
Data cleaning and transformation using the
AJAX framework

Helena Galhardas

INESC-ID and Instituto Superior Técnico, Avenida Prof. Cavaco Silva, Tagus Park,
2780-990 Porto Salvo, Portugal

hig@inesc-id.pt

Abstract. Data quality problems arise in different application contexts
and require appropriate handling so that information becomes reliable.
Examples of data anomalies are: missing values, the existence of dupli-
cates, misspellings, data inconsistencies and wrong data formats. Current
technologies handle data quality problems through: (i) software programs
written in a programming language (e.g., C or Java) or an RDBMS pro-
gramming language, (ii) the integrity constraints mechanisms offered by
relational database management systems; or (iii) using a commercial
data quality tool. None of these approaches is appropriate when han-
dling non-conventional data applications dealing with large amounts of
information. In fact, the existing technology is not able to support the
design of a data flow graph that effectively and efficiently produce clean
data.
AJAX is a data cleaning and transformation tool that overcomes these
aspects. In this paper, we present an overview of the entire set of func-
tionalities supported by the AJAX system. First, we explain the logical
and physical levels of the AJAX framework, and the advantages brought
in terms of specification and optimization of data cleaning programs.
Second, the set of logical data cleaning and transformation operators
is described and exemplified, using the declarative language proposed.
Third, we illustrate the purpose of the debugging facility and how it is
supported by the exception mechanism offered by logical operators. Fi-
nally, the architecture of the AJAX system is presented and experimental
validation of the prototype is briefly referred.

1 Introduction

Data cleaning aims at removing errors and inconsistencies from data sets in order
to produce high quality data. Data quality concerns arise in three different con-
texts: (i) when one wants to correct data anomalies within a single data source
(e.g., duplicate elimination in a file); (ii) when poorly structured or unstructured
data is migrated into structured data (e.g., when fusing data obtained from the
Web); or (iii) when one wants to integrate data coming from multiple sources
into a single new data source (e.g., in the context of data warehouse construc-
tion). In these contexts, the following data quality problems, also called as dirty
data, are typically encountered:

– Data coming from different origins may have been created at different times,
by different people using different conventions to map real world entities into
data. For instance, the same customer may be referred to in different tables
by slightly different but correct names, say “John Smith”, “Smith John”
or “J. Smith”. This problem is called the object or instance identification
problem, duplicate elimination or record linkage problem in the case of a
single source.

– The fact that fused data is produced and used by different entities also
enables the existence of missing values. To be aware of a client’s age, for
instance, is important for a marketing department but not relevant at all for
the accounting one.

– Data may be written in different formats. Since no standard notation is gen-
erally imposed, data fields may embed data of different natures (the so called
free-form fields). An example is a street field that incorrectly contains the
zip code and the country name. Moreover, abbreviations as well as synonyms
may be used to refer to an object that is represented by their full names in
another record.

– Data can contain errors, usually due to mistyping, such as “Joh Smith”, even
when the same naming conventions are used in different databases.

– Data can have inconsistencies: for instance, two records corresponding to the
same person may carry two different birth dates.

Current technologies try to solve these data quality problems in three differ-
ent ways [1]: (i) ad-hoc programs written in a programming language like C or
Java, or in an RDBMS (Relational Database Management System) proprietary
language; (ii) RDBMS mechanisms for guaranteeing integrity constraints; or (iii)
data transformation scripts using a data quality tool. The use of a general pur-
pose or an RDBMS proprietary language makes data quality programs difficult
to maintain and optimize. The mechanisms supported by an RDBMS to enforce
integrity constraints do not address the major part of data instance problems.
Finally, there is an extensive market of tools to support the transformation of
data to be loaded in a data warehouse, the ETL (Extraction, Transformation
and Loading) tools, that enclose some data cleaning functionalities. Other data
quality tools have been developed from scratch to address specific data quality
problems as address standardization and name matching1.

When an application domain is well understood (e.g., cleaning U.S. names
and addresses in a file of customers), there exists enough accumulated know-how
to guide the design and implementation of a data cleaning program [11]. Thus,
designers can easily figure out which data transformation steps to follow, the
operators to use and how to use them (e.g., adjusting parameters). However, for
non-conventional applications, such as the migration of largely unstructured data
into structured data, or the integration of heterogeneous scientific data sets in
cross disciplinary areas (e.g., environmental science), existing data quality tools

1 The reader can find a recent classification of the existing commercial and research
data quality tools in [1].

are insufficient for writing data cleaning programs. The main challenge with
these tools is the design of a data flow graph that effectively generates clean
data, and can perform efficiently on large sets of input data. This two-fold task
can be difficult to achieve, because: (i) there is no clear separation between the
logical specification of data transformations and their physical implementation,
and (ii) there is no support for debugging the reasoning behind cleaning results
nor interactive facilities to tune a data cleaning program.

We have proposed the AJAX tool2[12] to overcome these two aspects. The
main contributions of AJAX with respect to existing data cleaning technology
are the following:

– A data cleaning framework that attempts to separate the logical and physical
levels of a data cleaning process. The logical level supports the design of a
data flow graph that specifies the data transformations needed to clean the
data, while the physical level supports the implementation of the data trans-
formations and their optimization. An analogy can be drawn with database
application programming where database queries can be specified at a log-
ical level and their implementation can be optimized afterwards without
changing the queries.
We propose five logical data transformation operators encapsulating distinct
semantics that are orthogonal and complete. These operators derive from an
analysis of the types of mappings with respect to input and output tuples
that are expressed by intuitive and conceptual data transformations. This
approach is original when compared to commercial data cleaning tools in
the sense that it prevents from having a large number of operators that are
sometimes redundant. Our operators were proposed to extend SQL in order
to specify those mappings.

– A declarative language for specifying these data cleaning logical operators. A
mechanism of exceptions is associated to each logical operator and provides
the foundation for explicit user interaction.

– A debugger (or explainer mechanism) that helps the user in debugging and
tuning a data cleaning application program. Such a debugger facility, com-
monly used in programming environments, is new in the domain of data
cleaning applications. An audit trail mechanism allows the user to navigate
through the results of data transformations in order to discover why some
records are not automatically treated. To solve those cases, the user may
refine some cleaning criteria or manually correct data items.

AJAX does not provide any method to discover data problems that need to
be cleaned. Before specifying a data cleaning and transformation program using
AJAX, the user must be aware of the data anomalies that need to be solved.
An interesting direction for future work would be to enrich the set of operators
already provided by AJAX with new operators that are able to analyze data
and automatically (by applying statistical techniques or data mining algorithms)

2 The first prototype of AJAX was designed and implemented at Inria Rocquencourt.

detect the data quality problems that need to be solved. However, this issue is
not addressed in the current version of the system.

This paper presents an overview of the entire set of functionalities supported
by the AJAX system. First, we explain the logical and physical levels of the
AJAX framework, and the advantages brought in terms of specification and
optimization of data cleaning programs. Second, the set of logical data cleaning
and transformation operators is described and exemplified, using the declarative
language proposed. We also illustrate the SQL equivalent of two of the AJAX
operators. Third, we illustrate the purpose of the debugging facility and how it
is supported by the exception mechanism offered by logical operators. Finally,
the architecture of the AJAX system is presented and experimental validation
of the prototype is briefly referred.

Most of these aspects have been published separately elsewhere [9], [10], but
none of the previous publications concerning AJAX provided a broad description
that covers all details.

The rest of this paper is organized as follows. In Section 2, we present our
motivating example. Then, Section 3 details the principles of the AJAX frame-
work. Section 4 explains the debugger mechanism. The architecture of the AJAX
system and experimental validation are presented in Section 5. Related work is
summarized in Section 6 and we conclude in Section 7.

2 Motivating example

We illustrate the functionalities of AJAX using a case study. The application
consists of cleaning and migrating a set of textual bibliographic references, ex-
tracted from postscript or pdf files that were obtained by a Web crawler3, into
a set of structured and duplicate-free relations.

Suppose we wish to migrate the original Citeseer dirty set of strings that
correspond to textual bibliographic references, into four sets of structured and
clean data, modeled as database relations: Authors, identified by a key and a
name; Events, identified by a key and a name; Publications, identified by a key,
a title, a year, an event key, a volume, etc; and the correspondence between
publications and authors, Publications-Authors, identified by a publication key
and an author key. The purpose of the underlying input-output schema mapping
is to derive structured and clean textual records so that meaningful queries can
be performed (e.g., how many papers a given author has published in 2005).

Figure 1 presents an example for two dirty citations that represent the same
bibliographic reference. The corresponding cleaned instances are produced by
the data cleaning process and stored in the four resulting relations. In the fig-
ure, the Publications table contains a single tuple that stores the correct and
duplicate-free information represented by the two dirty citations. The title in
this tuple, “Making Views Self-Maintainable for Data Warehousing”, is the cor-
rect one among the two dirty titles, and the event key value (“PDIS”) references

3 This information was used to construct the Citeseer Web site [18].

PDIS | Parallel and Distributed
Information Systems

Events
...

QuGuMuWi96 | DQuass

QuGuMuWi96 | AGupta

Publications-Authors

DirtyData

Making Views Self-Maintainable for Data Warehousing. In Proceedings of the Conference
on Parallel and Distributed Information Systems. Miami Beach, Florida, USA, 1996.
Available via WWW at www-db.stanford.edu as pub/papers/self-maint.ps.

[QGMW96] Dallan Quass, Ashish Gupta, Inderphal Singh Mumick, and Jennifer Widom.

PDIS’95

DATA CLEANING

QuGuMuWi96 | Making Views Self-Maintainable for Data
Warehousing | PDIS | null | Miami Beach | USA | 1996 | null |
null | www-db.stanford.edu/pub/papers/self-maint.ps

Publications

D. Quass, A. Gupta, I. Mumick, J. Widom,

JWid | Jennifer Widom

AGup | Ashish Gupta
DQua | Dallan Quass

Authors

IMum | Inderphal S. Mumick

Making views self-maintianable for data,

Fig. 1. Cleaning textual bibliographic references - an example.

the standardized event name (“Parallel and Distributed Information Systems”)
stored into the Events table. The fields concerning the location (”Miami Beach”
and “USA”) and the url where the paper is available, have been correctly ex-
tracted by the cleaning process and associated to the cleaned publication in-
stance. Finally, “1996” was identified as the correct year of publication. The
Authors table stores one row for each real author. The data cleaning process
recognizes the two distinct forms of writing the same author name and chooses
the longest one. The Publications-Authors table keeps the references for cleaned
authors and cleaned publications.

3 AJAX framework

The development of a data cleaning program able to solve problems as the ones
described in Section 2 actually involves two activities. One is the design of the
graph of data transformations that should be applied to the input dirty data and
whose main focus is the definition of “quality” heuristics that can achieve the
best accuracy of the results. A second activity is the design of “performance”
heuristics that can improve the execution speed of data transformations without
sacrificing accuracy. AJAX separates these two activities by providing a logi-
cal level where a graph of data transformations is specified using a declarative
language, and a physical level where specific optimized algorithms with distinct
tradeoffs can be selected to implement the transformations.

3.1 Logical Level

A partial and high-level view of a possible data cleaning strategy for handling
the set of bibliographic references introduced in Section 2 is the following:

1. Add a key to every input record.

2. Extract from each input record, and output into four different flows the informa-
tion relative to: names of authors, titles of publications, names of events and the
association between titles and authors.

3. Extract from each input record, and output into a publication data flow the in-
formation relative to the volume, number, country, city, pages, year and url of
each publication. Use auxiliary dictionaries for extracting city and country from
each bibliographic reference. These dictionaries store the correspondences between
standard city/country names and their synonyms that can be recognized.

4. Eliminate duplicates from the flows of author names, titles and events.
5. Aggregate the duplicate-free flow of titles with the flow of publications.

At the logical level, the main constituent of a data cleaning program is the
specification of a data flow graph where nodes are data cleaning operators, and
the input and output data flows of operators are logically modeled as database
relations. The design of our logical operators was based on the semantics of SQL
primitives extended to support a larger range of data cleaning transformations.

Each operator can make use of externally defined functions or algorithms
that implement domain-specific treatments such as the normalization of strings,
the extraction of substrings from a string, etc. External functions are written in
a 3GL programming language and then registered within the library of functions
and algorithms of AJAX.

The semantics of each operator includes the automatic generation of a vari-
ety of exceptions that mark input tuples which cannot be automatically handled
by an operator. This feature is particularly required when dealing with large
amounts of dirty data which is usually the case of data cleaning applications.
Exceptions may be generated by the external functions called within each opera-
tor. At any stage of execution of a data cleaning program, a debugger mechanism
enables users to inspect exceptions, analyze their provenance in the data flow
graph and interactively correct the data items that contributed to its generation.
Corrected data can then be re-integrated into the data flow graph.

3.2 Logical operators

We now present our logical operators based on a classification of data transfor-
mations where we consider the type of mapping that they express with respect
to their input and output tuples. The proposed operators are parametric in the
sense that they may enclose the invocation of generic external functions. A nat-
ural choice is to use SQL queries to express these mappings. This led us to
introduce a logical operator, called view, that corresponds to an arbitrary SQL
query. There are several obvious advantages of doing this: SQL is a widespread
used language, and existing RDBMSs include many optimization techniques for
SQL queries. However, the relational algebra is not expressive enough to capture
the new requirements introduced by data transformation and cleaning applica-
tions as stated in [3]. Our next operator, called map, captures all iterator-based
mappings that take a single relation as input and produces several relations as
output (and therefore, several tuples for each input tuple). The map operator
is proposed to enable the application of any kind of user-defined function to

each input tuple. A map has the general form of an iterator-based one-to-many
mapping. In the Citeseer example, formatting, standardization and extraction
are implemented through a map operator.

The third operator, called match, captures a specific sub-class of iterator-
based many-to-one mappings that consists of associating a similarity value to
any two input records using an arbitrary similarity metric. The match takes two
relations as input and produces one output relation. This operation is obviously
expressible using a view operator but having it as a distinct first-class opera-
tor considerably facilitates its optimization. The fourth operator, called cluster,
captures a subclass of non iterator-based many-to-many mappings that consists
of transforming an input relation into a nested relation where each nested set
is a cluster of records from the input relation, and the clustering of records is
arbitrary. One example of the cluster operator is the application of a transitive
closure method to assemble similar event records. We decided to define this op-
erator for two reasons. The first reason is the fact that it accepts a particular
signature, i.e., pairs of tuples equipped with a distance. The second reason for
considering it as a first-class operator is due to the possibility of optimizing
the match and cluster operators. The next operator, called merge, captures an-
other subclass of non iterator-based many-to-many mappings that corresponds
to grouping input elements according to a given criterion, and then applying an
arbitrary aggregate data mapping to the elements of each group. This operator is
an extension of the SQL group-by aggregate query where user-defined aggregate
functions can be used.

To illustrate the use of these operators, we show in Figure 2 the simplified
graph of data transformations, that corresponds to the cleaning strategy intro-
duced earlier in this section, in terms of our logical operators. The numbering
beside each data cleaning operation corresponds to an intuitive transformation
in the strategy. For each output relation of Step 2, we have to identify and
eliminate duplicate records. In the figure, duplicate eliminations corresponding
to Step 5 are mapped into sequences of one match, one cluster, and one merge
operator. Every other transformation is mapped into a single logical operator.

3.3 Declarative language

AJAX provides an expressive and declarative language for specifying data clean-
ing programs, which consists of SQL statements enriched with a set of spe-
cific primitives to express map, match, cluster, merge and view transformations.
Each one of these primitives corresponds to a transformation whose physical im-
plementation takes advantage of existing RDBMS technology. The declarative
nature of the language provides opportunities for automatic optimization and
facilitates the maintenance of a data cleaning program.

Syntactically, each operator specification has a FROM clause that indicates
the input data flow, a CREATE clause, which names the output data flow (for
further reference), a SELECT clause specifying the format of the output data
and a WHERE clause to filter out non interesting tuples from the input. An
optional LET clause describes the transformation logics that has to be applied

NL = Nested Loop

NJ = Neighborhood Join

TC = Transitive Closure

DirtyAuthors

Authors

...

level
Logical

Physical
level

...

...3

......

DirtyAuthors

DirtyData

DirtyData

1

2

Authors

...

TC

...

...

KeyDirtyData

KeyDirtyData

Scan

Scan

NLNJ

4
DirtyTitles DirtyEvents

Publications

Events
...

DirtyEvents

Events

5

Scan
SQL

Merge Merge

Map

Map

Match

View

Map

Cluster

Match

ClusterCluster

Match

Merge

Fig. 2. Graph of logical and physical data transformations for the bibliographic refer-
ences.

to each input item (tuple or group of tuples) in order to produce output items.
This clause contains limited imperative primitives: the possibility to define local
variables, to call external functions or to control their execution via if/then/else
constructs. Finally, the cluster operator includes a BY clause which specifies the
grouping algorithm to be applied, among the ones existing in the AJAX library
of algorithms.

To illustrate the semantics and syntax of the AJAX operators, we exemplify
the map operator that corresponds to the data transformation 1 and the match
operator represented by 5 in Figure 2, in Examples 1 and 2 respectively.

Example 1. The following map operator transforms the relation DirtyData{paper} into

a “target” relation KeyDirtyData{paperkey, paper} by adding a serial number to it. The

LET clause contains a statement that constructs a predicate Key using an external

(atomic) function generateKey that takes as argument a variable DirtyData.paper rang-

ing over attribute paper of DirtyData. Relation Key is constructed as follows. For every

fact DirtyData(a) in the instance of DirtyData4, if generateKey(a) does not return an

exception value exc, then a fact Key(a, generateKey(a)) is added to the instance of Key.

Otherwise, a fact DirtyDataexc(a) is added to the instance of DirtyDataexc (which is

the map output relation that stores exception tuples). We shall say that this state-

ment “defines” a relation Key{paper, generateKey}5. The schema of the target relation

4 Where a is a string representing a paper.
5 For convenience, we shall assume that the name of the attribute holding the result

of the function is the same as the name of the function.

is specified by the “{ SELECT key.generateKey AS ...}” clause. It indicates that the

schema of KeyDirtyData is built using the attributes of Key and DirtyData. Finally, the

constraint stipulates that a paper attribute value must never be null.

CREATE MAP AddKeytoDirtyData
FROM DirtyData
LET Key = generateKey(DirtyData.paper)
{ SELECT Key.generateKey AS paperKey, DirtyData.paper AS paper INTO KeyDirtyData
CONSTRAINT NOT NULL paper}

�

A map operator that produces a single output relation and whose let-clause
encloses only atomic assignment statements as the example above may be im-
plemented by one insert into ... select from clause and one create table clause
(as illustrated in Example 2). However, in a general case, a map operator may
produce one or more tuples (belonging to a single or several output relations)
for each input tuple. In such situation, it may not be possible to write SQL
statements that represent the same semantics.

Example 2. The SQL equivalent of the map defined in Example 1 is as follows:

CREATE TABLE KeyDirtyData(paperKey varchar2(100),
paper varchar2(1024) NOT NULL);

INSERT INTO KeyDirtyData
SELECT generateKey() paperKey, dd.paper paper
FROM DirtyData dd

�

Example 3 illustrates a match operation. The let-clause has the same mean-
ing as in a map operation with the additional constraint that it must define a
relation, named distance, within an atomic assignment statement. Here, distance
is defined using an atomic function editDistanceAuthors computing an integer
distance value between two author names. The let-clause produces a relation
distance{authorKey1, name1, authorKey2, name2, editDistanceAuthors} whose in-
stance has one tuple for every possible pair of tuples taken from the instance of
DirtyAuthors. The where-clause filters out the tuples of distance for which edit-
DistanceAuthors returned a value greater than a constant value given by maxDist.
Finally, the into clause specifies the name of the output relation (here, MatchAu-
thors) whose schema is the same as distance.

Example 3. This (self-)match operator takes as input the relation DirtyAuthors{authorKey,

name} twice. Its intention is to find possible duplicates within DirtyAuthors.

CREATE MATCH MatchDirtyAuthors
FROM DirtyAuthors a1, DirtyAuthors a2
LET distance = editDistanceAuthors(a1.name, a2.name)
WHERE distance < maxDist
INTO MatchAuthors

�

A simple match operator is mapped onto a create table clause and an insert
into clause that encloses a nested query. The inner query computes the distance
values and the outer query imposes a condition on the distance obtained, ac-
cording to a given maximum allowed distance. Example 3 is mapped into the
following SQL statements.

Example 4.
CREATE TABLE MatchAuthors(authorKey1 varchar2(100),

authorKey2 varchar2(100), distance number);
INSERT INTO MatchAuthors

SELECT authorKey1, authorKey2, distance
FROM (SELECT a1.authorKey authorKey1, a2.authorKey authorKey2,

editDistanceAuthors(a1.name, a2.name) distance
FROM DirtyAuthors a1, DirtyAuthors a2)

WHERE distance < maxDist;
�

3.4 Physical level

At the physical level, certain decisions can be made to speed up the execution
of data cleaning programs. First, the implementation of the externally defined
functions can be optimized. Second, an efficient algorithm can be selected, among
a set of alternative algorithms, to implement each logical operator. A very sen-
sitive operator to the choice of execution algorithm is matching. An original
contribution of our data cleaning system is the possibility to associate with each
optimized matching algorithm, the mathematical properties that the similarity
function used in the match operator must have in order to enable the optimiza-
tion, and the parameters that are necessary to run the optimized algorithm.
Then, our system enables the user to specify, within the logical specification of a
given matching operator, the properties of the distance function, together with
the required parameters for optimization. The system can consume this informa-
tion to choose the best algorithm to implement a match. The important point
here is that users control the proper usage of optimization algorithms. They
first determine (in the logical specification) the matching criteria that would
provide accurate results, and then provide the necessary information to enable
optimized executions. Figure 2 shows the algorithms selected to implement each
logical operation.

3.5 Optimization of the match operator

The match operator computes an approximate join between two relations. The
semantics of this operation involves the computation of a Cartesian product
between two input relations using an arbitrary distance function. Such semantics
guarantees that all possible matches are captured under the assumption that
correct record matching criteria are used. However, while doing so, a performance
penalty is incurred since the Cartesian product based semantics with external
function calls is usually evaluated (e.g. within an RDBMS) through a nested

loop join algorithm with external function calls. The match operator is thus one
of the most expensive operators in our framework once a considerable amount
of data is involved.

For this reason, we dedicate particular attention to the match optimization
opportunities. A match operator with an acceptance distance of ε computes
a distance value for every pair of tuples taken from two input relations, and
returns those pairs of tuples (henceforth, called candidate matches) that are at
a maximum distance of ε from each other. In fact, since the distance function is
an approximation of the actual closeness of two records, a subsequent step must
determine which of the candidate matches are the correct matches (i.e., the pairs
of records that really correspond to the same individual).

For very large data sets, the dominant factor in the cost of a match is the
Cartesian product between the two input relations. One possible optimization
is to pre-select the elements of the Cartesian product for which the distance
function must be computed, using a distance filter that allows some false matches
(i.e., pairs of records that are falsely declared to be within an ε distance), but no
false dismissals (i.e., pairs of records falsely declared to be out of an ε distance).
This pre-selection of elements is expected to be cheap to compute.

Distance-filtering optimization This type of optimization has been success-
fully used for image retrieval [7] and matching of textual fields [14]. Formally, the
result of a match between two input relations S1 and S2 in which the distance,
dist, between two elements of S1 and S2 is required to be less than some ε, is a
set:

{(x, y, dist(x, y)) | x ∈ S1 ∧ y ∈ S2 ∧ dist(x, y) ≤ ε} (1)

The distance filtering optimization requires finding a mapping f (e.g., get
the length of a string) over sets S1 and S2 , with a distance function dist′ much
cheaper than dist, such that:

∀x, ∀y, dist′(f(x), f(y)) ≤ dist(x, y) (2)

Having determined f and dist′, the optimization consists of computing the
set of pairs (x, y) such that dist′(f(x), f(y)) ≤ ε, which is a superset of the
desired result:

Dist F ilter = {(x, y) | x ∈ S1 ∧ y ∈ S2 ∧ dist′((f(x), f(y)) ≤ ε}

Given this, the set defined by (1) is equivalent to:

{(x, y, dist(x, y)) | (x, y) ∈ Dist F ilter ∧ dist(x, y) ≤ ε} (3)

A generic algorithm that implements this optimization is shown in Figure
3. This algorithm, called Neighborhood Join or NJ for short, is effective when

Input:S1, S2, dist, ε, dist′, f
{
P1 = set of partitions of S1 according to f
P2 = set of partitions of S2 according to f
∀s1 ∈ p1, p1 ∈ P1 : f(s1) = cte

∀s2 ∈ p2, p2 ∈ P2 : f(s2) = cte

for each partition p1 ∈ P1 do {
for each partition p2 ∈ P2 such that dist′(f(p1), f(p2)) ≤ ε do {
for each element s1 ∈ p1 do {

for each element s2 ∈ p2 do {
if dist(s1, s2) ≤ ε then

Output = Output ∪ (s1, s2) }}}}
}

Fig. 3. Neighborhood Join algorithm.

both the number of partitions generated by the mapping f , and the number of
elements in the partitions selected by the condition on dist′ wrt ε, are much
smaller than the size of the original input data set. The filter used in Figure
3, map = f , serves to partition the input data sets and order the partitions
accordingly. After applying this partitioning, only the pairs of tuples that belong
to partitions satisfying dist′(f(p1), f(p2)) ≤ ε are compared through the distance
function dist. This condition is imposed through the first two for cycles of the
algorithm.

This optimization is illustrated below on a match operation of the Cite-
seer data cleaning program that takes as input the relation DirtyTitles{pubKey,
title, eventKey} twice. The line between the %’s is an annotation that indi-
cates the type of optimization and the distance filtering property of the distance
function.6 Annotations can then be used by AJAX to guide the optimizer on
choosing the appropriate physical execution algorithm for the match operator.
We assume that maxDist is an integer. The editDistanceTitles function is based
on the Damerau-Levenshtein metric [17] that returns the number of insertions,
deletions and substitutions needed to transform one string into the other.

Example 5.
CREATE MATCH MatchDirtyTitles
FROM DirtyTitles p1, DirtyTitles p2
LET distance = editDistanceTitles(p1.title, p2.title)
WHERE distance < maxDist
%distance-filtering: map=length; dist=abs %
INTO MatchTitles

The Damerau-Levenshtein edit-distance function has the property of always
returning a distance value bounded by the difference of lengths l of the strings
compared. Thus, if l exceeds the maximum allowed distance maxDist, there is

6 In the Citeseer application, the distance filtering optimization was also applicable
for matching author and event names.

no need to compute the edit distance because the two strings are undoubtedly
dissimilar. This property suggests using as mapping f , the function computing
the length of a string, and as dist′ a function abs such that abs(x, y) = |x− y|.

4 Debugging data cleaning programs

The goal of a data cleaning process is to produce clean data of high quality, i.e.,
consistent and error-free. When handling large amounts of data with a consider-
able level of dirtiness, automatic cleaning criteria are not able to cover the entire
data set. There are two main reasons for this: cleaning criteria may need to be
refined, and some cleaning decisions cannot be automatically disambiguated and
thus user interaction is needed. In current technology, tuples that are rejected
by the data transformations are inserted into a log file to be later analyzed by
users. When the number of rejected tuples is large, which is usually the case
when treating large data sets, it is fundamental to provide a user-friendly envi-
ronment for discovering why some dirty records are not handled by the cleaning
process. Our framework offers a facility to assist the user on this task. First,
we provide a mechanism of exceptions that marks tuples that cannot be han-
dled automatically as mentioned in Section 3. Second, a debugger mechanism is
provided to allow the user to interactively inspect exceptions.

To better illustrate the problem, consider the standardization of citations
and the extraction of author names, title and event names that correspond to
transformation 2 in Figure 2. We may consider that the separation between the
author list and the title is done by one of the two punctuation marks: {“;.“}.
However, some citations, as the second dirty one in Figure 1 (i.e., “ D. Quass,
A. Gupta, I. Mumick, and J. Widom, Making views self-maintanable for data,
PDIS’95”), use a comma between these two kinds of informations, so it is not
easy to automatically detect where does the author list finish and the title starts.
Therefore, the user may need to refine the corresponding extraction criteria so
that this situation becomes automatically treated. Another example concerns
the duplicate elimination applied to dirty publication records (transformation 5
in Figure 2). The two titles presented in the motivating example (starting by
“Making Views...”) are considered duplicates and need to be consolidated into a
single title (the correctly written instance in this case). If the consolidation phase
uses an automatic criterion that chooses the longest title among duplicates, then
it cannot decide which is the correct one among these two titles, since they have
the same length. Here again, manual intervention is required.

In order to mark input tuples that cannot be transformed automatically, a
logical operator generates one exceptional output relation per input to store such
tuples. The other output relations of an operator, called regular output relations,
contain transformed tuples. An exceptional tuple corresponds to an input tuple
that does not satisfy the cleaning criteria associated to the transformation. Given
this, during the execution of a data cleaning program, a debugger or explainer
facility offers the following functionality to the user: (i) inspection of exceptional
tuples using data derivation mechanisms; (ii) navigation through the data flow

graph to discover how exceptional tuples were generated, and (iii) support for
refining cleaning criteria and modifying tuples to remedy exceptions. This func-
tionality allows the user to tune a data cleaning application and, consequently
to improve the accuracy of the cleaned data.

5 Architecture

The architecture of the AJAX system is represented in Figure 4. There are two
types of components in the system: repositories that manage data or fragments
of code; and operational units that constitute the execution core. AJAX encloses
the following three repositories:

– The data repository stores data in a relational database management system
or in a set of text files and offers a JDBC-like interface. In both cases, data
include all input data of a data cleaning application (including dictionaries),
the cleaned output data and the intermediate relations generated by logical
operators, including exceptional output relations.

– The library of functions encloses the code of the external functions that are
called within each logical operator. Examples of such functions are specific
string matching functions (e.g., edit-distance [14]). This library contains a
set of default functions and can be extended to include new user-defined
functions.

– The library of algorithms encloses the clustering algorithms (e.g., by transi-
tive closure) that can be invoked within a cluster operator and the physical
algorithms that implement the logical operators. Analogously to the library
of functions, users can add new algorithms to the set of existing ones.

The core of the AJAX system is implemented by the following operational
units:

– The analyzer, which parses a data cleaning program and generates an equiv-
alent internal representation;

– The optimizer7, that assigns efficient physical execution algorithms to the
logical operators specified and returns an optimal execution plan for a given
data cleaning specification;

– The code generator, that generates executable code to implement each logical
operator in the execution plan;

– The execution engine, which executes operators according to the order de-
termined by the specification and the optimizer;

– The debugger or explainer, that triggers an audit trail mechanism allowing
the user to discover why exceptional tuples are generated and supporting
interactive data modification to correct exceptions.

7 In the current version of the AJAX prototype, the optimization decisions are man-
ually taken.

Repositories

Operational units

RDBMSFILES

program
cleaning

Analyzer

Optimizer

Specification
Program

Code
generator

Program internal
representation

invocation
algorithm

engine
Execution

SPEC
GUI

Library

functions
of

algorithms
of

Library

Library
Specification

Execution & Debugging

Explainer

GUI

DEBUG
GUI

EXEC execute/show summary

Optimization & Code Generation

JDBC

data
inspection

data
modification

function
calls

execute

calls
function

Fig. 4. Architecture of the system.

5.1 Using AJAX

In [11], we present the performance results obtained when using the AJAX sys-
tem to clean subsets of Citeseer bibliographic references. These results show
two kinds of evidence. First, we report the execution times obtained for clean-
ing three subsets of the Citeseer data set with distinct sizes. We also show the
percentage of the execution time devoted to the match operations for each sub-
set. Second, we illustrate the advantage of providing distinct physical execution
algorithms for the match operator. We use different execution algorithms for
the same logical semantics and we report the execution times and data quality
obtained.

More recently, we applied AJAX for specifying and executing a data mi-
gration process concerning dam safety information. The main goal here was to
map data that obeyed to a given schema into a distinct target data schema. In
this real-world application, the exception mechanism was extensively used for
detecting input data which was not automatically transformed by the specified
data transformation criteria [8].

6 Related work

The first problem with commercial tools is the existence of data transforma-
tions whose semantics is defined in terms of their implementation algorithms.
To avoid this issue, a data cleaning model must be envisaged to separate log-
ical operations from their physical implementations. There are two important

results in the research literature which are concerned with the model and exe-
cution of data cleaning transformations. The main goal of the Potter’s Wheel
prototype [15] developed at the University of California at Berkeley, is to in-
terleave the application of simple logical data transformations to data samples
with the detection of data problems. IntelliClean [13] is another data cleaning
prototype that offers a way of expressing data transformation rules through an
expert system shell. None of these systems is concerned with the independence
between logical and physical data cleaning operations. Recently, [16] has pro-
posed a rigorous approach to the problem of optimizing an ETL process defined
as a workflow of data transformation activities. The authors model the ETL
optimization problem as a global state-space search problem. In our approach,
we use local optimization, since an ETL transformation program must be repre-
sented by a set of extended relational algebra expressions to be optimized one at
a time. Several RDBMSs, like Microsoft SQL Server, already include additional
software packages specific for ETL tasks. However, to the best of our knowl-
edge, the capabilities of relational engines, for example, in terms of optimization
opportunities are not fully exploited for ETL tasks.

The second open problem in commercial data cleaning tools is the lack of
support for user interaction during the execution of a data cleaning application.
In fact, the user interaction may be required to debug the results of data trans-
formations, refine the cleaning criteria enclosed, and manually correct data not
automatically transformed. There are two important research areas that permit
to fulfill this gap. First, the field of data lineage as studied in [4, 5, 2, 19] offers
useful notions for browsing the results of data cleaning transformations. Second,
the incremental propagation of changes in the context of view maintenance as
studied in [6] supplies the basic notions for efficiently integrating data items
manually corrected in the flow of data cleaning transformations.

7 Conclusions

In this paper, we provided a global overview of the AJAX system. The descrip-
tion intends to survey all the design and technical aspects of the system and show
in which way they constitute a novelty with respect to the existing technology.

The prototype is currently being used in real-world data migration, trans-
formation and cleaning applications so that exhaustive experimental validation
can be produced. Moreover, we plan to improve AJAX functionalities according
to the requirements of the application scenarios being tested. More concretely,
the specification language is being extended, the mechanism of exceptions for
the view operator needs to be reformulated, the debugger mechanism needs to
be re-designed in order to handle a large amount of exceptions. Finally, some
effort has to be put in the design and implementation of a cost-based optimizer
and a graphical interface must be constructed to make it easier to specify the
cleaning criteria and visualize the results.

References

1. J. Barateiro and H. Galhardas. A survey of data quality tools. Datenbank Spektrum
(invited paper), (14):15–21, August 2005.

2. Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and Where: A
Characterization of Data Provenance. In ICDT, 2001.

3. P. Carreira, H. Galhardas, J. Pereira, and A. Lopes. Data mapper: An operator
for expressing one-to-many data transformations. In DAWAK, 2005.

4. Yingwei Cui and Jennifer Widom. Practical Lineage Tracing in Data Warehouses.
In ICDE, 2000.

5. Yingwei Cui and Jennifer Widom. Lineage Tracing for General Data Warehouse
Transformations. In Proc. of VLDB, 2001.

6. Françoise Fabret. Optimisation du Calcul Incrémentiel dans les Langages de Règles
pour Bases de Données. PhD thesis, Université de Versailles Saint-Quentin, 1994.

7. Christos Faloutsos, Ron Barber, Myron Flickner, Jim Hafner, Wayne Niblack,
Dragutin Petkovic, and William Equit. Efficient and effective querying by image
content. JIIS, 3(3/4), 1994.

8. H. Galhardas and J. Barateiro. InfoLegada2gB: an application for migrating dam
safety information. unpublished.

9. H. Galhardas, D. Florescu, D. Shasha, and E. Simon. Ajax: An extensible data
cleaning tool. ACM SIGMOD Int’l Conf. on Management of Data, 2(29), 2000.

10. H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. A. Saita. Declarative data
cleaning: Language, model, and algorithms. In Proc. of the Int’l Conf. on Very
Large Data Bases (VLDB’01), 2001.

11. Helena Galhardas. Nettoyage de Données: Modèle, Langage Déclaratif, et Algo-
rithmes. PhD thesis, Université de Versailles Saint-Quentin, 2001.

12. Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon. AJAX: An
Extensible Data Cleaning Tool. In SIGMOD (demonstration paper), 2000.

13. Mong Li Lee, Tok Wang Ling, and Wai Lup Low. A Knowledge-Based Framework
for Intelligent Data Cleaning. Information Systems Journal - Special Issue on Data
Extraction and Cleaning, 2001.

14. Gonzalo Navarro. A Guided Tour to Approximate String Matching. ACM Com-
puting Surveys, 33(1):31–88, March 2001.

15. Vijayshankar Raman and Joseph M. Hellerstein. Potter’s Wheel: An Interactive
Data Cleaning System. In Proc. of VLDB, Rome, 2001.

16. A. Simitsis, P. Vassiliadis, and T. K. Sellis. Optimizing ETL processes in data
warehouses. In ICDE, 2005.

17. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Theory, 147:195–197, 1981.

18. Microsoft Research (Sponsored by) NSF, NASA. CiteSeer.IST.
http://citeseer.ist.psu.edu/.

19. Allison Woodruff and Michael Stonebraker. Supporting Fine-Grained Data Lineage
in a Database Visualization Environment. In ICDE, 1997.

