Adaptive Projection Subspace Dimension for the Thick-Restart Lanczos Method

I. Yamazaki and Z. Bai
University of California, Davis
and
H. Simon, L.W. Wang, and K. Wu
Lawrence Berkeley National Laboratory

The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Hermitian eigenvalue problems. The performance of the method strongly depends on the dimension of the projection subspace used at each restart. In this paper, we propose an objective function to quantify the effectiveness of a selected subspace dimension, and then introduce an adaptive scheme to dynamically select the dimension at each restart. We have developed an open-source software package α–TRLan, which implements the TRLan method with this adaptive scheme. α–TRLan achieves speedups of up to 2.3 over a state-of-the-art preconditioned conjugate gradient eigensolver for the electronic structure calculations of quantum dots.

Categories and Subject Descriptors: G.1.3 [Numerical Linear Algebra]: Eigenvalues and eigenvectors (direct and iterative methods).

Additional Key Words and Phrases: Adaptive subspace dimension, Lanczos, Thick-restart, Electronic structure calculation.

1. INTRODUCTION

The Lanczos method [Lanczos 1950] for solving large-scale Hermitian eigenvalue problems computes a new orthonormal basis vector of a projection subspace at each iteration. Computational and memory costs increase rapidly as the iteration proceeds. To reduce the costs, the method is typically restarted after the projection subspace of a fixed dimension is computed [Lehoucq et al. 1998; Wu and Simon 2000c]. The performance of the method strongly depends on the selected...
dimension of the subspace. If the dimension is too small, the method suffers from slow convergence. If it is too large, the computational and memory costs become expensive. To achieve an optimal performance, it is necessary to select a proper subspace dimension that balances the costs and the convergence rate. To demonstrate this delicate task, let us examine the performance of the Thick-Restart Lanczos (TRLan) method [Wu and Simon 2000a; 2000c]. Figure 1 shows the numbers of matrix-vector products (in thousands) and CPU times (in seconds) of the TRLan method to compute the smallest 20 eigenvalues of a $10,000 \times 10,000$ diagonal matrix $A = \text{diag}(1, 2^2, 3^2, \ldots, 10000^2)$ with respect to different subspace dimensions. As we can see, a larger subspace dimension improves the convergence rate (i.e., TRLan converges with a smaller number of matrix-vector products). However, as the subspace dimension becomes too large, the CPU time starts to increase dramatically.

In order to free users from having to select an appropriate subspace dimension, in Section 3 of this paper, we propose an adaptive scheme to dynamically select the subspace dimension in conjunction with the TRLan method, which is described in Section 2. We first distinguish between a prescribed maximum dimension of the subspace and the dimension of the subspace actually used at each restart. An objective function is introduced to quantify the effectiveness of a subspace dimension in balancing the cost and the convergence rate. The subspace dimension is then dynamically determined to optimize the objective function. We refer to the TRLan method with this adaptive scheme to select the subspace dimension as an a–TRLan method.

In the original Fortran 90 implementation of the TRLan method, the dimension of the projection subspace is static and prescribed for solving real symmetric eigenvalue problems [Wu and Simon 2000b; 2000c]. We have re-written the TRLan method in C and extended it to include the adaptive scheme described in this paper and to solve complex Hermitian eigenvalue problems [Yamazaki and Wu]. As with the original implementation, the message passing interface (MPI) is used on...
distributed memory systems.

In Section 4, we present numerical results of α–TRLan to solve synthetic eigenvalue problems and test problems from the University of Florida sparse matrix collection\(^1\). These results demonstrate that α–TRLan not only automates the selection of the subspace dimension, but also improves the performance of TRLan that uses the projection subspace of optimal static dimension. We also demonstrate the effectiveness of α–TRLan in a real application by showing numerical results for electronic structure calculations. Specifically, we have integrated α–TRLan into the Parallel Energy Scan (PESCAN) code, which is used to calculate the electronic structures of semiconductor quantum dots [Canning et al. 2000; Wang and Zunger 1994] and other applications [Li and Wang 2004; Schrier and Wang 2006]. The state-of-the-art eigensolver for PESCAN is based on the preconditioned conjugate gradient (PCG) method [Golub and van Loan 1996; Payne et al. 1992]. Numerical results show that α–TRLan is significantly faster than the PCG-based eigensolver with speedups of up to 2.3 for computing as few as 30 eigenpairs of interest. We conclude with final remarks in Section 5.

2. THICK-RESTART LANCZOS METHOD

The Lanczos method [Lanczos 1950] is an effective method for computing a few exterior eigenvalues \(\lambda \) and their corresponding eigenvectors \(v \) of a Hermitian matrix \(A \):

\[
Av = \lambda v. \tag{1}
\]

Given a starting vector \(q \), the Lanczos method first computes orthonormal basis vectors \(q_1, q_2, \ldots, q_{i+1} \) of a Krylov subspace

\[
\mathcal{K}_{i+1}(q, A) \equiv \text{span}\{q, Aq, A^2q, \ldots, A^i q\}.
\]

These basis vectors satisfy the relation

\[
AQ_i = Q_iT_i + \beta_i q_{i+1}e_i^H,
\]

where \(Q_i = [q_1, q_2, \ldots, q_i] \), \(\beta_i = q_{i+1}^HAq_i, e_i \) is the ith column of the \(i \)-dimensional identity matrix, \(T_i = Q_i^HAQ_i \) is an \(i \times i \) Rayleigh-Ritz projection of \(A \) onto \(\mathcal{K}_i(A, q) \), and the superscript \(H \) indicates the conjugate transpose. Then, an approximate eigenpair \((\theta, x = Q_i y)\) of \(A \) is computed from an eigenpair \((\theta, y)\) of \(T_i \). These approximate eigenvalue \(\theta \) and eigenvector \(x \) are referred to as Ritz value and Ritz vector, respectively. The accuracy of the Ritz pair \((\theta, x)\) is measured by the residual norm

\[
||r||_2 = ||Ax - \theta x||_2 = \|(AQ_i - Q_iT_i)y\|_2 = \beta_i\|q_{i+1}e_i^Hy\|_2 = \beta_i|y(i)|. \tag{3}
\]

The Ritz pair \((\theta, x)\) is convergent if the residual norm defined in (3) is less than a prescribed threshold. It is well known that Ritz values typically converge to exterior eigenvalues of \(A \) with a subspace dimension \(i \) that is much smaller than the dimension \(n \) of \(A \) [Parlett 1998; Saad 1993].

\(^1\)http://www.cise.ufl.edu/research/sparse/matrices/
A key feature that distinguishes the Lanczos method from other subspace projection methods is that T_i of (2) is symmetric tridiagonal:

$$
T_i = \begin{pmatrix}
\alpha_1 & \beta_1 \\
\beta_1 & \alpha_2 & \beta_2 \\
& \ddots & \ddots & \ddots \\
& & \alpha_{i-1} & \beta_{i-1} \\
& & & \beta_{i-1} & \alpha_i
\end{pmatrix}.
$$

Hence, it leads to the following simple three-term recurrence:

$$
\beta_i q_{i+1} = A q_i - \alpha_i q_i - \beta_{i-1} q_{i-1}.
$$

Subsequently, the new basis vector q_{i+1} can be computed by orthonormalizing the vector $A q_i$ against two preceding basis vectors, q_{i-1} and q_i. In other words, $A q_i$ does not have to be orthogonalized against the basis vectors $q_1, q_2, \ldots, q_{i-2}$. However, in finite precision arithmetic, when the new basis vector q_{i+1} is computed by (4), the orthogonality among the basis vectors is lost even after a small number of iterations. To maintain orthogonality, the new basis vector q_{i+1} is reorthogonalized against all the previous vectors q_1, q_2, \ldots, q_i. This reorthogonalization process is typically carried out using a variation of the Gram-Schmidt procedure [Parlett 1998; Saad 1993]. As the basis size $i + 1$ grows, this process becomes computationally expensive. Furthermore, all the basis vectors Q_i need to be stored in memory.

To reduce the costs of computing a large subspace, the iteration is restarted after a fixed number $m + 1$ of the basis vectors are computed. Since the Ritz values first converge to the exterior eigenvalues of A, TRLan selects two indices ℓ and u to indicate those Ritz values to be kept at both ends of the spectrum (see Figure 2).

![Fig. 2. Ritz values to be kept at restart.](image)

The corresponding kept Ritz vectors are denoted by

$$
\hat{Q}_k = [\hat{q}_1, \hat{q}_2, \ldots, \hat{q}_k] = Q_m Y_k,
$$

where

$$
Y_k = [y_1, y_2, \ldots, y_{\ell}, y_u, y_{u+1}, \ldots, y_m],
$$

and y_i is the eigenvector of T_m corresponding to θ_i. TRLan sets these Ritz vectors \hat{Q}_k as the first k basis vectors at the restart and q_{m+1} as the $(k+1)$th basis vector (i.e., $\hat{q}_{k+1} = q_{m+1}$). To compute the $(k+2)$th basis vector \hat{q}_{k+2}, TRLan

\[^2\]The ith basis vector \hat{q}_i computed after the restart is distinguished from the ith basis vector q_i computed before the restart by the hat over it.
In general, at the efficiently:

Note that

That is,

computes $\hat{A}q_{k+1}$ and orthonormalizes it against the previous $k + 1$ basis vectors. That is,

Note that $\hat{A}\hat{Q}_k$ satisfies the relation:

where D_k is the $k \times k$ diagonal matrix whose diagonal elements are the kept Ritz values, and $s = Y_k^H \epsilon_m$. Thus, the coefficients $\hat{Q}_k^H \hat{A}q_{k+1}$ in (7) can be computed efficiently:

In general, at the ith iteration after the restart, the new basis vector \hat{q}_{k+i+1} satisfies

\footnote{Perturbation of p may be needed when p is in the invariant space of A, and $p \succeq 0$.}
Table I. Notations used in this paper.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>dimension of the coefficient matrix A</td>
</tr>
<tr>
<td>m_{max}</td>
<td>user-selected maximum projection subspace</td>
</tr>
<tr>
<td>m_j</td>
<td>projection subspace dimension at the j-th restart</td>
</tr>
<tr>
<td>k</td>
<td>number of kept Ritz pairs</td>
</tr>
<tr>
<td>(ℓ_j, u_j)</td>
<td>lower and upper indices of the kept Ritz pair at the j-th restart</td>
</tr>
<tr>
<td>(λ_i, v_i)</td>
<td>eigenpair of A</td>
</tr>
<tr>
<td>(θ_i, y_i)</td>
<td>eigenpair of T_i</td>
</tr>
<tr>
<td>$y_i(m)$</td>
<td>m-th element of the vector y_i</td>
</tr>
<tr>
<td>$Q_{i+1} = [q_1, q_2, \ldots, q_{i+1}]$</td>
<td>orthonormal basis of the projection subspace</td>
</tr>
</tbody>
</table>

The relation:

$$A\tilde{Q}_{k+i} = \tilde{Q}_{k+i}\tilde{T}_{k+i} + \tilde{\beta}_{k+i}q_{k+i+1}e_{k+i}^H,$$

where $\tilde{T}_{k+i} = \tilde{Q}_{k+i}^HA\tilde{Q}_{k+i}$ is of the form

$$\tilde{T}_{k+i} = \begin{pmatrix}
D_k & \beta_{m^s} & \beta_{k+i+1} & \beta_{k+i+1} \\
\beta_{m^s}^H & \alpha_{k+1} & \beta_{k+1} & \beta_{k+2} \\
\beta_{k+1} & \alpha_{k+2} & \ddots & \ddots \\
& \beta_{k+i-2} & \beta_{k+i-1} & \beta_{k+i} & \alpha_{k+i}
\end{pmatrix}.$$

Note that the three-term recurrence is not valid only for computing the $(k+2)$th basis vector and is resumed afterward. Figure 3 shows the pseudocode of the TRLan algorithm, where $m_{j+1} = m$ for all j at Step 3.e. The notations used in this paper are summarized in Table I. A detailed description of the TRLan method can be found in [Wu and Simon 2000a].

Besides the TRLan method, there are several other restarting schemes. One can restart the iteration with a new starting vector, such as a linear combination of the current approximate eigenvectors. Unfortunately, this simple approach loses a significant amount of information at restart and results in slow convergence. The implicitly restart Lanczos method [Calvetti et al. 1994] keeps a fixed number of vectors at restart which approximately span a subspace containing the desired Ritz vectors by filtering out the unwanted ones. The TRLan method allows more explicit control over the selections of kept Ritz vectors.

3. ADAPTIVE SCHEME TO DETERMINE PROJECTION SUBSPACE DIMENSION

At Step 3.e of the TRLan pseudocode in Figure 3, a triplet $(\ell_{j+1}, u_{j+1}, m_{j+1})$ is selected to specify the kept Ritz vectors and the dimension of the next projection subspace. In the original implementation of TRLan [Wu and Simon 2000b; 2000c], the Ritz vectors are selected to maximize the convergence rate, while the subspace dimension m_{j+1} is fixed to be the user-selected maximum dimension m_{max} for all j.

As we have discussed in Section 1, it is a non-trivial task to select an optimal value of m_{j+1} since it depends on a number of factors, such as the available memory and
the distribution of the eigenvalues (see [Wu and Simon 2000b, Section 6.1], for the discussion on how to select \(m_{\text{max}} \)). In this section, we introduce an adaptive scheme to determine \(m_{j+1} \). We will first examine the expected convergence rate and the associated computational cost over the next restart-loop, and then introduce an objective function to measure the effectiveness of a triplet in terms of balancing the cost and the convergence rate.

3.1 Convergence factor

Let us examine the convergence rate of the \((\ell + 1)\)th smallest Ritz value over the \((j + 1)\)-th restart-loop, where the Ritz values \(\theta_1, \ldots, \theta_{\ell} \) and \(\theta_{u}, \ldots, \theta_{m_j} \) are assumed to have converged. We use \(\|r_j\|_2 \) to denote the residual norm (3) of the Ritz pair \((\theta_{\ell+1}, x_{\ell+1})\) at the \(j\)-th restart, and use \(\omega_j \) to denote the reciprocal of the reduction factor of \(\|r_j\|_2 \) over the \((j + 1)\)-th restart loop:

\[
\|r_{j+1}\|_2 = \frac{1}{\omega_j} \|r_j\|_2.
\]

According to the analysis of Morgan [Morgan 1996], after the \(m - k \) Lanczos iterations, \(\omega_j \) is approximately given by

\[
\omega_j \simeq C_{m-k}(1 + 2\gamma),
\]

where \(C_{m-k} \) is the Chebyshev polynomial of degree \(m - k \), and \(\gamma \) is the spectral gap ratio defined as

\[
\gamma = \frac{\lambda_{\ell+2} - \lambda_{\ell+1}}{\lambda_{n-(m_j-u+1)} - \lambda_{\ell+2}}. \tag{8}
\]

Note that \(\ell \) and \((m_j - u + 1)\) are the numbers of the smallest and largest converged Ritz pairs, respectively, and \(0 \leq \ell < u \leq m_j + 1 \). If \(\ell = 0 \) or \(u = m_j + 1 \), then the smallest or largest Ritz values have not yet converged, respectively. We also note that \(m > k = \ell + (m_j - u + 1) \), where \(m \) is a candidate dimension of the next projection subspace, while \(m_j \) is the subspace dimension used at the \(j\)-th restart.

For large-scale eigenvalue problems of practical interest, it is typical that \(\gamma \ll 1 \). Hence, we use the following approximation of \(\omega_j \) based on the approximations of the Chebyshev polynomial when \(0 < \gamma \ll 1 \):

\[
\omega_j \simeq \cosh(2(m - k)\sqrt{\gamma}) \simeq 2(m - k)\sqrt{\gamma}. \tag{9}
\]

For the approximations of Chebyshev polynomials, for example, see [Demmel 1997, Lemma 6.7].

In practice, the exact eigenvalues of \(A \) are not available. Hence, we replace the eigenvalues \(\lambda_i \) in the definition of the gap ratio (8) with the corresponding computed Ritz values and use the following effective gap ratio \(\gamma_e \) to compute \(\omega_j \):

\[
\gamma_e = \frac{\theta_{\ell+2} - \theta_{\ell+1}}{\theta_{u-1} - \theta_{\ell+2}}. \tag{10}
\]

Note that to measure the convergence rate of the \((u - 1)\)th Ritz value using \(\omega_j \), the effective gap ratio (10) needs to be changed to

\[
\gamma_e = \frac{\theta_{u-1} - \theta_{u-2}}{\theta_{u-2} - \theta_{\ell+1}}.
\]
For the rest of this paper, we focus on computing the smallest eigenvalues and hence on the convergence rate of the \((\ell + 1)\)th Ritz value.

3.2 Computational costs

Beside the matrix-vector product (Step 2.b in Figure 3), the dominant computational costs of the TRLan method are:

1. **Reorthogonalization** (Step 2.e in Figure 3): When a new basis vector \(q_{i+1}\) is reorthogonalized against all the previous basis vectors using the Gram-Schmidt procedure, it requires approximately \(4ni\) floating-point operations (flops). For simplicity, we consider the full reorthogonalization.\(^4\) The aggregated cost of the reorthogonalization is approximately given by
 \[
 \sum_{i=k}^{m-1} 4ni = 2n(m - k)(k + m - 1) \text{ flops},
 \]
 where \(k = \ell + m_j - u + 1\).

2. **Ritz vector computation** (Step 3.h in Figure 3): The cost of computing the Ritz vectors \(\hat{Q}_k = Q_m Y_k\) requires approximately \(2nmk\) flops.

Therefore, aside from the flops of the matrix-vector products, the total number of flops required for the next restart-loop is approximately
 \[
 2n(m - k)(k + m - 1) + 2nmk.
 \]

However, on a modern computer, the number of flops may not be an accurate measure of the expected running time of a program because the number of memory references and the memory access pattern may dominate. For example, the average time spent for a flop in the sparse matrix-vector product could be significantly greater than that in the Ritz vector computation due to the irregular data access of the sparse matrix-vector product. To incorporate this fact, we use the following formula to model the expected running time of the next restart-loop:
 \[
 \alpha_1(2n(m - k)(k + m - 1)) + \alpha_2(2nmk) + \alpha_3(m - k),
 \]
 where \(\alpha_1\) and \(\alpha_2\) are the average time spent per flop in the reorthogonalization and Ritz vector computation, respectively, and \(\alpha_3\) is the average time for a sparse matrix-vector product. These average times are computed based on the measured times from the previous iterations.

3.3 Objective function

Based on the reduction factor (9) and the computational cost (11), we define the following objective function to model the effectiveness of the triplet \((\ell, u, m)\):
 \[
 f(\ell, u, m) = \frac{(m - k)\sqrt{\gamma_\ell}}{n(\alpha_1(m - k)(k + m - 1) + \alpha_2mk) + \alpha_3(m - k)},
 \]

\(^4\)Both TRLan and \(\alpha\)-TRLan implement a selected reorthogonalization scheme as described in [Parlett 1998, Section 6.9]. In practice, we have observed that most of the new basis vectors need to be fully reorthogonalized.
where $k = \ell + m_j - u + 1$. An optimal triplet $(\ell_{\text{opt}}, u_{\text{opt}}, m_{\text{opt}})$ should balance the computational cost and the convergence rate over the next restart-loop, and hence it is given by $(\ell_{\text{opt}}, u_{\text{opt}}, m_{\text{opt}}) = \arg\max f(\ell, u, m)$.

3.4 Practical issues

Let c_ℓ and c_u be the numbers of the smallest and largest Ritz values satisfying a prescribed convergence criteria, respectively. If only the converged Ritz pairs are kept as discussed in Section 3.1, then the two indices ℓ_{j+1} and u_{j+1} to specify the kept Ritz pairs are given by

$$
\ell_{j+1} = c_\ell \quad \text{and} \quad u_{j+1} = m_j - c_u + 1,
$$

while the next subspace dimension is given by $m_{j+1} = \arg\max f(\ell_{j+1}, u_{j+1}, m)$ with $m > k$.

However, in practice, the convergence rate of the target Ritz pair $(\theta_{c_\ell+1}, x_{c_\ell+1})$ can be improved by keeping the Ritz pairs around the target even though they have not yet converged. This is because the kept Ritz vectors approximately deflate the spectrum of the eigenvectors around the target and increase the separation between them. Thus, instead of (13), we enforce the following constraints on the indices ℓ and u:

$$
c_\ell + 1 \leq \ell \leq m_j + 1,
\ell + g_j \leq u \leq m_j + 1,
$$

(14)

(initially, $c_\ell = 0$). In addition, since interior Ritz values are slow to converge, we enforce a minimum gap g_j between the indices ℓ and u to avoid keeping the interior Ritz values that have not converged at all:

$$
g_j = \nu \cdot (m_j - c_\ell),
$$

(15)

where $m_j - c_\ell$ is the maximum possible gap, and ν is a relaxation factor, $0 \leq \nu \leq 1$. In the case of $\nu = 1$, only the smallest converged Ritz pairs are kept, namely $\ell = c_\ell$ and $u = m_j + 1$. As the value of ν decreases, more Ritz pairs are allowed to be kept. The effect of ν will be discussed in Section 3.5.

Combining the constraints (14) and (15), we arrive at the following ranges of the indices ℓ and u:

$$
c_\ell + 1 \leq \ell \leq m_j + 1 - g_j,
\ell + g_j \leq u \leq m_j + 1.
$$

(16)

The corresponding range for the subspace dimension m is

$$
\ell + m_j - u + 2 \leq m \leq m_{\text{max}}.
$$

(17)

From the triplets (ℓ, u, m) satisfying (16) and (17), the optimal triplet $(\ell_{\text{opt}}, u_{\text{opt}}, m_{\text{opt}})$ is searched for based on the algorithm shown in Figure 4, where ℓ_ℓ is a lower-bound of ℓ and u_u is an upper-bound of u (i.e., $\ell_\ell = c_\ell + 1$ and $u_u = m_j + 1$). In practice, we found that when computing n_d smallest eigenvalues, the convergence rate can be improved by enforcing $\ell_\ell = n_d$ and $u_u = m_j$ such that at least n_d smallest Ritz values and one largest Ritz value were kept at restarts. Hence, these bounds are used in our implementation. We also found that when the maximum subspace dimension m_{max} is too small, the maximum subspace dimension is selected at every restart (i.e., $m_{j+1} = m_{\text{max}}$ for all j). In such a case, the convergence rate is often

1. Set \((\ell_{opt}, u_{opt}, m_{opt}) = (\ell, \ell + g_j, m_j - g_j + 1)\)
2. for \(\ell = \ell, \ell + 1, \ldots, m_j + 1 - g_j\)
3. for \(u = \ell + g_j, \ell + g_j + 1\ldots, u\)
4. \(k = \ell + m_j - u + 1\)
5. for \(m = k + 1, k + 2, \ldots, m_{max}\)
6. if \(f(\ell, u, m) > f(\ell_{opt}, u_{opt}, m_{opt})\) then
7. \((\ell_{opt}, u_{opt}, m_{opt}) = (\ell, u, m)\)
8. end if
9. end for
10. end for
11. end for

Fig. 4. Pseudocode to search for \((\ell_{opt}, u_{opt}, m_{opt})\).

Improved by maximizing the reduction factor (9) than by trying to balance the cost with the convergence rate using (12). Hence, in our implementation, when the maximum subspace dimension is selected at a restart, the indices \(\ell\) and \(u\) are recomputed to maximize

\[
g(\ell, u) = \gamma e \sqrt{\gamma e}.
\]

Finally, \(a\)-TRLan uses the computed triplet \((\ell_{opt}, u_{opt}, m_{opt})\) to replace the triplet \((\ell_{j+1}, u_{j+1}, m_{j+1})\) at the Step 3.e of the pseudocode in Figure 3, while the initial subspace dimension is set to be \(m_1 = \min(2n_i, m_{max})\). The cost of this scheme to select the triplet is \(O(m_{max}^3)\). In comparison to the total cost (11), it is insignificant since \(m_{max}\) is typically much smaller than \(n\). Note that since the Ritz pairs that have not converged are now kept, the effective gap ratio (10) needs be replaced with

\[
\gamma_e = \frac{\theta_{\ell+1} - \theta_{\ell+2}}{\theta_{u-1} - \theta_{\ell+1}}.
\]

We note that TRLan selects the indices \(\ell_{j+1}\) and \(u_{j+1}\) to maximize the convergence rate measured by (18), while the subspace dimension is fixed (i.e., \(m_{j+1} = m_{max}\) for all \(j\)). A similar restart scheme was used for the thick-restarted Davidson method [Stathopoulos et al. 1998]. A different adaptive scheme to determine the projection subspace dimension for the Davidson method was studied in [Crouzeix et al. 1994], where the iteration is restarted as soon as the product of the computational cost of a single iteration and the local convergence rate of the residual norm (i.e., \(\|r_j\|_2/\|r_{j-1}\|_2\)) grows significantly. Our adaptive scheme for \(a\)-TRLan, on the other hand, attempts to optimize the performance over the next restart-loop.

3.5 Heuristic for the relaxation factor \(\nu\)

We now discuss the effect of the relaxation factor \(\nu\) of (15) on the performance of \(a\)-TRLan. Figure 5 shows the CPU time of \(a\)-TRLan using \(m_{max} = 1,000\) and different \(\nu\) to compute \(n_d = 100\) smallest eigenvalues of diagonal matrices \(A_1 = \text{diag}(1, 2, 3, \ldots, n)\) and \(A_3 = \text{diag}(1, 2^3, 3^3, \ldots, n^3)\) with \(n = 10,000\). The CPU times are normalized by that of \(\nu = 0.1\). The figure clearly indicates the impact of \(\nu\) on the performance of \(a\)-TRLan. It also shows that optimal performance of \(a\)-TRLan is achieved with different \(\nu\) for \(A_1\) and \(A_3\). In the original TRLan implementation, it was fixed at \(\nu = 0.4\).
To eliminate the need of a user to search for an optimal ν, we propose a scheme to dynamically adjust the relaxation factor ν based on the observed convergence rate. Specifically, we select the relaxation factor ν_j at the j-th restart by considering the factor $\|r_j\|_2/\|r_{j-1}\|_2$ of the $(j-1)$-th target Ritz pair $(\theta_{c\ell+1}, x_{c\ell+1})$, where $\|r_j\|_2$ is the residual norm of the target at the j-th restart. Then, we define an observed gap ratio γ_o over the j-th restart-loop as

$$
\gamma_o = \left(\frac{\arccosh\left(\frac{\|r_{j-1}\|_2}{\|r_j\|_2} \right)}{2(m_j - k_j)} \right)^2,
$$

where $k_j = \ell_j + m_j - u_j + 1$. Recall that the gap ratio γ was previously used in (9) to measure the expected convergence ratio.

A desired gap ratio γ_d which achieves good performance of a–TRLan is one which ensures that the target Ritz pair converges within two restart-loops:

$$
\frac{\tau \|A\|_2}{\|r_j\|_2} = \frac{1}{\cosh(4\bar{m}\sqrt{\gamma_d})},
$$

where τ is a required accuracy of the converged Ritz pairs (θ, x) i.e., $\|Ax - \theta x\|_2 \leq \tau \|A\|_2$, $\|A\|_2$ is approximated by the largest absolute value of all the converged Ritz values, and \bar{m} is the average dimension of the projection subspaces used at previous restarts. Thus, γ_d is computed as

$$
\gamma_d = \left(\frac{\arccosh\left(\frac{\|r_{j-1}\|_2}{\|r_j\|_2} \right)}{4\bar{m}} \right)^2.
$$

When $\gamma_o < \gamma_d$, it indicates slow convergence. In this case, we attempt to improve the solution convergence for the next restart-loop by selecting a smaller value of ν_j and allowing more Ritz vectors to be kept. Otherwise, a larger value of ν_j is selected.
to reduce the computational cost. To automatically adjust the relaxation factor ν_j, we introduce the following heuristic:

$$\nu_j = \nu_\ell + (1 - \nu_\ell) \left(\frac{2}{\pi} \arctan \frac{\gamma_o}{\gamma_d} \right), \quad (22)$$

where ν_ℓ is a lower-bound on ν_j, $0 \leq \nu_\ell \leq 1$. A good default lower-bound of ν_ℓ is found to be 0.7.

We note that when the target residual norm did not decrease after the $m_j - k_j$ iterations, namely $\|r_{j-1}\|_2 \geq \|r_j\|_2$, the observed gap ratio γ_o of (20) is not defined. In this case, we use the default value $\nu_j = 0.7$. We also note that when a smaller solution accuracy τ is required, the desired gap ratio γ_d becomes larger, and a smaller relaxation factor ν_j is selected. Hence, in this case, more Ritz vectors are allowed to be kept for faster convergence.

4. NUMERICAL EXPERIMENTS

In this section, we present numerical results to compare the performance of the TRLan and a–TRLan methods. These methods are implemented in C and included in the open-source package a–TRLan. For all of our experiments, we used a vector of all ones as the initial vector of the Lanczos iteration. A computed approximate eigenpair (θ, x) is considered to be converged when its relative residual norm is smaller than a prescribed threshold τ, i.e., $\|Ax - \theta x\|_2 \leq \tau \|A\|_2$, where $\|A\|_2$ is approximated by the largest absolute value of the computed eigenvalues.

4.1 Synthetic problems

We first present numerical results of some synthetic eigenvalue problems to illustrate the essential properties of the a–TRLan method. These numerical experiments were conducted on an HP Itanium2 workstation with a 1.5GHz CPU and 2GB of RAM. The codes were compiled using the icc compiler (version 9.0) and the optimization flag -O3, and linked to the BLAS and LAPACK libraries in the Intel Math Kernel Library (version 7.2.1).\(^5\) For the convergence criteria, we used $\tau = 10^{-13}$ for all the synthetic problems.

Example 1. We computed $n_d = 100$ smallest eigenvalues of diagonal matrices $A_1(n) = \text{diag}(1, 2, \ldots, n)$ and $A_3(n) = \text{diag}(1^3, 2^3, \ldots, n^3)$ with $n = 10,000$. We summarize the results below:

1. We first show that the projection subspace dimension m_{j+1} is dynamically selected by a–TRLan at the j-th restart. Figure 6 clearly shows that the subspace dimension is adjusted at every restart. As the iteration proceeds, the number n_c of converged eigenpairs increases, and the number k_j of kept Ritz pairs and the subspace dimension m_{j+1} also increase accordingly.

2. Figure 7 compares the total CPU times required by TRLan and a–TRLan using different m_{max}. The figure shows that the performance of a–TRLan is largely independent of m_{max}, while the performance of TRLan strongly depends on

--

\(^5\) Readers are referred to the user guide [Yamazaki et al. 2008] for information on how BLAS (http://www.netlib.org/blas/) and LAPACK (http://www.netlib.org/lapack/) are used in the a–TRLan package.
it. As a result, \(a\)-TRLan significantly improves the performance of TRLan, especially when a large \(m_{\text{max}}\) is used. The speedups gained by \(a\)-TRLan were up to 3.3.

(3) We note that for \(A_1\), TRLan achieved its optimal performance using the default subspace dimension \(m_{\text{max}} = 2n_d = 200\). However, the default subspace dimension may not be optimal. For example for \(A_2\), optimal performance of TRLan was achieved using \(m_{\text{max}} = 400\). It is a non-trivial task to find the optimal \(m_{\text{max}}\). On the other hand, when a sufficiently large value of \(m_{\text{max}}\) is used, \(a\)-TRLan automatically determines an appropriate \(m_{j+1}\). Furthermore, for \(A_3\), \(a\)-TRLan using \(m_{\text{max}} > 400\) improved optimal performance of TRLan. Similar observations were made for computing \(n_d = 20\) eigenpairs of \(A_2\) (see Figure 1). By setting \(m_{\text{max}} = 200\), \(a\)-TRLan computed the desired eigenpairs in 42.21 seconds in comparison to 46.88 seconds of TRLan using optimal static dimension \(m_{\text{max}} = 120\).

Example 2. To demonstrate the effectiveness of \(a\)-TRLan for solving more real-
istic eigenvalue problems, we present numerical results to compute the smallest eigenvalues of matrices available from the University of Florida (UF) sparse matrix collection. These matrices were also used to evaluate the performance of the Jacobi-Davidson method in PRIMME [Stathopoulos and McCombs 2007]. Some properties of the matrices are shown in Table II. In Figure 8, we show the CPU times required by a–TRLan and TRLan to compute the smallest $n_d = 10$ or 100 eigenvalues of the matrices. These results show that the performance of a–TRLan was largely independent of m_{max}, and stayed around optimal performance of TRLan as a larger m_{max} was used for solving these more realistic eigenvalue problems.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>n</th>
<th>nnz</th>
</tr>
</thead>
<tbody>
<tr>
<td>torsion1</td>
<td>CUTEr optimization problem</td>
<td>40,000</td>
<td>197,608</td>
</tr>
<tr>
<td>cfd1</td>
<td>Computational fluid dynamics problem</td>
<td>70,656</td>
<td>1,825,580</td>
</tr>
<tr>
<td>Andrews</td>
<td>Computer graphics/vision problem</td>
<td>60,000</td>
<td>760,154</td>
</tr>
<tr>
<td>finan512</td>
<td>Multistage stochastic financial modelling</td>
<td>74,752</td>
<td>596,992</td>
</tr>
</tbody>
</table>

Table II. Description of the matrices used in the numerical experiments.

Example 3. We now study the impact of the heuristic (22) to dynamically adjust the relaxation factor ν_j on the performance of TRLan and a–TRLan. Figure 9 shows the value of ν_j selected by (22) at every restart of a–TRLan to compute the smallest $n_d = 100$ eigenvalues of the matrices A_1 and A_3, where $m_{\text{max}} = 1,000$. The figure clearly shows that the value of ν_j was adjusted at every restart. Furthermore, smaller values of ν_j are selected for A_3 to improve the solution convergence. We also observed that the intervals, in which the values of ν_j change abruptly, have some correlation to those in which the number of converged Ritz pairs increases, indicating that the value of ν_j is adjusted as a new Ritz pair converges.

Figure 10 examines the performance of (22) by comparing the CPU times required to compute the smallest $n_d = 100$ eigenvalues of the test matrix A_1 using (22) with
Adaptive Think-Restart Lanczos Method

Fig. 9. Relaxation factor ν_j selected by the heuristic (22) at the j-th restart.

those required when a static relaxation factor is used, $\nu_j = \nu$ for all j. We show the performance with $\nu = 0.4$, which is the default value used in the original implementation of TRLan [Wu and Simon 2000b; 2000c], and with $\nu = 0.9$, which is the optimal for this problem. The figure clearly indicates that the performance of both TRLan and a–TRLan strongly depends on the static parameter ν. The heuristic (22) dynamically adjusts ν_j and automatically obtains near-optimal performance of TRLan and a–TRLan. We note that for the small static factor of $\nu = 0.4$, a–TRLan keeps large numbers of Ritz pairs at restarts, which lead to unnecessarily large projection subspaces. Hence, the performance of a–TRLan is close to that of TRLan. Similar observations were made for the test matrix A_3 (see Figures 10 and 11).

4.2 An example from electronic structure calculation

We demonstrate the effectiveness of a–TRLan in practical applications by showing numerical results for the electronic structure calculation of quantum dots. These experiments were performed using 16 processors of an IBM POWER 5 system at ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
the National Energy Research Scientific Computing (NERSC) Center. The codes were compiled using the xlc compiler and the optimization flag -O3.

For these experiments, we used Parallel Energy Scan (PESCAN) code, which has been successfully used to calculate the electronic structure of semiconductor quantum dots [Canning et al. 2000; Wang and Zunger 1994] and for other applications [Li and Wang 2004; Schrier and Wang 2006]. To compute the eigenstates of a Hamiltonian operator, PESCAN uses a PCG-based eigensolver, where a preconditioner is a diagonal matrix constructed based on the kinetic energy portion of the Hamiltonian operator [Wang and Zunger 1996]. This preconditioner greatly improves the convergence rate, and this PCG-based solver is the state-of-the-art method for this application.

Our objective is to compare the CPU times required by PCG to those required by a–TRLan (preconditioner is not used in a–TRLan). For our numerical experiments, we considered two quantum dot systems; one consisting of 232 Cadmium atoms and 235 Selenium atoms (Cd\textsubscript{232}Se\textsubscript{235}), and the other consisting of 534 Cadmium atoms and 527 Selenium atoms (Cd\textsubscript{534}Se\textsubscript{527}). PESCAN uses 75,645 and 141,625 plan-wave bases, which results in Hermitian matrices H of dimensions $n = 75,645$ and 141,625, respectively. The eigenvalues of H fall into two distinct groups separated by a large band gap between them; the group of smaller eigenvalues is known as the valence band, while the group of larger eigenvalues is called the conduction band. Typically, the eigenvalues of interest are those near the band gap, and are used to evaluate the electrical and optical properties of quantum dot systems [Li and Wang 2004; Schrier and Wang 2006]. The largest eigenvalues in the valence band are referred to as the Valence Band Maximum (VBM), while the smallest eigenvalues in the conduction band are known as the Conduction Band Minimum (CBM). We used the folded spectrum method to compute a few eigenpairs in VBM or CBM by computing the smallest eigenvalues of the matrix $A = (H - \lambda_{\text{ref}}I)^2$ with a known reference value λ_{ref}. For the convergence criteria of PCG, we used $\tau = 10^{-5}$, while for that of a–TRLan, τ is adjusted such that at least the same solution accuracy was achieved.

Table III shows the required CPU times and speedups gained by a–TRLan to ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
Adaptive Think-Restart Lanczos Method

To compute different numbers n_d of eigenpairs in VBM and CBM, the heuristic (22) to determine ν_j, and the maximum subspace dimension was set to be $m_{\text{max}} = 1,000$. The numerical results show that

1. To compute a small number of eigenpairs (e.g., $n_d = 10$), PCG was slightly faster than $a^{-}\text{TRLan}$ due to the intrinsic algorithmic difference of the PCG and Lanczos methods (e.g., PCG has lower computational cost per iteration).

2. To compute a slightly larger number of eigenpairs (e.g., $n_d = 30$), $a^{-}\text{TRLan}$ performed significantly better than PCG (e.g., PCG computes an eigenpair at a time, while with $a^{-}\text{TRLan}$, multiple eigenpairs converge at the same time).

3. As a larger number of eigenpairs were computed (e.g., $n_d = 100$), the performance improvement gained by $a^{-}\text{TRLan}$ increased.

The performance comparison of these two eigensolvers under limited memory is a subject of future research.

5. CONCLUSION

The Thick-Restart Lanczos (TRLan) method computes a fixed number of basis vectors before restarting the iteration. This requires users to carefully select an appropriate basis size for each problem. In order to free the users from this difficult task of selecting an appropriate basis size, we proposed an adaptive scheme ($a^{-}\text{TRLan}$) to dynamically determine the projection subspace dimension, which balances the expected computational cost and solution convergence rate, at every restart. We have developed an open source software package that implements both TRLan and $a^{-}\text{TRLan}$ in C to solve Hermitian eigenvalue problems.

Numerical results of synthetic problems have shown that $a^{-}\text{TRLan}$ can not only automate the selection of the subspace dimension, but also improve the performance of TRLan that uses an optimal static subspace dimension. To demonstrate the effectiveness of $a^{-}\text{TRLan}$ in a real application, we applied it to the electronic structure calculations of quantum dots. Specifically, we replaced the state-of-the-art preconditioned conjugate gradient (PCG) eigensolver in Parallel Energy Scan (PESCAN) with $a^{-}\text{TRLan}$. We showed that when computing as few as 30 eigenpairs, $a^{-}\text{TRLan}$ performs significantly better than PCG.

Even though we have focused on TRLan in this paper, other subspace eigensolvers such as ARPACK [Calvetti et al. 1994; Lehoucq et al. 1998] also require a user to

<table>
<thead>
<tr>
<th></th>
<th>Cd${232}$Se${235}$ ($n = 75,645$)</th>
<th></th>
<th>Cd${234}$Se${237}$ ($n = 141,025$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VBM</td>
<td>CBM</td>
<td>VBM</td>
</tr>
<tr>
<td>n_d</td>
<td>10</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>PCG</td>
<td>39.24</td>
<td>177.21</td>
<td>82.85</td>
</tr>
<tr>
<td>$a^{-}\text{TRLan}$</td>
<td>39.54</td>
<td>96.49</td>
<td>102.58</td>
</tr>
<tr>
<td>Speedup</td>
<td>0.99</td>
<td>1.87</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Table III. CPU time in seconds to compute eigenpairs of quantum dots using PCG and $a^{-}\text{TRLan}$.

6In [Vömel et al. 2008], it is reported that some eigenvalues are missed using ARPACK. To avoid missing eigenvalues, five additional eigenpairs are computed with $a^{-}\text{TRLan}$ to match the eigenvalues computed with those from PCG in some tests. Furthermore, the required accuracy of the solution computed by $a^{-}\text{TRLan}$ is reduced to match the solution accuracy computed by PCG.
select an appropriate projection subspace dimension for each problem. Our adaptive scheme can also be applied to such eigensolvers. In particular, the convergence analysis in Section 3.1 is directly applicable to ARPACK.

6. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the helpful discussions with and suggestions received from Drs. Sefa Dag, Osni Marques, Matthew Dixon, Christof Vömel, and Nenad Vukmirovic.

REFERENCES

