First FTIC-ASIA Workshop on Next Generation Internet
September 21, 2004

Policy and Scope Management for Multicast Channel Announcement

Hitoshi Asaeda
INRIA, Project PLANETE
WIDE Project
Outline

• Multicast session announcement architecture
 – Session Announcement Protocol (SAP)
 – Scoping mechanism

• Channel Reflector
 – Protocol and architecture
 – Scope control and policy control

• Multicast routers cooperating with Channel Reflector
 – Integration of multicast routing scoping and session announcement scoping
 – Address SSM inconsistency

• Conclusion and future works
IP Multicast Addressing Architecture

- Multicast address assignment and resolution
 - Transient multicast address is dynamically assigned to each multicast session (or application).
 - 224.0.0.0 – 239.255.255.255 for IPv4
 - ff00::/8 for IPv6
 - Multicast data receiver needs to resolve each session information (incl. multicast address, media information, etc.) whenever he wants to join a session.
Multicast Session Announcement

- Multicast session announcement
 - Data sender multicasts each session information by Session Announcement Protocol (SAP) (RFC2974).
 - Multicast data sender or network administrator usually wants to define a data distribution area.

- Scope definition (Scoping)
 - Purpose
 - Offer a certain level of privacy
 - Preserve bandwidth resources outside of the data distribution area
Scoping Architecture

- Current scoping techniques
 - TTL scoping
 - Defined by IP TTL value (1<site<16<org.<32<global)
 - Administrative scoping (RFC2365)
 - Defined by multicast address prefix (239/8 for IPv4, ff{x{4|5|8|e}/16 for IPv6)
SAP Analysis

- **Scope control**
 - Data sender must aware of the network topology and configuration
- **Policy control**
- **Scalability**
- **Latency**
- **SSM conformance**
 - All potential data receivers must join the common multicast address (*, 224.2.127.254) for global sessions.
- **IPv6 conformance**
Source-Specific Multicast

Any-Source Multicast (ASM) with PIM-SM

Source-Specific Multicast (SSM)
Architectural Mismatch

• **Multicast routing scoping**
 – TTL scoping, Administrative scoping
 – Scope area definition relies on multicast routing protocols
 • Very difficult to define a precise scope area we want to use

• **Session announcement scoping**
 – Scope area is limited by a scope announcement level
 – Scoping mechanism relies neither on TTL nor on multicast address prefix
 – Our proposal: **Channel Reflector**
Channel Reflector

• Properties
 – Channel Reflector (CR) is a hierarchical directory system.
 – One “primary CR” exists in a wide network, and each controlled domain has one or more “site CR(s)”.
 – New scope label is each site CR’s FQDN (e.g. cr.foo.com).
 – End user accesses a site CR as it is a regular Web server.
Channel Announcement

• Scope control
 – Each site CR has own “Scope List” which consists of upstream site CRs FQDNs.
 – Multicast channel information is registered with one “scope label” from the Scope List on the site CR.
 – This channel information is transferred hop-by-hop toward the scope boundary and registered on CRs inside the scope boundary.
Channel Announcement - cont.

• Policy control
 – Decision regarding which channel information is imported and forwarded to the neighbor CRs depends on each CR’s policy configuration.
 – Policy can be decided with many kinds of factors, like data sender address, bandwidth, contents, time duration, and so on.
Channel Information – Examples

Diagram:

- **A**
 - **Scope List**: (S1,G1):A
 - **Channel Info.**: A

- **B**
 - **Scope List**: (S1,G1):A, (S1,G2):B
 - **Channel Info.**: A, B

- **C**
 - **Scope List**: (S1,G1):A, (S1,G2):B, (S2,G3): -
 - **Channel Info.**: A, B, C

- **D**
 - **Scope List**: (S1,G1):A, (S1,G2):B, (S3,G3):D, (S4,G4): -
 - **Channel Info.**: A, B, D
Scope Label Distribution

• Messages
 – SCOPE_NOTIFICATION (JOIN/LEAVE)
 • Message is sent to a parent CR;
 – (JOIN) when a site CR comes up, in order to obtain a Scope List
 – (LEAVE) when a site CR leaves from policy tree or changes its parent CR, in order to request disabling the site CR to act as a child CR (the parent CR stops forwarding any information to the site CR)
 – SCOPE_ANNOUNCEMENT (LABELS)
 • Message is sent to child CRs;
 – when a site CR receives SCOPE_NOTIFICATION (JOIN) from a child CR, or
 – when a site CR changes own Scope List
Scope Label Distribution – Examples

SCOPE_NOTIFICATION (JOIN)

SCOPE_NOTIFICATION (LEAVE)

SCOPE_ANNOUNCEMENT (LABELS)
Channel Information Distribution

• Messages
 – CHANNEL_ANNOUNCEMENT
 • Message is sent to all scoped CRs (inside scope boundary), in order to announce a new multicast channel.
 – CHANNEL_CANCEL
 • Hard-state approach needs an explicit message to cancel previously announced information.
 – CHANNEL_RETRIEVE
 • Message retrieves partial channel information rather than all the channel information kept in the neighbor CRs.
 • This is useful to retrieve channels which were previously discarded because of the previous policy.
Channel Information Distribution – Examples

- E.g. 1
 - CR-B is the original CR
 - Scope boundary is CR-A

- E.g. 2
 - CR-A is the original CR

- E.g. 3
 - CR-C is the original CR
 - Scope boundary is CR-B
Interdomain Support
Next Step

• What’s next?
 – Channel Reflector should prevent multicast data transmitting to any network.
 – Policy and scope definitions should be inherited to multicast routers

• Solution – Multicast router cooperating with Channel Reflector
 – Integration of multicast routing scoping and session announcement scoping
 – Fix SSM inconsistency
 • Multicast channel validation mechanism
 • (Possibility) ASM-to-SSM translation
Useless Routing Path

- There is no source address discovery function in a multicast routing protocol for SSM
 - Multicast router does not recognize invalid or unavailable (S,G) joins
SSM Inconsistency

- SSM requirement: IGMPv3/MLDv2 host-side implementations
- Non-SSM capable node cannot trigger any join whose multicast address range is in an SSM range
 - But the node can receive the multicast data…

![Diagram of SSM Inconsistency]

- (S1,232.1.1.1) Join
- (*/232.1.1.1) Join

- Yes!
- Reject

- SSM Receiver
- Non-SSM Receiver
Multicast Communication Model

- ASM communication
 - Communication from a sender to a router
 - Communication from a sender to a receiver
Multicast Communication Model - cont.

- SSM communication
 - There is no communication between a sender and a router
Proposed Communication Model

- New multicast communication
 - Channel Reflector binds router, sender and receiver
 - Router and receiver can consult available channel information incl. (S,G) addresses

![Diagram showing proposed communication model with Multicast Router, Channel Reflector, Sender, and Receiver with IGMP, MLD connections]
Channel Validation Procedures

• Multicast routers
 – Access to defined site CR
 {whenever they receive (*,G)/(S,G) join | when defined cache is expired}
 – Validate source and group addresses by stored channel information
 – Discard invalid or unavailable (*,G)/(S,G) join
 – (possibility) Can translate (*,G) join to (S,G) join(s)
Channel Validation – Example
Experiences

• Channel information is described with XML base SDPng (I-D) syntax.

• Protocol and format
 – (currently) SOAP over HTTP
Experiences - cont.

XML Parser

PIM (S,G) Join

SOAP Call

/HTTP

SOAP Response

/HTTP

IGMP (S,G) Join

R

channelerd

XML data set

<?xml version="1.0" encoding="UTF-8"?>
<document
xmlns:ns=http://channelreflector.net>
<ns:ChannelReflector>
 <label>CR.example.com</label>
</ns:ChannelReflector>
<ns:ChannelInfo>
 <group>232.0.1.2</group>
 <source>
 <addr>test.example.com</addr>
 <port>54321</port>
 <scope>CR.example.com</scope>
 <type>test</type>
 <next>
 ...
 </next>
 </source>
 <ns:ChannelInfo>
 ...
 </ns:ChannelInfo>
</ns:ChannelInfo>
</document>
Conclusion

• Summary
 – Analysis of SAP protocol and multicast scoping architecture
 • Multicast routing scoping and session announcement scoping
 – Channel Reflector: an interdomain multicast channel announcement system
 – Multicast routers cooperate with Channel Reflector
 • Multicast routers can verify each multicast join
 • Policy and scope definitions can be inherited to multicast routers
 • (Possibility) Multicast routers translate (*,G) join to (S,G) join(s)
 – Non-SSM capable nodes can join SSM channel
Future Works

• Implementation and evaluation
 – Channel Reflector implementation
 • Building-blocks to a complete implementation
 • Routing daemon implementation modification
 – Collaboration will be started with Wacharapol Pokavanich, AIT.

• Simulation and analysis
 – Channel Reflector simulation
 – Scalability vs. preciseness for router cooperation
 • Access per join request? Cached channel information?
 • Access per each report? Only for an initial join?
 – ASM-to-SSM translation – feasibility and experience
 – Joint work with Vincent Roca, INRIA Rhone-Alpes.

• Call for more collaboration!
 – Evaluation, function enhancement, and so on.
Publications

• Papers
 [1] Hitoshi Asaeda and Vincent Roca,
 “Consideration of Multicast Channel Announcement Architecture”,
 [2] Hitoshi Asaeda and Vincent Roca,
 “Policy and Scope Management for Multicast Channel Announcement”,
 Submitted to IEICE Trans. for Inf. & Syst.
 [3] Hitoshi Asaeda and Walid Dabbous,
 “Multicast Routers Cooperating with Channel Announcement Systems”,

• Activity in the IETF
 and Henning Schulzrinne,
 "A Framework for the Usage of Internet Media Guides",
Thank you.

Policy and Scope Management for Multicast Channel Announcement

by Hitoshi Asaeda
INRIA, Project PLANETE
WIDE Project