Haydyn Mertens

Haydyn Mertens
European Molecular Biology Laboratory | EMBL · EMBL Hamburg

PhD

About

124
Publications
22,931
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,235
Citations
Introduction
My present interests maintain a strong focus on scientific research, particularly in the development of methods for the structural characterisation of membrane proteins, with a focus on membrane scaffolding systems. Interfacing small-angle scattering (SAXS/SANS) with other techniques across the field of structural biology. Particular interest in the development of tools for the optimisation of complementary methods to solve biological problems at the molecular level.
Additional affiliations
October 2013 - present
European Molecular Biology Laboratory
Position
  • Senior Technical Officer
September 2011 - September 2013
Australian Synchrotron
Position
  • PostDoc Position
April 2008 - September 2011
European Molecular Biology Laboratory (EMBL)
Position
  • EMBL Interdisciplinary Postdoctoral Research Fellow (EIPOD)

Publications

Publications (124)
Article
Full-text available
Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution...
Article
Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins' structure has a direct impact on their biological function. However, nearly 40% of the eukaryotes proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations....
Article
Full-text available
Proteins are inherently unstable, which limits their use as therapeutic agents. However, the use of biocompatible cosolvents or surfactants can help to circumvent this problem through the stabilization of intramolecular and solvent-mediated interactions. Ionic liquids (ILs) have been known to act as cosolvents or surface-active compounds. In the pr...
Preprint
Full-text available
Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins' structure has a direct impact on their biological function. However, nearly half of the proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations. Therefore...
Article
Full-text available
Proton-coupled Oligopeptide Transporters (POTs) of the Major Facilitator Superfamily (MFS) mediate the uptake of short di- and tripeptides in all phyla of life. POTs are thought to constitute the most promiscuous class of MFS transporters, with the potential to transport more than 8400 unique substrates. Over the past two decades, transport assays...
Preprint
Full-text available
Proton-coupled Oligopeptide Transporters (POTs) of the Major Facilitator Superfamily (MFS) mediate the uptake of short di- and tripeptides in all phyla of life. POTs are thought to constitute the most promiscuous class of MFS transporters, with the potential to transport more than 8400 unique substrates. Over the past two decades, transport assays...
Article
Full-text available
Phenylketonuria (PKU) is an autosomal recessive disease caused by deficient activity of human phenylalanine hydroxylase (hPAH), which can lead to neurologic impairments in untreated patients. Although some therapies are already available for PKU, these are not without drawbacks. Enzyme-replacement therapy through the delivery of functional hPAH cou...
Article
Full-text available
As the decline of malaria cases stalled over the last five years, novel targets in Plasmodium falciparum are necessary for the development of new drugs. Glycogen Synthase Kinase (PfGSK3) has been identified as a potential target, since its selective inhibitors were shown to disrupt the parasite's life cycle. In the uncanonical N‑terminal region of...
Article
Full-text available
Many pathogenic gram-negative bacteria have developed mechanisms to increase resistance to cationic antimicrobial peptides by modifying the lipid A moiety. One modification is the addition of phosphoethanolamine to lipid A by the enzyme phosphoethanolamine transferase (EptA). Previously we reported the structure of EptA from Neisseria , revealing a...
Preprint
Full-text available
As the decline of malaria cases stalled over the last five years, novel targets in Plasmodium falciparum are necessary for the development of new drugs. Glycogen Synthase Kinase (PfGSK3) has been identified as a potential target, since its selective inhibitors were shown to disrupt the parasite`s life cycle. Here, we show that PfGSK3 exhibits autop...
Article
Full-text available
During clathrin-mediated endocytosis, a complex and dynamic network of protein-membrane interactions cooperate to achieve membrane invagination. Throughout this process in yeast, endocytic coat adaptors, Sla2 and Ent1, must remain attached to the plasma membrane to transmit force from the actin cytoskeleton required for successful membrane invagina...
Article
Full-text available
The ATSAS software suite encompasses a number of programs for the processing, visualization, analysis and modelling of small-angle scattering data, with a focus on the data measured from biological macromolecules. Here, new developments in the ATSAS 3.0 package are described. They include IMSIM , for simulating isotropic 2D scattering patterns; IMO...
Article
Full-text available
Small-angle X-ray scattering (SAXS) is widely utilized to study soluble macromolecules, including those embedded into lipid carriers and delivery systems such as surfactant micelles, phospholipid vesicles and bilayered nanodiscs. To adequately describe the scattering from such systems, one needs to account for both the form factor (overall structur...
Article
Full-text available
Membrane proteins (MPs) are the target of numerous structural and functional studies in biological and medical/pharmaceutical sciences. Strategies for the high-throughput structural analysis of MPs and of their perturbations driven by ligands having potential therapeutic applications are uncommon, often requiring scaled up crystallization, electron...
Preprint
During clathrin-mediated endocytosis, a complex and dynamic network of protein-membrane interactions cooperate to achieve membrane invagination. Throughout this process, middle coat adaptors, Sla2 and Ent1, must remain attached to the plasma membrane to transmit force from the actin cytoskeleton required for successful membrane invagination. Here,...
Article
Full-text available
Gliding, a type of motility based on an actin-myosin motor, is specific to apicomplexan parasites. Myosin A binds two light chains which further interact with glideosome associated proteins and assemble into the glideosome. The role of individual glideosome proteins is unclear due to the lack of structures of larger glideosome assemblies. Here, we...
Article
Full-text available
The application of small angle X-ray scattering (SAXS) to the structural characterization of transmembrane proteins (MPs) in detergent solutions has become a routine procedure at synchrotron BioSAXS beamlines around the world. SAXS provides overall parameters and low resolution shapes of solubilized MPs, but is also meaningfully employed in hybrid...
Article
The binding of lipoprotein lipase (LPL) to GPIHBP1 focuses the intravascular hydrolysis of triglyceride-rich lipoproteins on the surface of capillary endothelial cells. This process provides essential lipid nutrients for vital tissues (e.g., heart, skeletal muscle, and adipose tissue). Deficiencies in either LPL or GPIHBP1 impair triglyceride hydro...
Preprint
Full-text available
Apicomplexan parasites, such as Plasmodium falciparum and Toxoplasma gondii , traverse the host tissues and invade the host cells exhibiting a specific type of motility called gliding. The molecular mechanism of gliding lies in the actin-myosin motor localized to the intermembrane space between the plasma membrane and inner membrane complex (IMC) o...
Article
Full-text available
Human phenylalanine hydroxylase (hPAH) hydroxylates l-phenylalanine (l-Phe) to l-tyrosine, a precursor for neurotransmitter biosynthesis. Phenylketonuria (PKU), caused by mutations in PAH that impair PAH function, leads to neurological impairment when untreated. Understanding the hPAH structural and regulatory properties is essential to outline PKU...
Preprint
The application of small angle X-ray scattering (SAXS) to the structural characterization of transmembrane proteins (MPs) in detergent solutions has become a routine procedure at the most synchrotron BioSAXS beamlines around the world. SAXS provides overall parameters and low resolution shapes of solubilized MPs, but is also meaningfully employed i...
Article
Full-text available
The urokinase receptor (uPAR) is a founding member of a small protein family with multiple Ly6/uPAR (LU) domains. The motif defining these LU domains contains five plesiotypic disulfide bonds stabilizing its prototypical three-fingered fold having three protruding loops. Notwithstanding the detailed knowledge on structure-function relationships in...
Article
Full-text available
Lipoprotein lipase (LPL) is responsible for the intravascular processing of triglyceride-rich lipoproteins. The LPL within capillaries is bound to GPIHBP1, an endothelial cell protein with a three-fingered LU domain and an N-terminal intrinsically disordered acidic domain. Loss-of-function mutations in LPL or GPIHBP1 cause severe hypertriglyceridem...
Article
Full-text available
Plasma-membrane Ca²⁺-ATPases expel Ca²⁺ from the cytoplasm and are key regulators of Ca²⁺ homeostasis in eukaryotes. They are autoinhibited under low Ca²⁺ concentrations. Calmodulin (CaM)-binding to a unique regulatory domain releases the autoinhibition and activates the pump. However, the structural basis for this activation, including the overall...
Article
Structural studies of integral membrane proteins (IMPs) are challenging, as many of them are inactive or insoluble in the absence of a lipid environment. Here, we describe an approach making use of fractionally deuterium labeled "stealth carrier" nanodiscs that are effectively invisible to low-resolution neutron diffraction and enable structural st...
Article
Full-text available
Human deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), essential for DNA integrity, acts as a survival factor for tumor cells and is a target for cancer chemotherapy. Here we report that the Staphylococcal repressor protein StlSaPIBov1(Stl) forms strong complex with human dUTPase. Functional analysis reveals that this interaction results...
Article
Full-text available
Axon guidance involves the spatiotemporal interplay between guidance cues and membrane-bound cell-surface receptors, present on the growth cone of the axon. Netrin-1 is a prototypical guidance cue that binds to deleted in colorectal cancer (DCC), and it has been proposed that the guidance cue Draxin modulates this interaction. Here, we present stru...
Article
Resistance to the last-resort antibiotic colistin is now widespread and new therapeutics are urgently required. We report the first in toto chemical synthesis and pre-clinical evaluation of octapeptins, a class of lipopeptides structurally related to colistin. The octapeptin biosynthetic cluster consisted of three non-ribosomal peptide synthetases...
Article
Full-text available
Saposin-derived lipid nanoparticles (SapNPs) are a new alternative tool for membrane protein reconstitution. Here we demonstrate the potential and advantages of SapNPs. We show that SapA has the lowest lipid specificity for SapNP formation. These nanoparticles are modular and offer a tunable range of size and composition depending on the stoichiome...
Article
Full-text available
In clathrin-mediated endocytosis, adapter proteins assemble together with clathrin through interactions with specific lipids on the plasma membrane. However, the precise mechanism of adapter protein assembly at the cell membrane is still unknown. Here, we show that the membrane-proximal domains ENTH of epsin and ANTH of Sla2 form complexes through...
Article
Full-text available
Sensing and uptake of external ammonium is essential for anaerobic ammonium-oxidizing (anammox) bacteria, and is typically the domain of the ubiquitous Amt/Rh ammonium transporters. Here, we report on the structure and function of an ammonium sensor/transducer from the anammox bacterium "Candidatus Kuenenia stuttgartiensis" that combines a membrane...
Article
Full-text available
ATSAS is a comprehensive software suite for the analysis of small-angle scattering data from dilute solutions of biological macromolecules or nanoparticles. It contains applications for primary data processing and assessment, ab initio bead modelling, and model validation, as well as methods for the analysis of flexibility and mixtures. In addition...
Article
Full-text available
Small-angle X-rays scattering (SAXS) and Nuclear Magnetic Resonance (NMR) are established methods to analyze the structure and structural transitions of biological macromolecules in solution. Both methods are directly applicable to near-native macromolecular solutions and allow one to study structural responses to physical and chemical changes or l...
Article
Full-text available
Mycobacteria are characterized by their impermeable outer membrane, which is rich in mycolic acids1. To transport substrates across this complex cell envelope, mycobacteria rely on type VII (also known as ESX) secretion systems2. In Mycobacterium tuberculosis, these ESX systems are essential for growth and full virulence and therefore represent an...
Data
Document S1. Supplemental Experimental Procedures, Figures S1–S5, and Tables S1–S3
Article
Full-text available
Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases (aaRSs), with two clearly widespread types of enzymes: a dimeric (a2) species present in some bacteria, archaea, and eukaryotes, and a heterotetrameric form (a2b2) present in most bacteria. Although the differences between both types of GlyRS at the anti...
Article
We present a centrifugal microfluidic LabDisk for protein structure analysis via small-angle X-ray scattering (SAXS) on synchrotron beamlines. One LabDisk prepares 120 different measurement conditions, grouped into six dilution matrices. Each dilution matrix: (1) features automatic generation of 20 different measurement conditions from three input...
Article
The regulation of many protein kinases by binding to calcium/calmodulin connects two principal mechanisms in signaling processes: protein phosphorylation and responses to dose- and time-dependent calcium signals. We used the calcium/calmodulin-dependent members of the death-associated protein kinase (DAPK) family to investigate the role of a basic...
Article
Full-text available
Plant growth and survival depend upon the activity of membrane transporters that control the movement and distribution of solutes into, around, and out of plants. Although many plant transporters are known, their intrinsic properties make them difficult to study. In barley (Hordeum vulgare), the root anion-permeable transporter Bot1 plays a key rol...
Article
Full-text available
Bacteriophages produce endolysins, which lyse the bacterial host cell to release newly produced virions. The timing of lysis is regulated, and is thought to involve the activation of a molecular switch. We present a crystal structure of the activated endolysin CTP1L that targets Clostridium tyrobutyricum, consisting of a complex between the full le...
Article
Full-text available
Plant growth and survival depend upon the activity of membrane transporters that control the movement and distribution of solutes into, around and out of plants. Although many plant transporters are known, their intrinsic properties make them difficult to study. In barley, the root anion-permeable transporter HvBot1 plays a key role in tolerance to...
Article
Full-text available
Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of ‘unstructured’ and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for stru...
Article
Full-text available
The extracellular accumulation of amyloid β (Aβ) peptides is characteristic of Alzheimer's disease (AD). However, formation of diffusible, oligomeric forms of Aβ, both on and off pathways to amyloid fibrils, is thought to include neurotoxic species responsible for synaptic loss and neurodegeneration, rather than polymeric amyloid aggregates. The 8-...
Article
Full-text available
Research into causes of Alzheimer’s disease and its treatment has produced tantalising array of hypotheses about the role of transition metal dyshomeostasis, many of them on the interaction of these metals with the neurotoxic amyloid-β peptide (Aβ). Here, we have used small angle X-ray scattering (SAXS) to study the effect of the molar ratio, Cu2+/...
Article
Full-text available
Ethylene initiates important aspects of plant growth and development through disulfide- linked receptor dimers, located in the endoplasmic reticulum. The receptors feature a small trans-membrane, ethylene binding domain followed by a large cytosolic domain, which serves as a scaffold for the assembly of large molecular weight complexes of different...
Article
Full-text available
The 140 residue intrinsically disordered protein alpha-synuclein can form fibrils that are the major constituent of the Lewy body intracellular protein inclusions, and neurotoxic oligomers, both of which are associated with a number of neurodegenerative diseases, including Parkinson’s disease and dementia with Lewy bodies. Using ensemble optimisati...
Article
Netrin-1 is a guidance cue that can trigger either attraction or repulsion effects on migrating axons of neurons, depending on the repertoire of receptors available on the growth cone. How a single chemotropic molecule can act in such contradictory ways has long been a puzzle at the molecular level. Here we present the crystal structure of netrin-1...
Article
Full-text available
The bacteriophage ΦCD27 is capable of lysing Clostridium difficile, a pathogenic bacterium that is a major cause for nosocomial infection. A recombinant CD27L endolysin lyses C. difficile in vitro, and represents a promising alternative as a bactericide. To better understand the lysis mechanism, we have determined the crystal structure of an autopr...
Article
The molecular size of wine tannins can influence astringency and yet it has been unclear as to whether the standard methods for determining average tannin molecular weight (MW), including gel-permeation chromatography (GPC) and depolymerization reactions, are actually related to the size of the tannin in wine-like conditions. Small-angle X-ray scat...
Article
Full-text available
Given the rise in drug-resistant Streptococcus pneumoniae, there is an urgent need to discover new antimicrobials targeting this pathogen and an equally urgent need to characterize new drug targets. A promising antibiotic target is dihydrodipicolinate synthase (DHDPS), which catalyzes the rate-limiting step in lysine biosynthesis. In this study, we...
Article
The SAXS/WAXS beamline at the Australian Synchrotron is an advanced and flexible undulator X-ray scattering beamline used for small- and wide-angle X-ray scattering analysis on a wide variety of solids, fluids and surfaces across a diverse range of research and development fields. The beamline has numerous features that minimize the intensity of th...
Article
Full-text available
To survive and replicate within the human host, malaria parasites must invade erythrocytes. Invasion can be mediated by the P. falciparum reticulocyte-binding homologue protein 4 (PfRh4) on the merozoite surface interacting with complement receptor type one (CR1, CD35) on the erythrocyte membrane. The PfRh4 attachment site lies within the three N-t...
Article
Full-text available
Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase uses the energy from ATP hydrolysis to remove tight binding inhibitors from Rubisco, thus playing a key role in regulating photosynthesis in plants. Although several structures have recently added much needed structural information for different Rubisco activase enzymes, the arrangement...
Article
Full-text available
Alzheimer's disease is the leading cause of dementia in the elderly. Pathologically it is characterized by the presence of amyloid plaques and neuronal loss within the brain tissue of affected individuals. It is now widely hypothesised that fibrillar structures represent an inert structure. Biophysical and toxicity assays attempting to characterize...
Data
Examples of the spread of data acquired by DLS Plotted are the two extremes of the data (smallest radii observed blue, largest distribution, orange) and the most commonly observed distribution for both HFIP (A) and NH4OH (B) treated Aβ (black). These datasets indicate that the HFIP is consistently distributed over a larger range of radii then the N...
Article
A membrane-embedded curdlan synthase (CrdS) from Agrobacterium is believed to catalyse a repetitive addition of glucosyl residues from UDP-glucose to produce the (1,3)-β-d-glucan (curdlan) polymer. We report wheat germ cell-free protein synthesis (WG-CFPS) of full-length CrdS containing a 6xHis affinity tag and either Factor Xa or Tobacco Etch Viru...
Article
Full-text available
The 155-kDa plasma glycoprotein factor H (FH), which consists of 20 complement control protein (CCP) modules, protects self-tissue but not foreign organisms from damage by the complement cascade. Protection is achieved by selective engagement of FH, via CCPs 1-4, CCPs 6-8 and CCPs 19-20, with polyanion-rich host surfaces that bear covalently attach...
Article
Full-text available
The urokinase-type plasminogen activator receptor (uPAR) provides a rendezvous between proteolytic degradation of the extracellular matrix and integrin-mediated adhesion to vitronectin. These processes are, however, tightly linked because the high affinity binding of urokinase regulates the binding of uPAR to matrix-embedded vitronectin. Although c...
Article
Full-text available
In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS) and dihydrodipicolinate reductase (DHDPR) catalyse the first two committed steps of lysine biosynthesis. H...
Data
Full-text available
Kinetics of At-DHDPR2. Panel A) HTPA was fixed at 0.15 mM, and NAD(PH concentrations were varied. Panel B) NAD(P)H concentrations were fixed at 0.16 mM and HTPA concentrations were varied. (PDF)
Data
Full-text available
Residuals resulting from the c(s) distribution best fits shown in Figure 2 plotted as a function of radius from the axis of rotation. A) Residuals for the best fit of the sedimentation velocity data for At-DHDPS2 at a concentration of 0.75 mg.mL−1. B) Residuals for the best fit of the sedimentation velocity data for At-DHDPR2 at concentrations of 0...
Data
Full-text available
Representative phylogenetic tree of DapB orthologues based on Hudson, 2005 [5] . (PDF)
Data
Full-text available
Kinetics of At-DHDPS2. Assays were carried out at varying concentrations of (S)-lysine (top panel), or varying concentrations of ASA and pyruvate (bottom panel). (PDF)
Data
Full-text available
Alignment of DHDPR structures. Helical regions are shown in blue and β-sheet regions are shown in red. (PDF)
Data
X-Ray scattering of At-DHDPR2. Data was collected and compared to the scattering calculated using CRYSOL for the monomer, β-10 dimer, β-8 dimer, and tetramer of Ec-DHDPR. (PDF)
Article
Genetically encoded FRET (Foerster resonance energy transfer) sensors are exciting tools in modern cell biology. Changes in the conformation of a sensor lead to an altered emission ratio and provide the means to determine both temporal and spatial changes in target molecules, as well as the activity of enzymes. FRET sensors are widely used to follo...
Article
Full-text available
The NuRD (nucleosome remodeling and deacetylase) complex serves as a crucial epigenetic regulator of cell differentiation, proliferation, and hematopoietic development by coupling the deacetylation and demethylation of histones, nucleosome mobilization, and the recruitment of transcription factors. The core nucleosome remodeling function of the mam...
Article
Full-text available
Complement receptor-type 1 (CR1, CD35) is the immune-adherence receptor, a complement regulator, and an erythroid receptor for Plasmodium falciparum during merozoite invasion and subsequent rosette formation involving parasitized and non-infected erythrocytes. The non-uniform geographical distribution of Knops blood group CR1 alleles Sl1/2 and McC(...
Data
Binding of CR1 constructs to C3b by SPR. Sensorgrams (left) (for a concentration series, see Methods in main text) and response (response units (RU)) versus concentration (M) plots (right) for, from top to bottom, CR1 15–17 (site 2), CR1 1–3 (site 1), CR1 15–25 (ER), CR1 15–25 (KG) and sCR1. The fitted (see Methods in main text) KD values (shown in...
Data
Binding of CR1 constructs to C4b by SPR. As for Figure S2 except C4b replaced C3b. (TIFF)
Data
Particle size distribution according to dynamic light scattering. Shown are overlays of dynamic light scattering-derived particle size profiles for the indicated recombinant CR1 fragments (see key). Data were collected using a Zetasizer Nano S system (Malvern Instruments Ltd., UK) on samples of ∼3.5 mg.ml−1 protein in phosphate-buffered saline at 2...
Data
Binding of CR1 constructs to C1q by SPR. As for Figure S2 except C1q replaced C3b. (TIFF)
Data
Binding of CR1 constructs to C3b and C4b by ELISA. There are no significant differences between the CR1 15–25 variants in terms of their ability to bind to C3b and C4b according to an ELISA (see Methods in main text). (TIFF)
Article
Full-text available
New developments in the program package ATSAS (version 2.4) for the processing and analysis of isotropic small-angle X-ray and neutron scattering data are described. They include (i) multiplatform data manipulation and display tools, (ii) programs for automated data processing and calculation of overall parameters, (iii) improved usage of high- and...

Network

Cited By