For our purpose, we consider the Hausdorff distance for a pseudo-ultrametric space.

Definition 5: Let (X, d) be a pseudo-ultrametric space. For any $x \in X$ and $A \subseteq X$, define

$$d(x, A) = \begin{cases} \wedge_{a \in A} d(x, a) & \text{if } A \neq \emptyset, \\ 1 & \text{otherwise}. \end{cases}$$

Further, given a pair $A, B \subseteq X$, the Hausdorff distance induced by d is defined as

$$H_d(A, B) = \begin{cases} 0, & \text{if } A = B = \emptyset, \\ [\wedge_{a \in A} d(a, B)] \lor [\bigvee_{b \in B} d(b, A)], & \text{otherwise}. \end{cases}$$

As expected, H_d has the following property.

Lemma 3: If d is a pseudo-ultrametric on X, then H_d is a pseudo-ultrametric on $P(X)$.

Proof: It follows directly from Definition 5 and we thus omit the proof.

Observe that by Theorem 1 any $d \in D$ induces a pseudo-ultrametric \hat{d} on $\mathcal{F}(S)$; further, it yields a pseudo-ultrametric $H_\hat{d}$ on $P(\mathcal{F}(S))$ by the Hausdorff distance. Based on $H_\hat{d}$, let us define a function Δ on D.

Definition 6: The function $\Delta: D \rightarrow D$ is defined as follows: For any $d \in D$, $\Delta(d)$ is given by

$$\Delta(d)(s, t) = \bigvee_{a \in A} H_d(\delta(s, a), \delta(t, a))$$

for all $s, t \in S$.

There is no difficulty to check that $\Delta(d) \in D$ by Lemma 3 and thereby, Δ is well-defined.

Our next objective is to show that Δ has a greatest fixed point with respect to the partial order in Definition 3. Recall that the remarkable Tarski’s theorem says that each monotonic function on a complete lattice has a greatest fixed point [31]. Therefore, to show that Δ has a greatest fixed point, it remains to verify that Δ is monotonic with respect to \preceq.

Recall that for a partially ordered set (X, \preceq), a function $f: X \rightarrow X$ is said to be monotonic if for all $x_1, x_2 \in X$, $x_1 \preceq x_2$ implies that $f(x_1) \preceq f(x_2)$.

Lemma 4: The function $\Delta: D \rightarrow D$ is monotonic with respect to the partial order \preceq.

Proof: See Appendix A.

C. Behavioral Distance

Based on the results obtained in the previous subsections, we can now define the behavioral distance and present some interesting properties.

Recall that for any function $f: X \rightarrow X$, an element $x \in X$ is called a fixed point of f if $x = f(x)$. By using the lemmas established above, we get a fixed point of Δ.

Theorem 2: The function $\Delta: D \rightarrow D$ has a greatest fixed point given by

$$\Delta_{\text{max}} = \bigcup \{d \in D : d \preceq \Delta(d)\}.$$

Proof: Both the existence and explicit representation of the greatest fixed point follow immediately from Lemmas 2 and 4 and Tarski’s fixed point theorem.

The greatest fixed point Δ_{max} is a pseudo-ultrametric on S, which serves as a distance measure on the state set of an FTS.

Definition 7: Let (S, A, δ) be an FTS. For any $s, t \in S$, the behavioral distance between s and t, denoted $d_f(s, t)$, is defined as

$$d_f(s, t) = \Delta_{\text{max}}(s, t).$$

Due to the ultrametricity of d_f, we can make a useful observation.

Corollary 1: For any given $\lambda \in [0, 1]$, define $R_\lambda = \{(s, t) \in S \times S : d_f(s, t) \leq \lambda\}$. Then R_λ is an equivalence relation on S.

Proof: It follows directly from the three properties of pseudo-ultrametric.
The significance of this corollary is that setting a threshold \(\lambda \), which depends on the particular application considered, one can partition the state space such that any two states in the same block have distance at most \(\lambda \). We defer describing \(R_0 \) in the next section.

As an immediate consequence of Theorem 2, we get a way to calculate the behavioral distance for image-finite FTSs. Here, by image-finiteness we mean that for any \(s \in S \) and \(a \in A \), the cardinality of \(\delta(s,a) \) is finite.

Corollary 2: Let \((S,A,\delta)\) be an image-finite FTS. Define \(\Delta^0(\top) = \top \) and \(\Delta^{n+1}(\top) = \Delta(\Delta^n(\top)) \), where \(\top \) is given by \(\top(s,t) = 0 \) for all \(s,t \in S \). Then

\[
d_f = \Delta_{\text{max}} = \cap \{ \Delta^n(\top) : n \in \mathbb{N} \}.
\]

Proof: See Appendix A.

For the sake of illustrating the above notions and results, we give a simple example.

Example 2: Consider the FTS shown in Fig. 1, where the states are in circles and each fuzzy transition is depicted via two parts: an arrow for nondeterministic choice (for simplicity, in this example we associate to each state at most one fuzzy transition) and a bunch of arrows for the possibility degrees of entering next states. Formally, \(S = \{ s_1, s_2, s_3, s_4 \} \), \(A = \{ a \} \), and \(\delta \) is defined as follows:

\[
\delta(s_1,a) = \{ \mu \}, \quad \delta(s_2,a) = \{ \eta \}, \quad \delta(s_3,a) = \emptyset, \quad \delta(s_4,a) = \emptyset,
\]

where

\[
\mu = \frac{0.9}{s_3} + \frac{0.8}{s_4}, \quad \eta = \frac{0.6}{s_3} + \frac{0.9}{s_4}, \quad \text{and} \quad \theta = \frac{0.9}{s_4}.
\]

Using Corollary 2, we compute \(d_f(s_1,s_j) \) by iteration of \(\Delta \) starting from the greatest element \(\top \). Let us write \(d_n \) for \(\Delta^n(\top) \). By the properties (P1) and (P2) of pseudo-ultrametric, we only need to calculate \(d_n(s_i,s_j) \) with \(i < j \). Moreover, it follows by the monotony of \(\Delta \) that \(d_{n+1}(s_i,s_j) = 1 \) if \(d_n(s_i,s_j) = 1 \). These observations greatly simplify the computation below. By Definitions 3 and 5 we have the following:

\[
\begin{align*}
\delta(s_1,a) &= \{ \mu \}, \\
\delta(s_2,a) &= \{ \eta \}, \\
\delta(s_3,a) &= \emptyset, \\
\delta(s_4,a) &= \emptyset,
\end{align*}
\]

For clarity, we may represent \(d_1 \) by the matrix \((d_1(s_i,s_j)) \), i.e.,

\[
d_1 = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}
\]

Let us go ahead.

\[
d_2(s_1,s_2) = \Delta(d_1) = H_{d_1}(\delta(s_1,a),\delta(s_2,a)) = H_{d_1}(\{ \mu \},\{ \eta \}) = H_\top(\mu,\eta) = 0.9,
\]

\[
d_2(s_2,s_3) = \hat{d}_1(\mu,\theta) = 0.9,
\]

\[
d_2(s_2,s_3) = \hat{d}_1(\eta,\theta) = 0.6.
\]

Again, we represent \(d_2 \) by the matrix

\[
d_2 = \begin{bmatrix}
0 & 0.9 & 0.9 & 1 \\
0.9 & 0 & 0.6 & 1 \\
0.9 & 0.6 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}
\]

We need to proceed with iteration. Fortunately, the next step shows us that \(d_3 = d_2 \) and thus the iteration can be stopped at the third step. As a result, we obtain that \(d_f = d_2 \), that is,

\[
d_f(s_1,s_1) = 0, \quad \text{for all} \quad i = 1, 2, 3, 4,
\]

\[
d_f(s_2,s_3) = 0.6,
\]

\[
d_f(s_1,s_2) = d_f(s_1,s_3) = 0.9,
\]

\[
d_f(s_1,s_4) = d_f(s_2,s_4) = d_f(s_3,s_4) = 1,
\]

where the symmetric parts are elided.

We end this section by relating the behavioral distance with the similarity relation (also known as fuzzy equivalence relation) proposed by Zadeh in [32]. Recall that a similarity relation on \(X \) is a binary fuzzy relation \(S \) on \(X \) (i.e., a function from \(X \times X \rightarrow [0,1] \)) that satisfies \(S(x,y) = S(y,x) \) and \(S(x,y) \wedge S(y,z) \leq S(x,z) \), for any \(x,y,z \in X \). We draw the reader’s attention to the entire difference between Zadeh’s similarity relation and the notion of bisimilarity in the subsequent section.

The following observation implies that the less the value of \(d_f \), the more similar the two states.

Corollary 3: For any \(s,t \in S \), let \(S(s,t) = 1 - d_f(s,t) \). Then \(S \) is a similarity relation on \(S \).

Proof: It follows immediately from the fact that \(d_f \) is a pseudo-ultrametric on \(S \).

\[
\text{IV. RELATIONSHIP WITH BISIMILARITY}
\]

In this section, we embark upon the relationship between the behavioral distance and bisimilarity. More concretely, we will show that two states are bisimlar if and only if they have behavioral distance 0. In addition, we present a characterization of bisimulation by exploiting the function \(\Delta \). To this end, we need to lift a relation on states to a relation on possibility distributions.
A. Lifting of Relation

The following notion of lifting is adopted from [33], where a similar notion was first defined for probability distributions.

Definition 8: Given an \(R \subseteq S \times S \), the lifting \(\hat{R} \) of \(R \) is defined as the smallest binary relation on \(\mathcal{F}(S) \) that satisfies
\[
\begin{align*}
(1) \quad & (\mu, \eta) \in \hat{R} \text{ implies } (\hat{s}, \hat{t}) \in \hat{R}; \\
(2) \quad & (\mu_i, \eta_i) \in \hat{R} \text{ implies } \left(\bigcup_{i \in I} c_i \cdot \mu_i, \bigcup_{i \in I} c_i \cdot \eta_i \right) \in \hat{R}, \text{ for any finite index set } I \text{ and } c_i \in [0, 1].
\end{align*}
\]

Note that \(\hat{s} \) in the above definition stands for the possibility distribution \(\frac{1}{2} \).

For later need, it is convenient to have two alternative presentations of the lifting.

Lemma 5: Let \(\mu, \eta \in \mathcal{F}(S) \) and \(R \subseteq S \times S \). Then the following are equivalent.
\[
\begin{align*}
(1) \quad & (\mu, \eta) \in \hat{R}.
(2) \quad & \text{There exist } (s_i, t_i) \in R \text{ and } c_i \in [0, 1], i \in I, \text{ such that } \\
& \mu = \bigcup_{i \in I} c_i \cdot s_i \text{ and } \eta = \bigcup_{i \in I} c_i \cdot t_i.
\end{align*}
\]

Lemma 6: Suppose that \(\mu, \eta \in \mathcal{F}(S) \) and \(R \subseteq S \times S \) is an equivalence relation on \(S \). Then \((\mu, \eta) \in \hat{R} \) if and only if \(\mu(C) = \eta(C) \) for all \(C \subseteq S/R \).

Proof: See Appendix A.

As we have seen, Definition 2 lifts a pseudo-ultrametric \(d \) on \(S \) to a pseudo-ultrametric \(\hat{d} \) on \(\mathcal{F}(S) \), while Definition 8 lifts a binary relation \(R \) on \(S \) to a binary relation \(\hat{R} \) on \(\mathcal{F}(S) \). With a little surprise, there is an intrinsic connection between them.

Lemma 7: Suppose that \(R \) is a binary relation on \(S \) and \(d \) is a pseudo-ultrametric on \(S \) satisfying that for any \(s, t \in S \),
\[
(1) \quad & (s, t) \in R \text{ if and only if } d(s, t) = 0.
(2) \quad & \text{Then it holds that for any } \mu, \eta \in \mathcal{F}(S),
\]

\[
(\mu, \eta) \in \hat{R} \text{ if and only if } \hat{d}(\mu, \eta) = 0.
\]

Proof: See Appendix A.

In order to characterize bisimulation via the function \(\Delta \), we need to define an auxiliary function. For any relation \(R \subseteq S \times S \), we associate to it a function \(d_R : S \times S \to [0, 1] \) defined by
\[
d_R(s, t) = \begin{cases}
0, & \text{if } (s, t) \in R \\
1, & \text{otherwise}.
\end{cases}
\]

Let us make a useful observation on which sort relation makes \(d_R \) into a pseudo-ultrametric.

Lemma 8: Let \(R \subseteq S \times S \). Then \(R \) is an equivalence relation if and only if \(d_R \) is a pseudo-ultrametric.

Proof: It is straightforward. We thus omit the details.

B. Relationship

Let us begin with the notion of bisimulation from [8], which is the nondeterministic version of the bisimulation in [7].

Definition 9: Let \((S, A, \delta) \) be an FTS. An equivalence relation \(R \subseteq S \times S \) is called a bisimulation on \(S \) if for any \((s, t) \in R \) and \(a \in A \), \(s \xrightarrow{a} \mu \) implies \(t \xrightarrow{a} \eta \) for some \(\eta \) such that \(\mu(C) = \eta(C) \) for every \(C \subseteq S/R \).

The greatest bisimulation on \(S \), denoted by \(\sim \), is called bisimilarity. In other words, \(s \) and \(t \) are bisimilar, written \(s \sim t \), if \((s, t) \in R \) for some bisimulation \(R \).

It is easy to see that in Fig. 1, \(s_i \not\sim s_j \) if \(i \neq j \).

We will characterize the bisimulation by the post-fixed points of \(\Delta \). Recall that for a partially ordered set \((X, \leq) \) and a function \(f : X \to X \), an element \(x \in X \) is called a post-fixed point of \(f \) if \(x \leq f(x) \).

For the proofs of subsequent theorems, let us present an explicit characterization of the post-fixed points of \(\Delta \).

Lemma 9: For any \(d \in D \), \(d \) is a post-fixed point of \(\Delta \) if and only if for any \((s, t) \in S \times S \) and \(a \in A \), \(s \xrightarrow{a} \mu \) implies that there exists some \(\eta \) (possibly \(\emptyset \)) such that \(t \xrightarrow{a} \eta \) and \(d(\mu, \eta) \leq d(s, t) \).

Proof: Note that \(d \) is a post-fixed point of \(\Delta \) if and only if \(\forall s, t \in S \) such that \(s \neq t \), \(d(s, t) \geq d(s, t) \).

We can now state the first main theorem in this section.

Theorem 3: Let \(R \) be an equivalence relation on \(S \). Then \(R \) is a bisimulation if and only if \(d_R \) is a post-fixed point of \(\Delta \).

Proof: See Appendix A.

The next theorem characterizing bisimilarity justifies the soundness of our behavioral distance.

Theorem 4: For any \(s, t \in S \), \(s \sim t \) if and only if \(d_f(s, t) = 0 \).

Proof: See Appendix A.

Following the notation used in Corollary 1, the above theorem means exactly that \(R_0 = \sim \). As an immediate consequence of the theorem, we have the following.

Corollary 4: For any \(s, s', t, t' \in S \), if \(s \sim s' \) and \(t \sim t' \), then \(d_f(s, t) = d_f(s', t') \).

Proof: See Appendix A.

It is well known that bisimulation equivalence allows one to reduce the state space of a system by combining bisimilar states to generate a quotient system with an equivalent behavior but with fewer states. Therefore, the significance of Corollary 4 lies in that computing the behavioral distance between \(s \) and \(t \) is reduced to computing the behavioral distance between their quotients.

V. NON-EXPANSIVENESS

To construct an overall fuzzy system, one may usually build its component systems first and then compose them by some operators. Therefore, compositional operators can serve the need of modular specification and verification of systems. A desirable property of compositional operators is non-expansiveness. It means that if the difference (with respect to some behavioral measure) between \(s_i \) and \(s'_i \) is \(\epsilon_i \), then the
difference between \(f(s_1, \ldots, s_n) \) and \(f(s'_1, \ldots, s'_n) \) is no more than \(\vee_{i=1}^n \epsilon_i \), where \(f \) is an operator with \(n \) arguments. As an example, we examine the non-expansiveness of our behavioral distance with respect to the parallel composition and product operators in this section. These operators model two forms of joint behavior of some fuzzy systems and we can think of them as two types of systems resulting from the interconnection of system components.

To introduce the operators, one further bit of notation will be handy: Given \(\mu_i \in \mathcal{F}(S_i), i = 1, 2 \), we use \(\mu_1 \land \mu_2 \) to denote the possibility distribution on \(S_1 \times S_2 \) that is defined by

\[
(\mu_1 \land \mu_2)(s_1, s_2) = \mu_1(s_1) \land \mu_2(s_2)
\]

for all \((s_1, s_2) \in S_1 \times S_2\).

The parallel composition operator is asynchronous in the sense that the components can either synchronize or act independently. Given an FTS \((S, A, \delta)\), for any \(s_1, s_2 \in S \), the events that are intended to synchronize at \(s_1 \) and \(s_2 \) are listed in the set \(A_{s_1} \cap A_{s_2} \) and the rest of the events can be performed independently, where \(A_i \) stands for \(\{a \in A : \exists \mu \neq 0, s_i \xrightarrow{a} \mu \} \). Formally, the parallel composition is a three-tuple \((S \times S, A, \delta')\), where for all \(s_1, s_2 \in S \) and \(a \in A\),

\[
\delta'(s_1|s_2, a) = \begin{cases}
\{ \mu \land \hat{q} : \mu \in \delta(s_1, a) \}, & \text{if } a \in A_{s_1} \setminus A_{s_2} \\
\{ \hat{p} \land \eta : \eta \in \delta(s_2, a) \}, & \text{if } a \in A_{s_2} \setminus A_{s_1} \\
\{ \mu \land \eta : \mu \in \delta(s_1, a), \eta \in \delta(s_2, a) \}, & \text{if } a \in A_{s_1} \cap A_{s_2} \\
0, & \text{otherwise.}
\end{cases}
\]

Clearly, this constructs an FTS, which represents that two states of \((S, A, \delta)\) are running concurrently. Instead of a pair \((s_1, s_2) \in S \times S\) we write \(s_1|s_2 \) for a state in the composed FTS. The synchronization constraint \(A_{s_1} \cap A_{s_2} \) forces some events to be carried out at both of the states at the same time and allows all the possible interleaveings of the other events at the two states.

The definition of product is somewhat simpler than that of the parallel composition. Given an FTS \((S, A, \delta)\), the product is a three-tuple \((S \times S, A, \delta'')\), where \(\delta'' : (S \times S) \times A \rightarrow \mathcal{P}(\mathcal{F}(S \times S)) \) is defined by

\[
\delta''(s_1|s_2, a) = \begin{cases}
\{ \mu \land \eta : \mu \in \delta(s_1, a), \eta \in \delta(s_2, a) \}, & \text{if } a \in A_{s_1} \cap A_{s_2} \\
0, & \text{otherwise.}
\end{cases}
\]

It turns out that \((S \times S, A, \delta'')\) is again an FTS. The product requires that the components are strictly synchronous.

Let us present an example of the parallel composition and compute the behavioral distance between the states.

Example 3: We revisit the FTS shown in Fig. 1. By the definition of parallel composition, we can readily get all the fuzzy transitions derived from \(s_1|s_2 \) and \(s_2|s_3 \), which are depicted in Fig. 2. For instance,

\[
\delta'(s_2|s_3, a) = \begin{cases}
\left(\frac{0.6}{s_3} + \frac{0.9}{s_4} \right) \lor \frac{0.9}{s_4} \lor 0 \\
\frac{0.6}{s_3} \lor \frac{0.9}{s_4} \\
\frac{0.9}{s_4} \lor \frac{1}{s_4} \\
\frac{0.9}{s_4} \\
\frac{0.9}{s_4}.
\end{cases}
\]

By a routine computation like Example 2 we can obtain the values of behavioral distance \(d_f' \) on these states; for example,

\[
\begin{align*}
&d_f'(s_4|s_3, s_3|s_4) = d_f'(s_3|s_3, s_3|s_3) = d_f'(s_3|s_4, s_3|s_3) = 0, \\
&d_f'(s_2|s_3, s_3|s_4) = d_f'(s_2|s_3, s_3|s_4) = d_f'(s_2|s_3, s_3|s_3) = 0.6, \\
&d_f'(s_1|s_2, s_2|s_3) = d_f'(s_1|s_2, s_2|s_3) = d_f'(s_1|s_2, s_2|s_3) = 0.9, \\
&d_f'(s_3|s_3, s_3|s_4) = d_f'(s_3|s_3, s_3|s_4) = d_f'(s_3|s_3, s_3|s_4) = 1.
\end{align*}
\]

Comparing with the behavioral distances obtained in Example 2, these values evidence that the parallel composition is non-expansive.

More generally, we have the following theorem.

Theorem 5: Let \((S, A, \delta)\) be an FTS and \(s_i, t_i \in S \) with \(d_f(s_i, t_i) = \epsilon_i \), where \(i = 1, 2 \). Then we have the following:

1. \(d_f'(s_1|s_2, t_1|t_2) \leq \epsilon_1 \lor \epsilon_2 \).
2. \(d_f'(s_1|s_2, t_1|t_2) \leq \epsilon_1 \lor \epsilon_2 \).

Proof: See Appendix A.

The above theorem gives rise to an interesting corollary, which says that both the parallel composition and product preserve bisimilarity.

Corollary 5: If \(s_1 \sim t_1 \) and \(s_2 \sim t_2 \), then \(s_1|s_2 \sim t_1|t_2 \) and \(s_1|s_2 \sim t_1|t_2 \).

Proof: It is straightforward by Theorems 4 and 5.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have constructed a pseudo-ultrametric for measuring the behavioral distance between states in an FTS. The behavioral distance is a quantitative analogue of
bisimilarity. The smaller the distance, the more alike the states are. In particular, states are bisimilar if and only if they have a distance of 0. We have also shown that for the parallel composition and product operators, the behavioral distance is non-expansive. Contrary to the exact notion of bisimulation, the behavioral distance is much more natural and robust for fuzzy systems, which enables us to talk about the approximate equivalence of fuzzy systems.

There are several problems that are worth further study. First, developing an algorithm to calculate our behavioral distance is desirable. The algorithms for probabilistic systems cannot be adapted in a straightforward way to our setting. Second, another aspect that should be considered in the future is to modify the logic and its interpretation in [34], [35] so that we can obtain a logical characterization of the behavioral distance. This is just a different formal presentation of the same thing, but it may help in connecting to the fairly large number of works on fuzzy logic. Third, it is interesting to discover the relationship between the behavioral distance and the greatest simulation based on a fuzzy relation in [12], [13]. It would be very valuable if one could transfer results from one setting to the other. Fourth, noting that there is another approach to measuring the behavioral distance between states in a probabilistic system by introducing various approximate bisimulations (e.g., [19], [36]–[39]), one may pursue the approximate bisimulation approach in a fuzzy system as well. Finally, the present work has focused on the theoretical presentation of our behavioral distance. The application of this measure in analyzing some practical fuzzy systems such as fuzzy control systems, discrete-time fuzzy systems, and the greatest bisimulation based on a fuzzy relation is desirable. The algorithms for probabilistic systems are, in particular, states are bisimilar if and only if they have the same distance. This is just a different formal presentation of the same thing, but it may help in connecting to the fairly large number of works on fuzzy logic. Third, it is interesting to discover the relationship between the behavioral distance and the greatest simulation based on a fuzzy relation in [12], [13]. It would be very valuable if one could transfer results from one setting to the other. Fourth, noting that there is another approach to measuring the behavioral distance between states in a probabilistic system by introducing various approximate bisimulations (e.g., [19], [36]–[39]), one may pursue the approximate bisimulation approach in a fuzzy system as well. Finally, the present work has focused on the theoretical presentation of our behavioral distance. The application of this measure in analyzing some practical fuzzy systems such as fuzzy control systems, discrete-time fuzzy systems, and the greatest bisimulation based on a fuzzy relation is desirable. The algorithms for probabilistic systems are.

APPENDIX A

Proof of Lemma 7 Suppose that the system (1) has a solution \(\{x_{st} : s, t \in S\} \). By contradiction, let us assume that \(\mu(S) \neq \eta(S) \), say \(\mu(S) > \eta(S) \). Then there exists \(s' \in S \) such that \(\mu(s') = \mu(S) \). Because \(\mu(s') = \bigvee_{s \in S} x_{s't} \), there is \(t' \in S \) such that \(x_{s't} = \mu(s') \). Hence, we see that \(x_{s't'} = \eta(s') \). Furthermore, it yields that \(\bigvee_{s \in S} x_{s'tt} \geq \eta(s') > \eta(t') \), which contradicts with the second equation in the system. Therefore, the necessity holds.

Conversely, assume that \(\mu(S) = \eta(S) \). Then there are \(s', t' \in S \) such that \(\mu(s') = \mu(S) = \eta(S) = \eta(t') \). For any \(s, t \in S \), we take

\[
x_{st} = \begin{cases}
\mu(s), & \text{if } t' = t \\
\eta(t), & \text{if } s = s' \\
0, & \text{otherwise}.
\end{cases}
\]

Note that \(x_{s't'} = \mu(s') = \eta(t') \) by the definition above. We claim that \(\{x_{st} : s, t \in S\} \) is a solution to the system (1). In fact, it is clear that \(x_{st} \geq 0 \) for all \(s, t \in S \). The first two equations in (1) are analogous, so we merely verify the first one. For any \(s \in S \), if \(s = s' \), then we have that \(\bigvee_{t \in S} x_{st} = \bigvee_{t \in S} \eta(t) = \eta(S) = \mu(S) = \mu(s') \); if \(s \neq s' \), we get that \(\bigvee_{t \in S} x_{st} = x_{s't} = (\bigvee_{t \in S \setminus \{t'\}} x_{st}) = \mu(s) \lor 0 = \mu(s) \).

Consequently, it holds that \(\bigvee_{t \in S} x_{st} = \mu(s) \) for any \(s \in S \), as desired.

Proof of Theorem 1 We need to check that \(\hat{d} \) satisfies the three requirements of pseudo-ultrametric. Let \(\mu, \eta, \theta \in \mathcal{F}(S) \).

For (P1), we see that \(\hat{d}(\mu, \mu) = 0 \) by setting \(x_{sa} = \mu(s) \) and \(x_{st} = 0 \) for all \(s \neq t \).

For (P2), if \(\mu(S) \neq \eta(S) \), we have that \(\hat{d}(\mu, \eta) = 1 = \hat{d}(\eta, \mu) \). Otherwise, without loss of generality, we may assume that \(\hat{d}(\mu, \eta) < \hat{d}(\eta, \mu) \), and suppose that \(\hat{d}(\mu, \eta) \) is attained by some \(\{x_{st} : s, t \in S\} \), namely, \(\hat{d}(\mu, \eta) = \bigvee_{s, t \in S} (d(s, t) \land x_{st}) \). For all \(s, t \in S \), set \(y_{st} = x_{ts} \). It is easy to see that \(\bigvee_{t \in S} y_{st} = \bigvee_{t \in S} x_{ts} = \eta(s) \) for every \(s \in S \) and \(\bigvee_{s \in S} y_{st} = \bigvee_{s \in S} x_{ts} = \mu(t) \) for every \(t \in S \). Moreover, we obtain that

\[
\bigvee_{s, t \in S} (d(s, t) \land y_{st}) = \bigvee_{s, t \in S} (d(s, t) \land x_{ts}) = \bigvee_{s, t \in S} (d(s, t) \land x_{st}) = \hat{d}(\mu, \eta),
\]

which means that \(\hat{d}(\mu, \eta) \geq \hat{d}(\eta, \mu) \). It is a contradiction. Therefore, \(\hat{d}(\mu, \eta) = \hat{d}(\eta, \mu) \).

For (P3), if \(\mu(S) \neq \eta(S) \) or \(\eta(S) \neq \theta(S) \), we always have that \(\hat{d}(\mu, \eta) \lor \hat{d}(\eta, \theta) = 1 \geq \hat{d}(\mu, \theta) \). Otherwise, we see that \(\mu(S) = \eta(S) = \theta(S) \). In this case, suppose that \(\hat{d}(\mu, \eta) = \bigvee_{s, t \in S} (d(s, t) \land x_{st}) \) and \(\hat{d}(\eta, \theta) = \bigvee_{s, t \in S} (d(s, t) \land y_{st}) \). Then we have the following equations:

\[
\bigvee_{s \in S} x_{st} = \mu(s), \quad \forall s \in S \tag{4} \\
\bigvee_{s \in S} y_{st} = \eta(t), \quad \forall t \in S \tag{5} \\
\bigvee_{s \in S} y_{st} = \theta(t), \quad \forall t \in S \tag{6} \\
\bigvee_{s \in S} x_{st} = \mu(s), \quad \forall s \in S \tag{7}
\]

For all \(s, t \in S \), set \(z_{st} = \bigvee_{s \in S} (x_{st} \land y_{rt}) \). For any given \(s \in S \), we get that

\[
\bigvee_{t \in S} z_{st} = \bigvee_{t \in S} \bigvee_{s \in S} (x_{st} \land y_{rt}) \tag{8}
\]

i.e., \(\bigvee_{s \in S} z_{st} = \theta(t) \). Moreover, we see that \(\hat{d}(\mu, \theta) \leq \hat{d}(\mu, \eta) \lor \hat{d}(\eta, \theta) \) by the inequality at the top of the next page.
\[\hat{d}(\mu, \theta) \leq \forall s,t \in S \ (d(s, t) \wedge z_{st}) \]
\[= \forall s,t \in S \left[d(s, t) \wedge (\forall r \in S (x_{sr} \wedge y_{rt})) \right] \]
\[= \forall s,t \in S \forall r \in S \left[d(s, t) \wedge x_{sr} \wedge y_{rt} \right] \]
\[\leq \forall s,t \in S \forall r \in S \left[(d(s, r) \lor d(r, t)) \wedge x_{sr} \wedge y_{rt} \right] \]
\[= \forall s,t \in S \forall r \in S \left[(d(s, r) \wedge x_{sr}) \lor (d(r, t) \wedge x_{sr} \wedge y_{rt}) \right] \]
\[= \forall s,t \in S \forall r \in S \left[(d(s, r) \wedge x_{sr}) \lor (d(r, t) \wedge y_{rt}) \right] \]
\[= \left[\forall s,t \in S \forall r \in S (d(s, r) \wedge x_{sr}) \right] \lor \left[\forall r,t \in S (d(r, t) \wedge y_{rt}) \right] \]
\[= \hat{d}(\mu, \eta) \lor \hat{d}(\eta, \theta). \]

Therefore, \(\hat{d} \) is a pseudo-ultrametric on \(\mathcal{F}(S) \), completing the proof of the theorem.

Proof of Lemma 2 For any \(X \subseteq \mathcal{D} \), we define \(\sqcap X \) by

\[(\sqcap X) (s, t) = \lor \{ d(s, t) : d \in X \} \]

and \(\sqcup X \) by

\[(\sqcup X) (s, t) = \sqcap \{ d \in \mathcal{D} : \forall d' \in X, d' \leq d \}. \]

In particular, \((\sqcap \emptyset) (s, t) = 0 \) for all \(s, t \in S \), and \((\sqcup \emptyset) (s, t) = 0 \) if \(s = t \), 1 otherwise. We need to verify that \(\sqcap X \) and \(\sqcup X \) are the infimum and supremum of \(X \), respectively. We only prove that \(\sqcap X \) is the infimum, since the supremum can be proved similarly.

We first show that \(\sqcap X \in \mathcal{D} \). In fact, it is obvious that \((\sqcap X) (s, t) = 0 \) and \((\sqcap X) (s, t) = (\sqcap X) (t, s) \) for all \(s, t \in S \). For (P3), we have that

\[(\sqcap X) (s, t) = \lor_{d \in X} d(s, t) \leq \lor_{d \in X} (d(s, r) \lor d(r, t)) = (\lor_{d \in X} d(s, r)) \lor (\lor_{d \in X} d(r, t)) = [(\lor_{d \in X} d(s, r)) \lor (\lor_{d \in X} d(r, t))], \]

for any \(s, t, r \in S \). Hence, \(\sqcap X \) is a pseudo-ultrametric.

Observe that \((\sqcap X) (s, t) \geq d(s, t) \), that is, \(\sqcap X \leq d \), for all \(d \in X \). Therefore, \(\sqcap X \) is a lower bound of \(X \). On the other hand, for any \(h \in \mathcal{D} \), if \(h \leq d \), i.e., \(h(s, t) \geq d(s, t) \), for all \(d \in X \), then it is easy to see that \(h \leq \sqcap X \), which means that \(\sqcap X \) is not less than any other lower bound of \(X \). Consequently, \(\sqcap X \) is the infimum of \(X \). This proves that \((\mathcal{D}, \sqsubseteq) \) is a complete lattice.

Proof of Lemma 3 We first prove the following claim: For any given \(d_1, d_2 \in \mathcal{D} \), if \(d_1 \leq d_2 \), then it holds that \(d_1(\mu, \eta) \geq d_2(\mu, \eta) \) for all \(\mu, \eta \in \mathcal{F}(S) \).

In fact, we have that \(d_1(s, t) \geq d_2(s, t) \) for all \(s, t \in S \), as \(d_1 \leq d_2 \). Suppose that \(d_1(\mu, \eta) \) is achieved by \(\{ x_{st} : s, t \in S \} \). Clearly, \(\{ x_{st} : s, t \in S \} \) is also a feasible solution to [MP], defining \(d_2(\mu, \eta) \). As a result, we obtain that

\[d_1(\mu, \eta) = \lor_{s,t \in S} (d_1(s, t) \wedge x_{st}) \geq \lor_{s,t \in S} (d_2(s, t) \wedge x_{st}) \geq d_2(\mu, \eta), \]

as desired.

The proof of the lemma is straightforward by the previous claim and thus omitted here.

Proof of Corollary 2 According to Tarski’s fixed point theorem, the greatest fixed point \(\Delta_{\text{max}} \) can be obtained by iteration of \(\Delta \) starting from the greatest element \(\top \) (see, for example, [44]). Hence, to show that \(\Delta_{\text{max}} = \sqcap \{ \Delta^n(\top) : n \in \mathbb{N} \} \), we only need to prove that the closure ordinal of \(\Delta \), i.e., the least ordinal \(n \) such that \(\Delta^{n+1} = \Delta^n \), is at most \(\omega \). In fact, for any \((s, t) \in S \times S \), if \(s \rightarrow_{\mathcal{A}} \mu \), then for each \(d_n = \Delta^n(\top) \), there exists \(\eta_n \) such that \(t \rightarrow_{\mathcal{A}} \eta_n \) and \(d_n(\mu, \eta_n) \leq d_n(s, t) \). Thanks to the image-finiteness of the FTS, there is an \(\eta_n \), say \(\eta \), such that \(t \rightarrow_{\mathcal{A}} \eta \) and \(d_n(\mu, \eta) \leq d_n(s, t) \) for all but finitely many \(n \), as desired.

Proof of Lemma 5 The equivalence of (1) and (2) follows immediately from Definition 8. Therefore, we only prove the equivalence of (2) and (3).

(2) \(\Rightarrow \) (3). By the condition of (2), we define the weight function \(w \) by setting

\[w(s, t) = \lor \{ c_i : (s_i, t_i) = (s, t), i \in I \} \]

for each \((s, t) \in S \times S \). It remains to check that such a weight function satisfies the requirements (a), (b), and (c) of (3).

(a) For any \(s \in S \), we have that

\[\forall t \in S w(s, t) = \lor_{t \in S} \lor \{ c_i : (s_i, t_i) = (s, t), i \in I \} = \lor \{ c_i : s_i = s, i \in I \} = \lor_{i \in I} [c_i \wedge \hat{s}_i(s)] = \mu(s). \]

(b) The proof is similar to that of (a).

(c) If \(w(s, t) > 0 \), then by the definition of \(w \) there exists some \(i \in I \) such that \(c_i > 0 \) and \((s_i, t_i) = (s, t) \). We see that \((s, t) \in R \), since \((s_i, t_i) \in R \).

(3) \(\Rightarrow \) (2). Suppose that there is a weight function \(w \) satisfying the conditions (a), (b), and (c) in (3). Then we take \(I = \{ (s, t) : w(s, t) > 0, (s, t) \in S \times S \} \) and set \(c_{(s,t)} = w(s,t) \) for each \((s,t) \in I \). Clearly, for any \((s,t) \in I \), we have that \(w(s,t) > 0 \), which implies \((s,t) \in R \) by the
condition (c) in (3). Moreover, for any $s' \in S$, we obtain that
\[
\left(\bigcup_{(s,t) \in I} c_{(s,t)} : \hat{s} \right)(s') = \bigvee_{(s,t) \in I} (w(s,t) \land \hat{s}(s')) = \bigvee_{(s,t) \in I} w(s',t) = \bigvee \{w(s',t) : w(s',t) > 0, t \in S\} = \bigvee \{w(s',t) : t \in S\} = \mu(s'),
\]
which means that $\eta = \bigcup_{(s,t) \in I} c_{(s,t)} : \hat{s}$. By the same token, we can get that $\eta = \bigcup_{(s,t) \in I} c_{(s,t)} : \hat{s}$. Hence, (2) holds. This completes the proof of the lemma.

Proof of Lemma 5. We first show the necessity. Suppose that $(\mu, \eta) \in \bar{R}$. Then by Lemma 5 there are $(s_i, t_i) \in R$ and $c_i \in [0,1]$, $i \in I$, such that $\mu = \bigcup_{i \in I} c_i : \hat{s}_i$ and $\eta = \bigcup_{i \in I} c_i : \hat{t}_i$.

For any $C \in S/R$, we have that
\[
\mu(C) = \bigvee_{s \in C} \mu(s) = \bigvee_{s \in C} \left(\bigcup_{i \in I} c_i : \hat{s}_i \right) = \bigvee_{s \in C} \left(\bigcup_{i \in I} c_i : \hat{s}_i \right)(s) = \bigvee_{i \in I} \cap \{c_i : i \in I, s_i = s\} = \bigcup_{i \in I} \{c_i : i \in I, s_i \in C\}.
\]

In a similar vein, we can get that $\eta(C) = \bigvee\{c_i : i \in I, t_i \in C\}$. As $(s_i, t_i) \in R$, we see that $s_i \in C$ if and only if $t_i \in C$. Consequently, it yields that $\mu(C) = \eta(C)$.

Next, to see the sufficiency, assume that $\mu(C) = \eta(C)$ for every $C \in S/R$. Take $I = \{(s,t) : (s,t) \in R\}$ and let $c_{(s,t)} = \mu(s) \land \eta(t)$ for each $(s,t) \in I$. For any $(s,t) \in I$, it is obvious that $(s,t) \in R$. Furthermore, for any $s' \in S$, we have that
\[
\left(\bigcup_{(s,t) \in I} c_{(s,t)} : \hat{s} \right)(s') = \bigvee_{(s,t) \in I} (c_{(s,t)} \land \hat{s}(s')) = \bigvee_{(s,t) \in I} c_{(s,t)} = \bigvee \{c_{(s',t)} : (s',t) \in R, t \in S\} = \bigvee \{c_{(s',t)} : t \in \{s'\}\} = \mu(s') = \eta(s') = \mu(s') = \eta(s'),
\]
where we write $[s']$ for the equivalence class containing s'. It gives that $\mu = \bigcup_{(s,t) \in I} c_{(s,t)} : \hat{s}$. Similarly, we can get that $\eta = \bigcup_{(s,t) \in I} c_{(s,t)} : \hat{t}$. Whence, we have that $(\mu, \eta) \in \bar{R}$ by Lemma 5, finishing the proof.

Proof of Corollary 4. As $s \sim s'$ and $t \sim t'$, we see by Theorem 4 that $d_f(s,s') = d_f(t,t') = 0$. Note that d_f is a peso-ultrametric on S. Thus, d_f satisfies the condition (c) in (3). Moreover, for any $s' \in S$, we obtain that
\[
(\bigcup_{(s,t) \in I} c_{(s,t)} : \hat{s})(s') = \bigvee_{(s,t) \in I} (w(s,t) \land \hat{s}(s')) = \bigvee_{(s,t) \in I} w(s',t) = \bigvee \{w(s',t) : w(s',t) > 0, t \in S\} = \bigvee \{w(s',t) : t \in S\} = \mu(s'),
\]
which means that $\eta = \bigcup_{(s,t) \in I} c_{(s,t)} : \hat{s}$. By the same token, we can get that $\eta = \bigcup_{(s,t) \in I} c_{(s,t)} : \hat{s}$. Hence, (2) holds. This completes the proof.
\[
\hat{D}(\mu \land \mu', \eta \land \eta') \leq \forall_{s', t' \in S \times S} [D(s|s', t'|t') \land z_{s', t'|t'}]
\]
\[
= \forall_{s, t', \mu', \eta' \in S} [(D(s, t) \lor D(s', t)) \land (x_{s, t} \land y_{s', t'})]
\]
\[
= \forall_{s', t' \in S} [(D(s, t) \land x_{s, t} \land y_{s', t'}) \lor (D(s', t') \land y_{s', t'})]
\]
\[
= \forall_{s', t' \in S} [(D(s, t) \land x_{s, t} \land y_{s', t'}) \lor (D(s', t', t') \land y_{s', t'})]
\]
\[
= \forall_{s, t' \in S} [D(s, t) \land x_{s, t}] \lor [\forall_{s', t' \in S} (D(s', t'), y_{s', t'})]
\]
\[
= \forall_{s, t' \in S} [D(s, t) \lor D(s', t')]
\]
\[
= D(s|s', t'|t').
\]

\[\text{Pseudo-ultrametric. We thus get by (P3) that}\]
\[
d_f(s, t) \leq d_f(s, s') \lor d_f(s', t)
\]
\[
= d_f(s', t') \lor d_f(t', t)
\]
\[
= d_f(s', t'),
\]

\[\text{namingly, } d_f(s, t) \leq d_f(s', t'). \text{ The converse can be proved in the same way. Thereby, } d_f(s, t) = d_f(s', t'), \text{ as desired.}\]

Proof of Theorem 2 We only prove the first assertion; the second one can be proved similarly.

For (1), consider the parallel composition \((S \times S, A, \delta')\). Let us first define a function \(D : (S \times S) \times (S \times S) \rightarrow [0, 1] \) by setting
\[
D(s|s', t'|t') = d_f(s, t) \lor d_f(s', t')
\]
for any \(s|s', t'|t' \in S \times S\). It is easy to check that \(D\) is a pseudo-ultrametric on \(S \times S\). We claim that \(D\) is a post-fixed point of \(\Delta\).

Let us verify the claim by using Lemma 9. For any given \((s|s', t'|t') \in (S \times S) \times (S \times S)\) and \(a \in A\), suppose that \(s|s' \xrightarrow{a} \mu \land \mu'\). We need to show that there exists some \(\eta \land \eta'\) such that \(t' \xrightarrow{a} \eta \land \eta'\) and \(\hat{D}(\mu \land \mu', \eta \land \eta') \leq D(s|s', t'|t')\).

We can discuss the following four cases: \(a \in A \setminus A_s\), \(a \in A_s \setminus A\), \(a \in A \setminus A_s\) \& \(a \notin A_s \setminus A\). We only go into the details of the third case; the other cases are simpler and can be proved in a similar way.

In the case of \(a \in A_s \setminus A\), we get by the definition of parallel composition that there are \(s \xrightarrow{a} \mu\) and \(s' \xrightarrow{a} \mu'\). Because the greatest fixed point \(\underline{d}_f\) of \(\Delta\) is a post-fixed point as well, by Lemma 9, there are \(\eta\) and \(\eta'\) such that \(t' \xrightarrow{a} \eta\) and \(\overline{\mu}(t') \xrightarrow{a} \eta'\). Moreover, we get that \(\hat{d}_f(\mu, \eta) \leq d_f(s, t)\) and \(\hat{d}_f(\mu', \eta') \leq d_f(s', t')\). It yields that \(t' \xrightarrow{a} \eta \land \eta'\) and remains to verify that \(\hat{D}(\mu \land \mu', \eta \land \eta') \leq D(s|s', t'|t')\).

Two subcases need to be considered: One is that both \(\mu(S) = \eta(S)\) and \(\mu'(S) = \eta'(S)\); the other is that either \(\mu(S) \neq \eta(S)\) or \(\mu'(S) \neq \eta'(S)\).

In the first subcase, we may assume that \(\hat{d}_f(\mu, \eta)\) and \(\hat{d}_f(\mu', \eta')\) are attained by \(\{x : s, t \in S\}\) and \(\{y : s', t' \in S\}\), respectively, that is, \(\hat{d}_f(\mu, \eta) = \forall_{s, t \in S} (d_f(s, t) \land x_{s, t})\) and \(\hat{d}_f(\mu', \eta') = \forall_{s', t' \in S} (d_f(s', t') \land y_{s', t'})\). Then we have the following:
\[
\forall_{t \in S} x_{s, t} = \mu(s), \quad \forall s \in S
\]
\[
\forall_{t \in S} x_{s, t} = \eta(t), \quad \forall t \in S
\]
\[
\forall_{t' \in S} y_{s', t'} = \mu'(s'), \quad \forall s' \in S
\]
\[
\forall_{t' \in S} y_{s', t'} = \eta'(t'), \quad \forall t' \in S
\]

For all \(s|s', t'|t' \in S \times S\), set \(z_{s', t'|t'} = x_{s, t} \land y_{s', t'}\). For any \(s|s' \in S \times S\), we find that
\[
\forall_{t' \in S \times S} z_{s', t'|t'} = \forall_{t', \eta' \in S} (x_{s, t} \land y_{s', t'}) = \forall_{t, \eta \in S} [x_{s, t} \land (\forall_{t' \in S} y_{s', t'})] = \forall_{t \in S} x_{s, t} \land (\forall_{t' \in S} y_{s', t'}) = (\forall_{s \in S} x_{s, t}) \land \mu'(s') = (\forall_{s \in S} x_{s, t}) \land \mu'(s'),
\]
\[
\eta(t) \land \eta'(t') = (\eta \land \eta')(t'|t'),
\]
\[\text{i.e., } \forall_{s|s', t'|t' \in S \times S} z_{s', t'|t'} = (\eta \land \eta')(t'|t'). \text{ As a result, } \{z_{s', t'|t'} : s|s', t'|t' \in S \times S\} \text{ is a feasible solution to the mathematical programming problem (MP) defining } \hat{D}(\mu \land \mu', \eta \land \eta'). \text{ Therefore, we get that } \hat{D}(\mu \land \mu', \eta \land \eta') \leq D(s|s', t'|t') \text{ by the inequality at the top of this page.}
\]

In the second subcase, we see that \(\hat{d}_f(\mu, \eta) = 1\) or \(\hat{d}_f(\mu', \eta') = 1\). It follows that \(d_f(s, t) = 1\) or \(d_f(s', t') = 1\), since \(d_f(\mu, \eta) \leq d_f(s, t)\) and \(d_f(\mu', \eta') \leq d_f(s', t')\). Therefore, we get that \(D(s|s', t'|t') = D(s, t) \lor D(s', t') = 1 \geq \hat{D}(\mu \land \mu', \eta \land \eta')\). This completes the proof of the claim.

Based on the claim, it follows by the definition of \(\overline{d}_f\) that \(D \leq \overline{d}_f\), which means that
\[
\overline{d}_f(s_1|s_2, t_1|t_2) \leq D(s_1|s_2, t_1|t_2)
\]
\[
d_f(s_1, t_1) \lor d_f(s_2, t_2) = \epsilon_1 \lor \epsilon_2.
\]
Consequently, the first assertion holds, finishing the proof.

REFERENCES

