A FIXED POINT RESULT FOR BOYD-WONG CYCLIC CONTRACTIONS IN PARTIAL METRIC SPACES

HASSEN AYDI AND ERDAL KARAPINAR

Abstract. A fixed point theorem involving Boyd-Wong type cyclic contractions in partial metric spaces is proved. We also provide examples to support concepts and results presented herein.

1. Introduction and Preliminaries

Partial metric spaces were introduced by Matthews [22] to the study of denotational semantics of data networks. In particular, he proved a partial metric version of the Banach contraction principle [11]. Subsequently, many fixed points results on partial metric spaces were appeared, (see e.g. [2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 17, 18, 22, 23, 24, 26, 29, 31] for more details).

Throughout this paper, the letters \( \mathbb{R} \) and \( \mathbb{N}^* \) will denote the set of all real numbers and positive integers, respectively. We recall some basic definitions and fixed point results of partial metric spaces.

**Definition 1.** A partial metric on a non-empty set \( X \) is a function \( p: X \times X \to [0, \infty) \) such that for all \( x, y, z \in X \):

1. (p1) \( x = y \iff p(x, x) = p(x, y) = p(y, y) \),
2. (p2) \( p(x, x) \leq p(x, y) \),
3. (p3) \( p(x, y) = p(y, x) \),
4. (p4) \( p(x, y) \leq p(x, z) + p(z, y) - p(z, z) \).

A partial metric space is a pair \((X, p)\) such that \( X \) is a non-empty set and \( p \) is a partial metric on \( X \).

If \( p \) is a partial metric on \( X \), then the function \( d_p: X \times X \to [0, \infty) \) given by

\[
d_p(x, y) = 2p(x, y) - p(x, x) - p(y, y),
\]

is a metric on \( X \).

**Example 2.** (See e.g. [2, 15, 16, 22]) Consider \( X = [0, \infty) \) with \( p(x, y) = \max\{x, y\} \). Then \((X, p)\) is a partial metric space. It is clear that \( p \) is not a (usual) metric. Note that in this case \( d_p(x, y) = |x - y| \).

**Example 3.** (See e.g. [22]) Let \( X = \{[a, b] : a, b, c, d \in \mathbb{R}, a \leq b\} \) and define \( p([a, b], [c, d]) = \max\{b, d\} - \min\{a, c\} \). Then, \((X, p)\) is a partial metric space.

**Example 4.** (See e.g. [22, 13]) Let \( X := [0, 1] \cup [2, 3] \) and define \( p: X \times X \to [0, \infty) \) by

\[
p(x, y) = \begin{cases} 
\max\{x, y\} & \text{if } \{x, y\} \cap [2, 3] \neq \emptyset, \\
|x - y| & \text{if } \{x, y\} \subseteq [0, 1]. 
\end{cases}
\]

2000 Mathematics Subject Classification. 47H10,54H25.

Key words and phrases. generalized cyclic contractions, fixed point, partial metric space.
Then, \((X,p)\) is a complete partial metric space.

Each partial metric \(p\) on \(X\) generates a \(T_0\) topology \(\tau_p\) on \(X\) which has as a base the family of open \(p\)-balls \(\{B_p(x,\varepsilon), x \in X, \varepsilon > 0\}\), where \(B_p(x,\varepsilon) = \{y \in X : p(x,y) < p(x,x) + \varepsilon\}\) for all \(x \in X\) and \(\varepsilon > 0\).

**Definition 5.** Let \((X,p)\) be a partial metric space and \(\{x_n\}\) be a sequence in \(X\). Then

(i) \(\{x_n\}\) converges to a point \(x \in X\) if and only if \(p(x,x_n) = \lim_{n \to \infty} p(x,x_n)\),

(ii) \(\{x_n\}\) is called a Cauchy sequence if \(\lim_{n,m \to \infty} p(x_n,x_m)\) exists and is finite.

**Definition 6.** A partial metric space \((X,p)\) is said to be complete if every Cauchy sequence \(\{x_n\}\) in \(X\) converges, with respect to \(\tau_p\), to a point \(x \in X\), such that \(p(x,x_n) = \lim_{n \to \infty} p(x,x_n)\).

**Lemma 7.** (See e.g. [2, 15, 16]) Let \((X,p)\) be a partial metric space. Then

(a) \(\{x_n\}\) is a Cauchy sequence in \((X,p)\) if and only if it is a Cauchy sequence in the metric space \((X,d_p)\).

(b) \((X,p)\) is complete if and only if the metric space \((X,d_p)\) is complete. Furthermore, \(\lim_{n \to \infty} d_p(x_n,x) = 0\) if and only if

\[
p(x,x) = \lim_{n \to \infty} p(x,x_n) = \lim_{n,m \to \infty} p(x_n,x_m).
\]

**Lemma 8.** (See e.g. [2, 15, 16]) Let \((X,p)\) be a partial metric space. Then

(A) If \(p(x,y) = 0\) then \(x = y\).

(B) If \(x \neq y\), then \(p(x,y) > 0\).

**Remark 9.** If \(x = y\), \(p(x,y)\) may not be 0.

**Lemma 10.** (See e.g. [2, 15, 16]) Let \(x_n \to z\) as \(n \to \infty\) in a partial metric space \((X,p)\) where \(p(z,z) = 0\). Then \(\lim_{n \to \infty} p(x_n,y) = p(z,y)\) for every \(y \in X\).

Let \(\Phi\) be the set of functions \(\phi : [0,\infty) \to [0,\infty)\) such that

(i) \(\phi\) is upper semi-continuous, (that is, for any sequence \(\{t_n\}\) in \([0,\infty)\) such that \(t_n \to t\) as \(n \to \infty\), we have \(\limsup_{n \to \infty} \phi(t_n) \leq \phi(t)\)),

(ii) \(\phi(t) < t\) for each \(t > 0\).

Recently, Romaguera [27] obtained the following fixed point theorem of Boyd-Wong type [12].

**Theorem 11.** Let \((X,p)\) be a complete partial metric space and let \(T : X \to X\) be a map such that for all \(x,y \in X\)

\[
p(Tx,Ty) \leq \phi(M(x,y)),
\]

where \(\phi \in \Phi\) and

\[
M(x,y) = \max\{p(x,y), p(x,Tx), p(y,Ty), \frac{1}{2}[p(x,Ty) + p(y,Tx)]\}.
\]

(1.2)

Then \(T\) has a unique fixed point.

In 2003, Kirk, Srinivasan and Veeramani [20] introduced the following definition.
Definition 12. \[20\] Let \(X\) be a nonempty set, \(m\) a positive integer and \(T : X \to X\) be a mapping. \(X = \bigcup_{i=1}^{m} A_i\) is said to be a cyclic representation of \(X\) with respect to \(T\) if

(i) \(A_i, i = 1, 2, \cdots, m\) are nonempty closed sets.
(ii) \(T(A_1) \subset A_2, \cdots, T(A_{m-1}) \subset A_m, T(A_m) \subset A_1\).

Recently, fixed point theorems involving a cyclic representation of \(X\) with respect to a self mapping \(T\) have appeared in many papers (see e.g. \[1, 14, 25, 28, 30\]). Very recently, Abbas et al. \[1\] extends theorem 11 to a class of cyclic mappings and proved the following result, but with \(\phi \in \Phi\) to be a continuous map.

**Theorem 13.** Let \((X, p)\) be a complete partial metric space. Let \(m\) be a positive integer, \(A_1, A_2, \cdots, A_m\) be nonempty closed subsets of \((X, d_p)\) and \(Y = \bigcup_{i=1}^{m} A_i\). Let \(T : Y \to Y\) be a mapping such that

1. \(Y = \bigcup_{i=1}^{m} A_i\) is a cyclic representation of \(Y\) with respect to \(T\), and
2. there exists \(\phi : [0, \infty) \to [0, \infty)\) such that \(\phi\) is continuous and \(\phi(t) < t\) for each \(t > 0\), satisfying

\[p(Tx, Ty) \leq \phi(M(x, y)),\]

for any \(x \in A_i, y \in A_{i+1}, i = 1, 2, \cdots, m\), where \(A_{m+1} = A_1\), and \(M(x, y)\) is defined by \[1, 2\].

Then \(T\) has a unique fixed point \(z \in \cap_{i=1}^{m} A_i\).

In the following example, \(\phi \in \Phi\), but it is not continuous.

**Example 14.** Define \(\phi : [0, \infty) \to [0, \infty)\) by \(\phi(t) = \frac{t}{2}\) for all \(t \in [0, 1)\) and \(\phi(t) = \frac{n(n+1)}{(n+2)}\) for \(t \in [n, n+1), n \in \mathbb{N}^*\). Then \(\phi\) is upper semi-continuous on \([0, \infty)\) with \(\phi(t) < t\) for all \(t > 0\). However it is not continuous at \(t = n\) for all \(n \in \mathbb{N}\).

Following Example \[14\] the main aim of this paper is to present the analog of Theorem \[13\] for a weaker hypotheses on \(\phi\), that is, with \(\phi \in \Phi\). Our proof is simpler than in \[1\]. Also, some examples are given.

2. **Main Results**

Our main result is the following.

**Theorem 15.** Let \((X, p)\) be a complete partial metric space. Let \(m\) be a positive integer, \(A_1, A_2, \cdots, A_m\) be nonempty closed subsets of \((X, d_p)\) and \(Y = \bigcup_{i=1}^{m} A_i\). Let \(T : Y \to Y\) be a mapping such that

1. \(Y = \bigcup_{i=1}^{m} A_i\) is a cyclic representation of \(Y\) with respect to \(T\), and
2. there exists \(\phi \in \Phi\) such that

\[p(Tx, Ty) \leq \phi(M(x, y)),\] (2.1)

for any \(x \in A_i, y \in A_{i+1}, i = 1, 2, \cdots, m\), where \(A_{m+1} = A_1\), and \(M(x, y)\) is defined by \[1, 2\].

Then \(T\) has a unique fixed point \(z \in \cap_{i=1}^{m} A_i\).
Proof. Let \( x_0 \in Y = \bigcup_{i=1}^{m} A_i \). Consider the Picard iteration \( \{x_n\} \) given by \( T x_n = x_{n+1} \) for \( n = 0, 1, 2, \ldots \). If there exists \( n_0 \) such that \( x_{n_0+1} = x_{n_0} \), then \( x_{n+1} = T x_n = x_n \), and the existence of the fixed point is proved.

Assume that \( x_n \neq x_{n+1} \), for each \( n \geq 0 \). Having in mind that \( Y = \bigcup_{i=1}^{m} A_i \), so for each \( n \geq 0 \), there exists \( i_n \in \{1, 2, \ldots, m\} \) such that \( x_n \in A_{i_n} \) and \( x_{n+1} = T x_n \in T(A_{i_n}) \subseteq A_{i_{n+1}} \). Then, by (2.1)

\[
p(x_{n+1}, x_{n+2}) = p(T x_n, T x_{n+1}) \leq \phi(M(x_n, x_{n+1}))
\]

where

\[
M(x_n, x_{n+1}) = \max\{p(x_n, x_{n+1}), p(x_{n+1}, x_{n+2})\}
\]

\[
\frac{p(x_n, T x_{n+1}) + p(x_{n+1}, T x_n)}{2} = \max\{p(x_n, x_{n+1}), p(x_{n+1}, x_{n+2})\} \leq \max\{p(x_n, x_{n+1}), p(x_{n+1}, x_{n+2})\}
\]

Therefore,

\[
M(x_n, x_{n+1}) = \max\{p(x_n, x_{n+1}), p(x_{n+1}, x_{n+2})\} \quad \text{for all} \quad n \geq 0.
\]

If for some \( k \in \mathbb{N} \), we have \( M(x_k, x_{k+1}) = p(x_{k+1}, x_{k+2}) \), so by (2.2)

\[
0 < p(x_{k+1}, x_{k+2}) \leq \phi(p(x_{k+1}, x_{k+2}) < p(x_{k+1}, x_{k+2}),
\]

which is a contradiction. It follows that

\[
M(x_n, x_{n+1}) = p(x_n, x_{n+1}) \quad \text{for all} \quad n \geq 0.
\]

Thus, from (2.2), we get that

\[
0 < p(x_{n+1}, x_{n+2}) \leq \phi(p(x_{n+1}, x_{n+2}) < p(x_{n+1}, x_{n+2}).
\]

Hence, \( \{p(x_n, x_{n+1})\} \) is a decreasing sequence of positive real numbers. Consequently, there exists \( \gamma \geq 0 \) such that \( \lim_{n \to \infty} p(x_n, x_{n+1}) = \gamma \). Assume that \( \gamma > 0 \).

Letting \( n \to \infty \) in above inequality, we get using the upper semi-continuity of \( \phi \)

\[
0 < \gamma \leq \limsup_{n \to \infty} \phi(p(x_{n+1}, x_{n+2}) \leq \phi(\gamma) < \gamma,
\]

which is a contradiction, so that \( \gamma = 0 \), that is,

\[
\lim_{n \to \infty} p(x_n, x_{n+1}) = 0.
\]

By (1.1), we have \( d_p(x, y) \leq 2p(x, y) \) for all \( x, y \in X \), then from (2.5)

\[
\lim_{n \to \infty} d_p(x_n, x_{n+1}) = 0.
\]

Also, by (p2),

\[
\lim_{n \to \infty} p(x_n, x_n) = 0.
\]

In the sequel, we will prove that \( \{x_n\} \) is a Cauchy sequence in the partial metric space \( (Y = \bigcup_{i=1}^{m} A_i, p) \). By Lemma 7, it suffices to prove that \( \{x_n\} \) is Cauchy sequence in the metric space \( (Y, d_p) \). We argue by contradiction. Assume that \( \{x_n\} \) is not a Cauchy sequence in \( (Y, d_p) \). Then, there exists \( \varepsilon > 0 \) for which we can find subsequences \( \{x_{m(k)}\} \) and \( \{x_{n(k)}\} \) of \( \{x_n\} \) with \( n(k) > m(k) \geq k \) such that

\[
d_p(x_{n(k)}, x_{m(k)}) \geq \varepsilon.
\]
Further, corresponding to \( m(k) \), we can choose \( n(k) \) in such a way that it is the smallest integer with \( n(k) > m(k) \) and satisfying (2.8). Then

\[
d_p(x_{n(k)-1}, x_{m(k)}) < \varepsilon. \tag{2.9}
\]

Using (2.9) and the triangular inequality

\[
\varepsilon \leq d_p(x_{n(k)}, x_{m(k)}) \leq d_p(x_{n(k)}, x_{n(k)-1}) + d_p(x_{n(k)-1}, x_{m(k)}) < \varepsilon + d_p(x_{n(k)}, x_{n(k)-1}). \tag{2.10}
\]

Letting \( k \to \infty \) in (2.10) and using (2.6), we find

\[
\lim_{k \to \infty} d_p(x_{n(k)}, x_{m(k)}) = \varepsilon. \tag{2.11}
\]

On the other hand

\[
d_p(x_{n(k)}, x_{m(k)}) \leq d_p(x_{n(k)}, x_{n(k)+1}) + d_p(x_{n(k)+1}, x_{m(k)+1}) + d_p(x_{m(k)+1}, x_{m(k)}),
\]

\[
d_p(x_{n(k)+1}, x_{m(k)+1}) \leq d_p(x_{n(k)+1}, x_{n(k)}) + d_p(x_{n(k)}, x_{m(k)}) + d_p(x_{m(k)}, x_{m(k)+1}).
\]

Letting \( k \to +\infty \) in the two above inequalities and using (2.6), (2.11)

\[
\lim_{k \to +\infty} d_p(x_{n(k)+1}, x_{m(k)+1}) = \varepsilon. \tag{2.12}
\]

Similarly, we have

\[
\lim_{k \to +\infty} d_p(x_{n(k)}, x_{m(k)+1}) = \lim_{k \to +\infty} d_p(x_{m(k)}, x_{n(k)+1}) = \varepsilon. \tag{2.13}
\]

Also, by (1.1), (2.7) and (2.11)-(2.13), we may find

\[
\lim_{k \to \infty} p(x_{n(k)}, x_{m(k)}) = \lim_{k \to \infty} p(x_{n(k)}, x_{m(k)+1}) = \frac{\varepsilon}{2}, \tag{2.14}
\]

and

\[
\lim_{k \to \infty} p(x_{n(k)+1}, x_{m(k)+1}) = \lim_{k \to \infty} p(x_{m(k)}, x_{n(k)+1}) = \frac{\varepsilon}{2}. \tag{2.15}
\]

On the other hand, for all \( k \), there exists \( j(k), 0 \leq j(k) \leq p \), such that \( n(k) - m(k) + j(k) = 1(p) \). Then \( x_{n(k)-j(k)} \) (for \( k \) large enough, \( m(k) > j(k) \)) and \( x_{n(k)} \) lie in different adjacent labeled sets \( A_i \) and \( A_{i+1} \) for certain \( i = 1, \cdots, p \). Using the contractive condition (2.1), we get

\[
p(x_{n(k)+1}, x_{m(k)-j(k)+1}) = p(Tx_{n(k)}, Tx_{m(k)-j(k)}) \leq \phi(M(x_{n(k)}, x_{m(k)-j(k)})), \tag{2.16}
\]

where

\[
M(x_{n(k)}, x_{m(k)-j(k)}) = \max\{p(x_{n(k)}, x_{m(k)-j(k)}), p(x_{n(k)}, Tx_{n(k)}), p(x_{m(k)-j(k)}, Tx_{m(k)-j(k)}),
\]

\[
p(x_{n(k)}, Tx_{m(k)-j(k)}) + p(x_{m(k)-j(k)}, Tx_{n(k)})\}

\[
= \max\{p(x_{n(k)}, x_{m(k)-j(k)}), p(x_{n(k)}, x_{n(k)+1}), p(x_{m(k)-j(k)}, x_{m(k)-j(k)+1}),
\]

\[
p(x_{n(k)}, x_{m(k)-j(k)+1}) + p(x_{m(k)-j(k)}, x_{n(k)+1})\}

\[
2 \}

As (2.14) and (2.15), using (2.5), we may get

\[
\lim_{k \to \infty} p(x_{n(k)}, x_{m(k)-j(k)}) = \lim_{k \to \infty} p(x_{n(k)+1}, x_{m(k)-j(k)+1}) = \frac{\varepsilon}{2}, \tag{2.17}
\]

and

\[
\lim_{k \to \infty} p(x_{n(k)}, x_{m(k)-j(k)+1}) = \lim_{k \to \infty} p(x_{n(k)+1}, x_{m(k)-j(k)}) = \frac{\varepsilon}{2}. \tag{2.18}
\]
By (2.17) and (2.18), we get that
\[
\lim_{k \to \infty} M(x_{n(k)}, x_{m(k)-j(k)}) = \frac{\epsilon}{2}.
\] (2.19)

Letting \( n \to \infty \) in (2.16), we get using (2.17), (2.19) and the upper semi-continuity of \( \phi \)
\[
0 < \frac{\epsilon}{2} \leq \limsup_{k \to \infty} \phi(M(x_{n(k)}, x_{m(k)-j(k)})) \leq \phi \left( \frac{\epsilon}{2} \right) < \frac{\epsilon}{2}.
\]
which is a contradiction.

This shows that \( \{x_n\} \) is a Cauchy sequence in the complete subspace \( Y = \bigcup_{i=1}^m A_i \) equipped with the metric \( d_p \). Thus, there exists \( u = \lim_{n \to \infty} x_n \in (Y, d_p) \). Notice that the sequence \( \{x_n\}_{n \in \mathbb{N}} \) has an infinite number of terms in each \( A_i, i = 1, \ldots, m \), so since \( (Y, d_p) \) is complete, hence from each \( A_i, i = 1, \ldots, m \) one can extract a subsequence of \( \{x_n\} \) which converges to \( u \). Because the \( A_i, i = 1, \ldots, m \) are closed in \( (Y, d_p) \), it follows that
\[
u \in \bigcap_{i=1}^m A_i.
\]
Thus, \( \bigcap_{i=1}^m A_i \neq \emptyset \).

For simplicity, set \( A = \bigcap_{i=1}^m A_i \). Clearly, \( A \) is also closed in \( (Y, d_p) \), so it is a complete subspace of \( (Y, d_p) \) and then \( (A, p) \) is a complete partial metric space. Consider the restriction of \( T \) on \( A \), that is, \( T_A : A \to A \). Then, \( T_A \) satisfies the assumptions of Theorem [11] and thus \( T_A \) has a unique fixed point in \( Z \).

3. Examples

We give some examples illustrating our results.

**Example 16.** Let \( X = \mathbb{R} \) and \( p(x, y) = \max\{|x|, |y|\} \). It is obvious that \( (X, p) \) is a complete partial metric space.

Set \( A_1 = [-8, 0], A_2 = [0, 8] \) and \( Y = A_1 \cup A_2 = [-8, 8] \). Define \( T : T \to Y \) by
\[
Tx = \begin{cases} 
\frac{x}{4} & \text{if } x \in [-1, 1] \\
0 & \text{otherwise}
\end{cases}
\]

Notice that \( T([-8, -1]) = 0 \) and \( T([-1, 0]) = [0, \frac{1}{2}] \) and hence \( T(A_1) \subseteq A_2 \).
Analogously, \( T([-1, 1]) = 0 \) and \( T([0, 1]) = [-\frac{1}{2}, 0] \) and hence \( T(A_2) \subseteq A_1 \).

Take \( \phi(t) = \begin{cases} \frac{t}{4} & \text{if } t \in (0, 1) \\
\frac{n}{n+1} & \text{if } t \in [n, n+1), n \in \mathbb{N}^*
\end{cases} \)
Clearly, \( T \) satisfies the condition (2.1). Indeed:

**Case 1.** \( x \in [-8, -1) \) and \( y \in (1, 8] \). (2.4) turns into
\[
p(Tx, Ty) = \max\{0, 0\} = 0 \leq \phi(M(x, y)),
\] (3.1)
which is necessarily true.

**Case 2.** \( x \in [-8, -1) \) and \( y \in [0, 1] \). (2.4) becomes
\[
p(Tx, Ty) = \max\{0, \frac{|x|}{4}\} = \frac{|x|}{4} \leq \phi(M(x, y))
\]
\[
= \phi(\max\{p(x, y), p(x, Tx), p(Ty, y), \frac{1}{2}[p(x, Ty) + p(Tx, y)]\})
\]
\[
= \phi(\max\{|x|, |x|, |y|, \frac{1}{2}|x| + |y|\})
\]
\[
= \phi(|x|).
\]
It is clear that \( \frac{1}{2} \leq \phi(t) < 1 \) for all \( t > 1 \). Hence, the inequality (3.2) holds.
Case 3. $x \in [-1,0]$ and $y \in (1,8]$. (2.1) turns into
\[
p(Tx,Ty) = \max\{\frac{|x|}{4},0\} = \frac{|x|}{4} \leq \phi(M(x,y))
\]
\[
= \phi(\max\{p(x,y),p(x,Tx),p(Ty,y),\frac{1}{2}[p(x,Ty)+p(Tx,y)]\})
\]
\[
= \phi(\max\{|y|,|x|,|y|,\frac{1}{2}||x|+|y||})
\]
\[
= \phi(|y|) = \phi(y).
\]
which is true again by the fact that $\frac{1}{2} \leq \phi(t) < 1$ for all $t > 1$.

Case 4. $x \in [-1,0]$ and $y \in [0,1]$. (2.1) becomes
\[
p(Tx,Ty) = \max\{\frac{|x|}{4},\frac{|y|}{4}\} \leq \phi(M(x,y))
\]
\[
= \phi(\max\{p(x,y),p(x,Tx),p(Ty,y),\frac{1}{2}[p(x,Ty)+p(Tx,y)]\})
\]
\[
= \phi(\max\{|x|,|y|,|x|,\frac{1}{2}[\max\{\frac{|x|}{4},|y|\}+\max\{|x|,\frac{|y|}{4}\}])
\]
(3.4)

Let use examine all possibilities:
\[
p(Tx,Ty) = \begin{cases}
\frac{|x|}{4} & \text{if } |x| \geq |y| \\
\frac{|y|}{4} & \text{if } |y| \leq |x| \leq |y| \\
\frac{|x|}{4} & \text{if } |x| \leq |y| \\
\frac{|y|}{4} & \text{if } |x| \leq |y|
\end{cases}
\]
and $M(x,y) \leq \begin{cases}
|x| & \text{if } |x| \geq |y| \\
|y| & \text{if } |y| \leq |x| \leq |y| \\
|y| & \text{if } |x| \leq |y| \\
|y| & \text{if } |x| \leq |y|
\end{cases}$.

Thus, (2.1) holds for $\phi(t) = \frac{t}{4}$.

The rest of assumptions of Theorem 12 are also satisfied. The function $T$ has 0 as a unique fixed point.

However, since $\phi$ is not a continuous function, so we couldn’t apply Theorem 13.

Example 17. Let $X = [0,1]$ and $p(x,y) = \max\{x,y\}$ for all $x,y \in X$. Then $(X,p)$ is a complete partial metric space. Take $A_1 = \cdots = A_p = X$. Define $T : X \to X$ by $Tx = \frac{x}{2}$. Consider $\phi : [0,\infty) \to [0,\infty)$ given by Example 14.

For all $x,y \in X$, we have
\[
p(Tx,Ty) = \max\{\frac{x}{2},\frac{y}{2}\} = \phi(p(x,y)) \leq \phi(M(x,y)).
\]

Then all assumptions of Theorem 13 are satisfied. The function $T$ has 0 as a unique fixed point.

Similarly, Theorem 13 is not applicable.

References


Hassen Aydi,
Université de Sousse, Institut Supérieur d’Informatique et des Technologies de Communication de Hammam Sousse, Route GP1-4011, H. Sousse, Tunisie.

E-mail address: hassen.aydi@isima.rnu.tn

Erdal Karapınar,
Atılım University,
Department of Mathematics,06836, İncek, Ankara, Turkey

E-mail address: erdalkarapinar@yahoo.com
E-mail address: ekarapinar@atilim.edu.tr