Multiple indicators of age-related differences in cerebral white matter and the modifying effects of hypertension

S. Burgmans a,b, M.P.J. van Boxtel a,b, E.H.B.M. Gronenschild \textsuperscripts{a,b}, E.F.P.M. Vuurman b,c, P. Hofman \textsuperscripts{a,b,d}, H.B.M. Uylings \textsuperscripts{a,b,e}, J. Jolles \textsuperscripts{a,b,f}, N. Raz \textsuperscripts{a,g}

a Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
b European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
c Department of Radiology, University Hospital Maastricht, Maastricht, The Netherlands
d Department of Anatomy and Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
e AZIRE Research Institute, Faculty of Psychology and Education, VU University, Amsterdam, The Netherlands
f Institute of Gerontology, Wayne State University, 87 East Ferry St., Detroit, MI 48202, USA

\begin{abstract}
We investigated differences associated with age and hypertension, a common risk factor for vascular disease, in three aspects of white matter integrity — gross regional volumes of the white matter, volume of the white matter hyperintensities (WMH) and diffusion properties. We acquired MRI scans on 93 adult volunteers (age 50–77 years; 36 with diagnosis of hypertension or elevated blood pressure), and obtained all measures in seven brain regions: frontal, temporal, parietal and occipital white matter, and the genu, body and splenium of the corpus callosum. The results demonstrated robust age-related differences in diffusion-based indices of cerebral white matter integrity and age-related increase in the WMH volume, but no age differences in the gross regional volumes of the white matter. Hypertension was associated with decline in fractional anisotropy, and exacerbated age differences in fractional anisotropy more than those in the volume of WMH. These findings indicate that of all examined measures, diffusion-based indices of white matter integrity may be the most sensitive indicators of global and regional declines and vascular damage in the aging brain.
\end{abstract}

\begin{articleinfo}
Article history:
Received 22 July 2009
Revised 7 October 2009
Accepted 12 October 2009
Available online 19 October 2009

\end{articleinfo}

\section*{Introduction}

Advanced age is associated with substantial alterations of the cerebral white matter (Kemper, 1994; Raz and Kennedy, 2009), and age-related deterioration of the white matter integrity has been linked to declines in processing speed, memory, and executive functioning (Bucur et al., 2007; Burns et al., 2005; Gunning-Dixon and Raz, 2000; Raz et al., 2007; Sullivan and Pfefferbaum, 2006; Verdelho et al., 2007). There are multiple ways to assess white matter integrity in vivo, including macroscopic indices, such as the gross volume or the burden of white matter hyperintensities (WMH), and measures of microintegrity derived from examination of diffusion properties of the white matter.

Each of the described indices is characterized by a different shape of relationship to calendar age. White matter volume is smaller in children than in young adults (Lenroot and Giedd, 2006) but larger in middle-aged adults than in older persons (Bartzokis et al., 2004), with the prefrontal regions showing greater age-related shrinkage, especially under the influence of vascular risk factors (Raz and Rodrigue, 2006). White matter hyperintensities, which appear as bright regions on T2-weighted MRI scans, represent multiple types of vascular and cellular pathology, including arteriosclerotic and ischemic lesions, patches of demyelination, axonal loss, gliosis and expansion of perivascular spaces (De Leeuw et al., 2001; Pantoni and Garcia, 1997). Although present throughout the cerebral white matter, and increasingly so with age (De Leeuw et al., 2001; Raz and Kennedy, 2009), WMH may be more frequent and voluminous in the frontal lobe than elsewhere in the brain (Fazekas et al., 2005; Raz et al., 2003; Raz et al., 2007; Tullberg et al., 2004; Yoshita et al., 2006). Parietal and occipital WMH, which are relatively rare in healthy adults, may proliferate with an increase in cardiovascular risk (Artero et al., 2004; Raz et al., 2007; Yoshita et al., 2006).

Diffusion-tensor imaging (DTI) yields multiple indices of white matter microintegrity: apparent diffusion coefficient (ADC), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ_{axi}), and radial diffusivity (λ_{rad}). A decrease of FA with a concomitant increase in MD is interpreted as demyelination and axonal loss, whereas a decrease of FA without MD change is presumed to reflect Wallerian degeneration. In addition, reduced radial diffusivity has been primarily associated with demyelination, whereas increased axial
diffusivity is viewed as a reflection of axonal damage (Song et al., 2003; Song et al., 2005; Sun et al., 2006; Zhang et al., 2008). It is worth noting, however, that recent reports advise caution in interpreting variations in radial and axial diffusivity (Wheeler-Kingshott and Cercignani, 2009).

The extant literature on age-related differences in diffusion properties of the cerebral white matter suggests that advanced age is associated with reduced anisotropy (lower FA) and increased diffusivity in many white matter regions (Bhagat and Beaulieu, 2004; Chun et al., 2000; Deary et al., 2006; Furutani et al., 2005; Grieve et al., 2007; L. Huang et al., 2006; Pfefferbaum et al., 2005; Pfefferbaum and Sullivan, 2003; Pfefferbaum et al., 2000; Salat et al., 2005a; Salat et al., 2005b; Sullivan et al., 2001; Zhang et al., 2005). Although variability in region selection hampers comparison of DTI-based findings across studies, a relatively consistent finding is that the anterior regions of the brain, especially the genu of the corpus callosum, exhibit stronger negative age differences than in the posterior regions, such as the splenium (Abe et al., 2002; Ardekani et al., 2007; Bhagat and Beaulieu, 2004; Chepuri et al., 2002; Grieve et al., 2007; Head et al., 2004; Hugenschmidt et al., 2008; Kochunov et al., 2007; Madden et al., 2007; O'Sullivan et al., 2001; Ota et al., 2006; Pfefferbaum et al., 2005; Pfefferbaum et al., 2000; Salat et al., 2005b; Sullivan et al., 2001).

Although numerous studies have focused on age differences in each index of white matter integrity, only few examined the relationship among multiple measures. Two reports suggested that DTI may be the most sensitive imaging measure of age-related white matter damage (Hugenschmidt et al., 2008; Schiavone et al., 2009). However, another investigation found that age-related decline of diffusion-based indices was primarily explained by white matter atrophy and white matter lesion formation. That study concluded that age-related loss of white matter integrity is not part of the physiological aging process per se (Vernooij et al., 2008). Nonetheless, in a second study on the same sample (Vernooij et al., 2009), the authors concluded that in investigating the relationship between white matter integrity and cognition, diffusion-based measures might have an added value beyond macroscopical indices, such as regional volume and WMH. The implication is that differences in DTI-derived indices may reflect pathophysiological processes that differ from those expressed in white matter atrophy and WMH proliferation. Thus, the issue of relative importance of different indices of white matter integrity in detecting age differences remains unresolved and calls for a direct comparison of the abovementioned measures within a single sample.

Integrity of the cerebral white matter is negatively affected not only by age but also by vascular risk factors, such as hypertension (De Leeuw et al., 2001; Kennedy and Raz, 2009; Pantoni and Garcia, 1997; Raz, 2000), the prevalence of which increases with age (Franklin et al., 1997). In comparison to their normotensive peers, persons with hypertension evidence smaller prefrontal volumes and faster shrinkage of the prefrontal white matter (Raz et al., 2005; Raz et al., 2003), larger WMH burden (Goldstein et al., 2005; Hansens et al., 2009; Raz et al., 2007; Skoog, 1998; Van Boxtel et al., 2006), and lower anisotropy of white matter diffusivity (Huang et al., 2006; Kennedy and Raz, 2009). Thus, hypertension exacerbates age differences in white matter integrity, but it is unclear which, if any of those indices is the best in detecting the effects of vascular risk on the aging brain.

Because diffusion-based indices of white matter integrity reflect microstructural properties, whereas gross volume and WMH show the relatively global and cumulative effects of multiple influences, we hypothesized that DTI-derived measures would show the greatest age- and hypertension-related difference in the white matter. To test this hypothesis, we compared within a single sample three types of measures: regional white matter volumes, WMH, and four indices based on water diffusion in the white matter (fractional anisotropy, mean diffusivity, axial and radial diffusivity). This comparison, to the best of our knowledge, has never been done in studies of hypertension as a modifier of brain aging.

Materials and methods

Participants

The participants for this study were selected from the first wave of a longitudinal MRI study of 219 healthy community volunteers (aged 18–81 years) from the Metro Detroit area, who were recruited through advertisements in the local media and screened via a telephone interview and health questionnaire. The reasons for exclusion from the study were a history of cardiovascular, neurological and psychiatric conditions, head trauma with a loss of consciousness for more than 5 min, a history of alcohol and drug abuse, or a diagnosis of diabetes or thyroid disorder. The items used to screen for cardiovascular disease included an open question on any kind of diseases or complaints related to the heart or the large blood vessels as well as taking specific medications prescribed for treatment of cardiovascular conditions. The participants had corrected visual acuity of 20/50 or better (Optic 2000, Stereo Optic) and adequate hearing acuity (hearing threshold levels 40 dB or better for frequencies of 500–4000 Hz; Maico, MA27). To screen for dementia and depression we used the MMSE (Folstein et al., 1975) and the Center for Epidemiologic Studies Depression Scale (CES-D; Weissman et al., 1977). Only persons who scored 26 or higher on MMSE and 15 or below on CES-D were invited to participate. All participants provided written informed consent in accord with university and hospital review board guidelines.

For the present study that was focused on phenomena (e.g. WMH) that are rarely observed in younger adults, we selected 93 participants of fifty years of age and older (range: 50–77 years). Thirty-six participants were hypertensive. Thirty-one of these participants were hypertensive. Thirty-one of these participants were hypertensive, 24 of whom were hypertensive with a history of smoking. The remaining 57 participants were normotensive based on all available criteria. Healthy participants did not differ from the hypertensive group in age, sex, education and ethnicity (see Table 1).

Blood pressure measurement

To measure blood pressure we used a random zero mercury sphygmomanometer (BMS 12-S25) with a standard blood pressure cuff (Omron Professional). All measures were performed on the left arm with participants seated and the forearm positioned on the table. Trained laboratory technicians conducted the measurements. Blood pressure measures were obtained on three to four different occasions and averages of available measurements were used in the present study.

Image acquisition

Four series of MRI images were acquired on a 4 T MRI system (Bruker Biospin, Ettlingen, Germany) with an 8-channel RF coil. Magnetization-prepared rapid gradient echo (MPRAGE) T1-weighted images were acquired in the coronal plane with the following parameters: TR = 1600 ms, TE = 4.38 ms, TI = 800 ms, FOV = 256 × 256 mm², in plane resolution = 0.67 × 0.67 mm², slice thickness = 1.34 mm, matrix size = 384 × 384, number of slices = 176. Fluid-attenuated inversion recovery (FLAIR) images were acquired in...
the axial (horizontal) plane, with TR = 8440 ms, TE = 112 ms, T1 = 2200 ms, FA = 150°, FOV = 256 × 256 mm², contiguous slice thickness = 2 mm, matrix size = 256 × 256. A Turbo Spin-Echo (TSE) sequence was used to acquire 50 contiguous axial slices of Proton-density (PD)/T2-weighted images with TR = 3700 ms, TE = 19 ms/96 ms, FA = 150°, FOV = 256 × 256 mm², slice thickness = 2 mm, matrix size = 256 × 256. Diffusion Weighted Images (DTI) were acquired with the parameters TR = 4900 ms, TE = 79 ms, 6 diffusion directions, 10 averages, 41 slices, FOV = 256 × 256 mm², voxel size = 2 × 2 × 3 mm³, Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) acceleration factor 2. The MR images used in this study were free of pathological findings.

Image analyses

Before processing, we used the MNI software (Montreal Neurological Institute, Montreal, USA) to correct the T1-weighted and FLAIR images for magnetic field inhomogeneities (Sled et al., 1998). All analyses were performed in native space, with an exception for the T1-weighted images. The latter were transformed into standardized MNI space (see Fig. 1) via a linear transformation, which allowed transfer of the images and templates back into the native space (see Collins et al. (1994) for the linear transformation procedure). The DTI images were processed with the BrainVoyagerQX software, version 1.10 (Brain Innovation, Maastricht, The Netherlands) in native space.

For several post-processing steps (except for the DTI analysis) we used the custom software package GIANT, developed at the Maastricht School for Mental Health and Neuroscience (EHBMG; see Gronenschild et al. (2009) for more details). First, regions of interest (ROIs) were traced on the T1-weighted image of each participant. The second step consisted of three different image analyses: volumetric measures on the T1-weighted images, WMH measurements on the FLAIR images, and diffusion indices analysis on the DTI. At the third step, six outcome measurements were calculated within each ROI: volume of the white matter ROIs, volume of the WMH, and DTI-derived indices: mean FA, mean MD, mean λax and mean λrad. Fig. 1 provides a brief overview of all post-processing steps.

Region of interest analysis (Fig. 1, first row)

First, all T1-weighted images were transformed into standardized MNI space via a linear transformation, and an average brain was created out of 10 randomly selected brains. Second, an operator (SB) manually drew the contours of five regions of interest (ROIs) on the average brain, thus creating an average ROI template. Third, this average ROI template was mapped on the brains of all participants. As the ROI borders of this average template did not match completely the ROI borders of the individual brains, all borders were edited manually to ensure neuroanatomical correctness of the ROI demarcation. GIANT displayed the T1-weighted images in a triplanar view, together with a 3D rotational outer surface display, which facilitated accurate identification of the sulci. The editing was performed on coronal, axial and sagittal slices, depending on the ROI, which took about 4 h per brain. This process generated 93 individual ROI templates. Fourth, the individual ROI templates were transferred from standardized MNI space back into native space.

Demarcation of the ROIs (Fig. 2)

Corpus callosum

The corpus callosum was traced on 20 sagittal slices: 10 per hemisphere, starting from the mid-saggital slice. In each slice, the corpus callosum was divided into genu, body, and splenium according to a procedure depicted in Fig. 2 and based on the method described by Hofer and Frahm (Hofer and Frahm, 2006) and the callosal radiation map created by Huang and colleagues (Huang et al., 2005).

Frontal lobe

The posterior border was defined by the central sulcus and the ventral border by the lateral sulcus. In the white matter, a straight horizontal line was drawn on the axial plane (i.e. perpendicular to the longitudinal fissure) between the medial part of the central sulcus and the longitudinal fissure.

Parietal lobe

The anterior border was defined by the central sulcus and the ventral border by the corpus callosum, lateral ventricles, basal ganglia and lateral sulcus. The posterior border was defined medially by the parieto-occipital sulcus and laterally by several sulci (e.g. the anterior occipital sulcus) that connect the parieto-occipital sulcus with the pre-occipital notch.

Occipital lobe

The anterior border was medially defined by the parieto-occipital sulcus and ventrally by the pre-occipital notch. Laterally, the anterior border was defined by several sulci that connect the parieto-occipital sulcus with the pre-occipital notch.

Temporal lobe

The dorsal border was defined by the lateral sulcus and the posterior border by the occipital lobe.

The hemispheres were separated within each ROI (except for the corpus callosum) by a straight vertical line on the coronal plane. The outer surface of the ROIs was defined by the outer surface of the brain. For this purpose we used the FSL Brain Extraction Tool (Smith, 2002).

Table 1

Description of the sample.

<table>
<thead>
<tr>
<th>Variable; mean (SD) or %</th>
<th>Men</th>
<th>Women</th>
<th>P-values of group comparisons; calculated by ANOVA (A) or χ² tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normotensive</td>
<td>Hypertensive</td>
<td>Normotensive</td>
</tr>
<tr>
<td>Number of participants</td>
<td>25</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>Age</td>
<td>61.4 (7.7)</td>
<td>61.1 (8.4)</td>
<td>61.2 (7.8)</td>
</tr>
<tr>
<td>Caucasian race</td>
<td>58.0%</td>
<td>80.0%</td>
<td>75.0%</td>
</tr>
<tr>
<td>Hypertensive medication</td>
<td>0.0%</td>
<td>86.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Years of treatment</td>
<td>0.0 (0.0)</td>
<td>6.1 (5.0)</td>
<td>0.0 (0.0)</td>
</tr>
<tr>
<td>Systolic Blood Pressure</td>
<td>122.7 (9.3)</td>
<td>133.6 (13.0)</td>
<td>120.8 (10.4)</td>
</tr>
<tr>
<td>Diastolic Blood Pressure</td>
<td>74.4 (5.4)</td>
<td>81.5 (9.4)</td>
<td>73.1 (6.4)</td>
</tr>
<tr>
<td>MMSE</td>
<td>28.7 (1.2)</td>
<td>28.4 (1.1)</td>
<td>28.6 (1.0)</td>
</tr>
<tr>
<td>Intracranial volume</td>
<td>1469.0 (147.2)</td>
<td>1435.8 (186.3)</td>
<td>1325.3 (111.3)</td>
</tr>
</tbody>
</table>

*Note. Effects (of the continuous variables) were derived from the univariate ANOVA. Group differences (of the categorical variables) were evaluated by χ² tests. ** p < 0.01.*
which generated the inner-cranium contours. These contours were also used to calculate the intracranial volume (ICV) for each participant.

Volumetric image analysis (Fig. 1, second row)
The individual ROI templates were overlaid on the T1-weighted images in standardized MNI space. To segment the T1-weighted images into gray matter, white matter and cerebro-spinal fluid, we used the MNI software (Zijdenbos et al., 2002). All voxels that were recognized as white matter were selected within each ROI, which resulted in a segmented ROI template. Finally, the segmented ROI template was transformed back into native space. The ROIs were verified slice-by-slice, and all instances of suboptimal segmentation were corrected manually. Finally, the volumes of each white matter ROI were calculated. To test the reliability of this method, the operator (SB) performed the whole procedure twice on ten randomly selected brains. This procedure yielded high test–retest reliability for each ROI, with an intraclass correlation coefficients >0.90 (ICC, formula 1.1: one-way random effects, Shrout and Fleiss, 1979).

White matter hyperintensities (Fig. 1, third row)
To quantify the volumes of WMH on the FLAIR images we used a semi-automatic tool (GIANT). First, the algorithm was trained to classify WMH correctly. For this purpose, the image intensity scale of the FLAIR images was standardized (Nyul and Udupa, 1999). Next, five

Fig. 1. Overview of the post-processing steps.
FLAIR scans with a substantial amount of white matter lesions were selected and the white matter lesions in these stacks were traced manually. These manual tracings were used to derive parameters for the automatic classification of the WMH. Second, the actual quantification of WMH was performed semi-automatically. Axial FLAIR and T2-weighted images were displayed and aligned side by side on the computer monitor. This allowed visual inspection of the scan and easy identification of WMH. In each slice, a WMH was indicated manually by clicking in its region, thus generating a seed point and providing starting parameters for region growing. Manual corrections were performed when necessary. Finally, the total volume of the WMH within each ROI was calculated. The WMH quantification was performed twice on ten randomly selected brains by the same rater (SB), and yielded high test–retest reliability: intraclass correlation coefficient = 0.99 (ICC 1,1, Shrout and Fleiss, 1979).

Diffusion tensor imaging (Fig. 1, fourth row)

FA maps were generated from the DTI images by BrainVoyagerQX. The images were inspected for relevant motion artifacts, but none was found. Since DTI is very sensitive to data transformation, we minimized manipulations of the original scan data, and performed the analyses in the native space. Each DTI scan was aligned to the T1-image in native space and an FA map was calculated without applying smoothing filters. The mean FA values of the individual brains in native space were used for the statistical analyses. To isolate the white matter and to exclude the gray matter and CSF voxels, we applied a threshold of FA

\[FA > 0.20 \]

The accuracy of this white matter FA map was verified by visual inspection after overlaying the FA map on the T1-weighted image and evaluating its match to the white matter. Finally, the individual ROI template was overlayed on the FA map and the mean FA of each ROI was calculated. The same procedure was followed for the mean diffusivity (MD), axial diffusivity (λ₁), and radial diffusivity (λ₃) maps, except for the threshold (i.e., no additional threshold was applied to those maps).

Because representation of biophysical properties of the tissue by diffusion tensor eigenvalues may depend on the orientation of the principal eigenvector (Madden et al., 2009), we computed relative axial and radial diffusivity indices from the eigenvalues (λ₁, λ₂, and λ₃) of the estimated diffusion tensors. Relative axial diffusivity (AX) was calculated by the formula

\[AX = \frac{\lambda_1 - \lambda_3}{\lambda_1}, \]

creating a dimensionless index that was high for linear or prolate tensor shapes and representing diffusivity parallel to the primary fiber orientation. Relative radial diffusivity (RAD) was calculated by the formula

\[RAD = \frac{\lambda_2 - \lambda_3}{\lambda_1}, \]

as a dimensionless index with high values for planar or oblate tensor shapes reflecting diffusivity in the direction perpendicular to the white matter tract (Roebroeck et al., 2008; Westin et al., 2002).

Statistical analyses

For statistical analyses, we used the Statistical Package for Social Sciences (SPSS Inc, Chicago), version 15.0 for Windows. First, the descriptive statistics for the two groups were calculated. The effects of sex and hypertension on the continuous variables were assessed with univariate ANOVA under the General Linear Model (GLM) procedure. Group differences of the categorical variables were assessed with the χ² test. Second, the effects of age and hypertension were tested using multivariate ANOVA from the General Linear Model (GLM) menu. Six separate multivariate analyses were performed to evaluate age and hypertension effects in each ROI. Each multivariate analysis contained a different white matter indicator as the dependent variable in the GLM model: white matter volumes, white matter hyperintensities, FA values, MD values, AX values and RAD values. Sex was included as a categorical predictor in all analyses. White matter volumes were corrected for intracranial volume by including intracranial volume as covariate. To minimize collinearity, age and intracranial volume were centered at their sample means, thus setting the means of centered variables at 0. The age effects of WMH were assessed on the log-transformed WMH volumes because of leftward skew in the raw data. The statistical significance of all interactions involving the repeated measure (ROI) was corrected for violation of sphericity assumption via the Huynh–Feldt correction factor. The data were checked for normality, homogeneity of variances, and influential outliers. Finally,
Fig. 3. Age differences in multiple indices of integrity of the total cerebral white matter. Note that axial and radial diffusivities are relative indices (like functional anisotropy, FA), hence their association with age in the direction opposite to that of mean diffusivity.
non-linear (quadratic) effects were investigated by including centered terms for age and age\(^2\) within the same GLM.

Results

Sample characteristics

Table 1 displays the sample characteristics and the effects of hypertension and sex thereon. As expected, the blood pressure was significantly higher in the hypertensive participants compared to their normotensive counterparts, and most of the hypertensives used anti-hypertensive medication. The two groups did not differ with respect to age, education, ethnic composition, MMSE and intracranial volume. There were neither sex differences, nor sex \(\times\) hypertension interactions for any of the descriptors, except for intracranial volume, which was larger in men.

Associations between age and white matter measures

Tables 2A and 2B and Fig. 3 show the associations between age and white matter measures in the normotensive and hypertensive participants. Although there was a substantial effect of age on white matter integrity, the magnitude of that effect differed among the three types of indicators: volumes, hyperintensities and diffusion-based measure (see below). Whereas age effects on the WMH and DTI measures were robust and widespread, there were hardly any significant age differences in white matter volumes. We found no significant quadratic age effects. The variance of age did not differ between the hypertensive and normotensive participants: Levene's test for equality of variances.

Modifying influence of hypertension on white matter measures

The analyses presented in Tables 2A and 2B revealed significant effects of hypertension on the white matter volumes, WMH and FA. In addition, the observed significant hypertension \(\times\) age interaction effects on the WMH, FA and (to a smaller extent) relative radial diffusivity suggested a modifying influence of hypertension. The magnitude of the age \(\times\) hypertension interaction effect differed among the four indices of white matter integrity. For FA, the incremental addition of explained variance, \(\Delta R^2\) (R\(^2\) of the full model minus R\(^2\) of the model without interaction term), was 3.7%. In comparison, \(\Delta R^2\) was only 0.3% for the total white matter volume, 0.2% for the total WMH volume, and 0.3% for the total brain MD, with none significantly different from zero.

Although the ROI \(\times\) age \(\times\) hypertension interaction was not significant, the effect of hypertension appeared the strongest for the frontal lobe FA (effect of hypertension: \(F = 13.16, p < 0.001\); age \(\times\) hypertension interaction: \(F = 13.92, p < 0.001, \Delta R^2 = 9.4\%\)). As illustrated in Fig. 3, age-related differences (the slopes of regression estimating the rate of decline in FA as a function of increasing age) were greater for hypertensive than for normotensive participants. For hypertensives, the slope was \(b = -0.00089\), 95% confidence interval CI \([-0.00122; -0.00055]\), \(\beta = -0.69, p < 0.001\); for normotensives, the slope was \(b = -0.00039\), 95% CI \([-0.00068; 0.00010]\), \(\beta = -0.34, p = 0.010\). No significant interaction effects on the white matter volumes, MD and relative axial diffusivity were observed.

When regional FA measures were adjusted for the corresponding regional WMH and white matter volumes via covariance analysis, most of the age effects and age \(\times\) hypertension interactions remained significant. After introduction of WMH and white matter volume as covariates, only two age effects on FA were no longer significant: for the genu (\(F = 2.25, p = 0.138\)) and body (\(F = 1.12, p = 0.292\)) of the corpus callosum. In addition, the age \(\times\) hypertension interaction for the parietal lobe FA was rendered nonsignificant as well (\(F = 1.14, p = 0.289\)).

Associations among the indices of white matter integrity

The association among the four main indices of white matter integrity (volumes, hyperintensities, FA and MD) appear in Table 3. In summary, the FA measures correlated with nearly all MD measures, with the exception of the frontal lobe FA, where no significant correlation was found. The total brain and parietal lobe MD correlated with nearly all white matter volumes, with the exception of the frontal lobe volume. The total brain and parietal lobe FA correlated with nearly all white matter volumes, with the exception of the frontal lobe volume. The total brain and parietal lobe MD correlated with nearly all white matter volumes, with the exception of the frontal lobe volume.

Note

Effects of age and hypertension are from the multivariate General Linear Model (GLM). Volume = volume of white matter ROI in ml; WMH = volume of white matter hyperintensities in ml; FA = fractional anisotropy; CC = corpus callosum; FL = frontal lobe; PL = parietal lobe; OL = occipital lobe; TL = temporal lobe; F = F value; \(\Delta R^2\) = the incremental addition of explained variance after adding the interaction term to the model.

* \(p<0.05\).

** \(p<0.01\).
indicating that these two DTI indices were mutually dependent. However, most other correlations between the four indices were not significant, and the significant correlations were mostly small. Thus, as a rule, volumes, hyperintensities, and diffusion-based indices (FA and MD) were mutually independent or weakly associated at best. With regard to the four DTI outcome measures, we observed a decrease of the FA and an increase of the MD with advanced age. In addition, we found a slightly greater age-related decrease of axial diffusivity than radial diffusivity in all brain areas. The slope of the regression on age was steeper in axial diffusivity (β for total $= -0.60$) than in radial diffusivity (β for total $= -0.50$). A test for the equality of two dependent correlations demonstrated that the difference between the two slopes was significant: $r = 16.05, df = 90, p < 0.001$ (Williams, 1959).

Regional differences in white matter deterioration

The regional differences depended upon the selection of white matter integrity measure and on the presence of hypertension. Notably, there were no substantial differences between the left and right hemisphere (results not shown). The effect of hypertension seems to be the largest in the FA measure of the frontal lobe (effect of hypertension: $F = 13.16, p < 0.001$; age \times hypertension interaction: $F = 13.92, p < 0.001, \Delta R^2 = 9.4\%$). In addition, age effects on the corpus callosum FA were significantly stronger in the genu ($\beta = -0.00375, 95\% CI [-0.00584; -0.00167], \beta_{total} = -0.36; p = 0.001$) and body ($\beta = -0.00152, 95\% CI [-0.00232; -0.00072], \beta_{total} = -0.37; p < 0.001$) than in the splenium ($\beta = -0.00051, 95\% CI [-0.00146; 0.00044], \beta_{total} = -0.11; p = 0.286$) as indicated by a significant ROI \times age interaction in the full sample: $F(1,20) = 6.89, p = 0.007$.

Discussion

The main finding in the present study is that in detecting age-related deterioration of white matter, diffusion-based directional index of white matter integrity, FA, may be more sensitive than other measures, such as WMH burden and regional volume. Mean diffusivity increased with age, indicating general reduction in barriers to diffusion, regardless of direction. However, age-related differences in relative axial diffusivity exceeded those in relative radial diffusivity, although both significantly decreased with age. Thus, age-related deterioration of the white matter may be more likely to stem from axonal damage than from demyelination. The latter inference, however, has to be taken with caution, as the recent studies question the interpretation of radial and axial diffusivity parameters in the cerebral white matter (Wheeler-Kingshott and Cercignani, 2009). In addition to its stronger association with age, FA, in comparison to other indices of white matter integrity, also showed a greater modifying influence of hypertension on age-related differences, whereas MD evidenced no differences associated with hypertension. In contrast to FA, hypertensive participants showed increased WMH volume only in the parietal lobes, thus replicating previously reported pattern of increased posterior WMH burden in hypertension (Artero et al., 2004; Raz et al., 2007).

Most of the present findings are in accord with the extant findings of age-related variability in the cerebral white matter integrity, including the regional pattern of the differences (Abe et al., 2002; Burns et al., 2005; Goldstein et al., 2005; L. Huang et al., 2006; Raz et al., 2007; Salat et al., 2005a; Salat et al., 2005b; Van Boxtel et al., 2004). First, in agreement with a recent report (Vernooij et al., 2008), we observed no substantial differences between the left and right hemisphere. Second, in agreement with numerous reports (see Raz and Kennedy (2009) and Madden et al. (2009) for reviews), we found significantly greater age differences in the DTI indices for the genu of the corpus callosum in comparison to the splenium.

With regard to the etiology of white matter pathology, our comparison between the four DTI parameters suggests that white matter decline in normal brain aging reflects axonal loss and, to a lesser degree, demyelination. This contradicts several previous reports that found age-related differences primarily in radial
<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>Vr</th>
<th>Vp</th>
<th>Vo</th>
<th>Vl</th>
<th>Vgenu</th>
<th>Vbody</th>
<th>Vsplen</th>
<th>WMHr</th>
<th>WMHs</th>
<th>WMHe</th>
<th>WMHf</th>
<th>FAr</th>
<th>FAo</th>
<th>FAgenu</th>
<th>FAbody</th>
<th>FAsplen</th>
<th>MDr</th>
<th>MDp</th>
<th>MDh</th>
<th>MDf</th>
<th>MDspline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Vr</td>
<td>-0.114</td>
<td></td>
</tr>
<tr>
<td>Vp</td>
<td>0.201</td>
<td>0.759</td>
<td></td>
</tr>
<tr>
<td>Vo</td>
<td>0.078</td>
<td>0.782</td>
<td>0.679</td>
<td></td>
</tr>
<tr>
<td>Vl</td>
<td>-0.056</td>
<td>0.831</td>
<td>0.686</td>
<td>0.848</td>
<td></td>
</tr>
<tr>
<td>Vgenu</td>
<td>-0.142</td>
<td>0.642</td>
<td>0.691</td>
<td>0.566</td>
<td>0.617</td>
<td>0.547</td>
<td>0.611</td>
<td>0.477</td>
<td>0.737</td>
<td></td>
</tr>
<tr>
<td>Vbody</td>
<td>-0.249</td>
<td>0.547</td>
<td>0.611</td>
<td>0.477</td>
<td>0.737</td>
<td>0.163</td>
<td>0.624</td>
<td>0.688</td>
<td>0.547</td>
<td>0.792</td>
<td>0.804</td>
<td></td>
</tr>
<tr>
<td>Vsplen</td>
<td>-0.163</td>
<td>0.624</td>
<td>0.688</td>
<td>0.547</td>
<td>0.792</td>
<td>0.233</td>
<td>0.072</td>
<td>0.040</td>
<td>0.116</td>
<td>0.032</td>
<td>0.115</td>
<td>0.110</td>
<td>0.069</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMHr</td>
<td>0.210</td>
<td>0.057</td>
<td>0.042</td>
<td>0.159</td>
<td>0.038</td>
<td>0.017</td>
<td>0.122</td>
<td>0.121</td>
<td>0.027</td>
<td>0.059</td>
<td>0.191</td>
<td>0.245</td>
<td>0.307</td>
<td>0.122</td>
<td>0.246</td>
<td>0.768</td>
<td>0.360</td>
<td>0.070</td>
<td>0.076</td>
<td>0.005</td>
<td>0.035</td>
<td>0.072</td>
</tr>
<tr>
<td>WMHs</td>
<td>0.257</td>
<td>0.267</td>
<td>0.193</td>
<td>0.304</td>
<td>0.393</td>
<td>0.299</td>
<td>0.008</td>
<td>0.129</td>
<td>0.413</td>
<td>0.262</td>
<td>0.216</td>
<td>0.188</td>
<td>0.201</td>
<td>0.030</td>
<td>0.131</td>
<td>0.653</td>
<td>0.493</td>
<td>0.646</td>
<td>0.552</td>
<td>0.164</td>
<td>0.224</td>
<td>0.082</td>
</tr>
<tr>
<td>WMHe</td>
<td>0.357</td>
<td>0.129</td>
<td>0.080</td>
<td>0.176</td>
<td>0.188</td>
<td>0.201</td>
<td>0.030</td>
<td>0.131</td>
<td>0.653</td>
<td>0.493</td>
<td>0.646</td>
<td>0.552</td>
<td>0.164</td>
<td>0.224</td>
<td>0.082</td>
<td>0.493</td>
<td>0.646</td>
<td>0.552</td>
<td>0.164</td>
<td>0.224</td>
<td>0.082</td>
<td>0.493</td>
</tr>
<tr>
<td>WMHf</td>
<td>-0.552</td>
<td>0.164</td>
<td>0.224</td>
<td>0.082</td>
<td>0.493</td>
<td>0.646</td>
<td>0.552</td>
<td>0.164</td>
<td>0.224</td>
<td>0.082</td>
<td>0.493</td>
<td>0.646</td>
<td>0.552</td>
<td>0.164</td>
<td>0.224</td>
<td>0.082</td>
<td>0.493</td>
<td>0.646</td>
<td>0.552</td>
<td>0.164</td>
<td>0.224</td>
<td>0.082</td>
</tr>
<tr>
<td>FAo</td>
<td>-0.420</td>
<td>0.165</td>
<td>0.187</td>
<td>0.112</td>
<td>0.148</td>
<td>0.232</td>
<td>0.226</td>
<td>0.286</td>
<td>0.391</td>
<td>0.138</td>
<td>0.242</td>
<td>0.768</td>
<td>0.360</td>
<td>0.070</td>
<td>0.076</td>
<td>0.005</td>
<td>0.035</td>
<td>0.072</td>
<td>0.190</td>
<td>0.139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAgenu</td>
<td>-0.317</td>
<td>0.072</td>
<td>0.092</td>
<td>0.023</td>
<td>0.088</td>
<td>0.014</td>
<td>0.043</td>
<td>0.088</td>
<td>0.019</td>
<td>0.247</td>
<td>0.185</td>
<td>0.205</td>
<td>0.701</td>
<td>0.674</td>
<td>0.719</td>
<td>0.356</td>
<td>0.244</td>
<td>0.275</td>
<td>0.172</td>
<td>0.197</td>
<td>0.219</td>
<td></td>
</tr>
<tr>
<td>FAp</td>
<td>-0.356</td>
<td>0.244</td>
<td>0.275</td>
<td>0.172</td>
<td>0.197</td>
<td>0.310</td>
<td>0.100</td>
<td>0.209</td>
<td>0.227</td>
<td>0.081</td>
<td>0.174</td>
<td>0.221</td>
<td>0.328</td>
<td>0.313</td>
<td>0.235</td>
<td>0.347</td>
<td>0.321</td>
<td>0.422</td>
<td>0.262</td>
<td>0.100</td>
<td>0.446</td>
<td></td>
</tr>
<tr>
<td>MDf</td>
<td>-0.490</td>
<td>0.309</td>
<td>0.071</td>
<td>0.051</td>
<td>0.066</td>
<td>0.010</td>
<td>0.209</td>
<td>0.227</td>
<td>0.081</td>
<td>0.174</td>
<td>0.221</td>
<td>0.328</td>
<td>0.313</td>
<td>0.235</td>
<td>0.347</td>
<td>0.321</td>
<td>0.422</td>
<td>0.262</td>
<td>0.100</td>
<td>0.446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDp</td>
<td>-0.540</td>
<td>0.053</td>
<td>0.084</td>
<td>0.050</td>
<td>0.050</td>
<td>0.101</td>
<td>0.008</td>
<td>0.278</td>
<td>0.227</td>
<td>0.145</td>
<td>0.216</td>
<td>0.363</td>
<td>0.362</td>
<td>0.334</td>
<td>0.217</td>
<td>0.263</td>
<td>0.263</td>
<td>0.451</td>
<td>0.325</td>
<td>0.092</td>
<td>0.838</td>
<td></td>
</tr>
<tr>
<td>MDh</td>
<td>0.637</td>
<td>0.173</td>
<td>0.126</td>
<td>0.019</td>
<td>0.001</td>
<td>0.074</td>
<td>0.295</td>
<td>0.238</td>
<td>0.186</td>
<td>0.217</td>
<td>0.326</td>
<td>0.338</td>
<td>0.410</td>
<td>0.258</td>
<td>0.358</td>
<td>0.289</td>
<td>0.512</td>
<td>0.474</td>
<td>0.168</td>
<td>0.648</td>
<td>0.831</td>
<td></td>
</tr>
<tr>
<td>MDf</td>
<td>0.646</td>
<td>0.001</td>
<td>0.038</td>
<td>0.529</td>
<td>0.001</td>
<td>0.137</td>
<td>0.054</td>
<td>0.265</td>
<td>0.162</td>
<td>0.223</td>
<td>0.329</td>
<td>0.423</td>
<td>0.439</td>
<td>0.476</td>
<td>0.422</td>
<td>0.457</td>
<td>0.424</td>
<td>0.412</td>
<td>0.409</td>
<td>0.156</td>
<td>0.714</td>
<td>0.786</td>
</tr>
<tr>
<td>MDspline</td>
<td>0.582</td>
<td>0.142</td>
<td>0.212</td>
<td>0.066</td>
<td>0.060</td>
<td>0.216</td>
<td>0.413</td>
<td>0.272</td>
<td>0.197</td>
<td>0.275</td>
<td>0.084</td>
<td>0.222</td>
<td>0.465</td>
<td>0.418</td>
<td>0.352</td>
<td>0.272</td>
<td>0.438</td>
<td>0.397</td>
<td>0.082</td>
<td>0.452</td>
<td>0.489</td>
<td></td>
</tr>
<tr>
<td>MDsplen</td>
<td>0.482</td>
<td>0.021</td>
<td>0.065</td>
<td>0.035</td>
<td>0.032</td>
<td>0.114</td>
<td>0.350</td>
<td>0.192</td>
<td>0.128</td>
<td>0.197</td>
<td>0.201</td>
<td>0.266</td>
<td>0.197</td>
<td>0.192</td>
<td>0.255</td>
<td>0.143</td>
<td>0.421</td>
<td>0.490</td>
<td>0.089</td>
<td>0.453</td>
<td>0.555</td>
<td></td>
</tr>
<tr>
<td>MDspline</td>
<td>0.458</td>
<td>0.158</td>
<td>0.273</td>
<td>0.099</td>
<td>0.170</td>
<td>0.203</td>
<td>0.304</td>
<td>0.368</td>
<td>0.131</td>
<td>0.120</td>
<td>0.178</td>
<td>0.218</td>
<td>0.445</td>
<td>0.357</td>
<td>0.352</td>
<td>0.302</td>
<td>0.563</td>
<td>0.415</td>
<td>0.125</td>
<td>0.428</td>
<td>0.508</td>
<td></td>
</tr>
</tbody>
</table>

Note. V = volume of white matter ROI; WMH = volume of white matter hyperintensities; FA = fractional anisotropy; MD = mean diffusivity; F = frontal lobe; P = parietal lobe; O = occipital lobe; T = temporal lobe; genu = genu of the corpus callosum; body = body of the corpus callosum; splen = splenium of the corpus callosum; |r| > 0.207 were significant at p < 0.05; |r| > 0.270 were significant at p < 0.01.
diffusivity, and inferred that demyelination, and not axonal damage dominate the aging of the cerebral white matter (Bhagat and Beaulieu, 2004; Madden et al., 2009; Zhang et al., 2008). However, in accord with our findings, several recent studies reported age-related differences in both axial and radial diffusivity (Sullivan et al., in press; Vernooij et al., 2008; Zahr et al., 2009), thus indicating the presence of axial changes along with alterations in the myelin sheath (Paus, 2009). A recent review of the extant DTI studies revealed a complex pattern of age differences in radial and axial diffusivity with some regions exhibiting age-related differences in axial, others in radial, and yet others — in both diffusivity indices (see Madden et al., 2009).

A possible explanation of such inter-study variability is that diffusivity changes represent a dynamic process that may vary across region, subject and time intervals. Thus, the etiology behind age-related differences in diffusion-based indices of white matter integrity remains to be elucidated. Moreover, it is unlikely that DTI-based measures of axial and radial diffusivity are specific enough to distinguish axon- and myelin-related processes (Paus, 2009; Wheeler-Kingshott and Cercignani, 2009), and we must interpret the neurobiological implications of DTI findings with due caution.

We found no substantial age differences in the white matter volume. The literature on that topic is inconsistent (see Raz, 2000 and Raz and Kennedy, 2009 for reviews). White matter volume exhibits highly nonlinear trajectories of aging and development (Bartzokis et al., 2004; Lenroot and Giedd, 2006). Moreover, in cross-sectional studies, such as the present one, some regions may show smaller effects or greater individual differences confounded with age (e.g., Raz et al., 2005). Thus, the likelihood of finding age differences in white matter volume may depend on multiple factors: the age range of the sample, the precision of regional demarcation, and presence of vascular risk. As we observed, nonetheless, age differences with WMH and DTI-based measures, it is plausible that in the middle-age and late adulthood, volumetric white matter measures are less sensitive to mild white matter deterioration than are WMH and DTI indices. An intriguing question of whether white matter shrinkage and formation of WMH lesions precede or follow microstructural deterioration can be answered only in a longitudinal study.

The anisotropic structure of the white matter is not preserved in the WMH (Vernooij et al., 2009), and one would expect that heavier WMH burden would be associated with lower FA. However, our findings do not support the conclusion that nearly all age differences in regional white matter integrity can be explained by white matter atrophy and white matter lesions (Vernooij et al., 2008), and our results are in accord with a recent report of only partial association between WMH and FA (Kennedy and Raz, 2009). Although the extent of WMH burden accounted for some of the age differences in FA, most of age differences in FA were still significant after correction for WMH and white matter volume. Notably, in some regions, such as the corpus callosum, substantial age differences in FA were observed in the absence of local WMH, but were attenuated by accounting for WMH in the hemispheric regions presumably connected by the relevant callosal fibers. In general, the associations between FA and WMH or volume were weak or nonsignificant. We can speculate that diffusion-based indices of white matter integrity reflect earlier or more subtle age-related changes than coarser measures such as WMH and volumes do. Alternatively, deterioration of the hemispheric white matter (WMH) may cause changes in microintegrity of the connecting white matter (corpus callosum).

Interpretations of the findings presented here are bound by several limitations. First, although DTI-based indices, such as FA are useful indicators of white matter integrity, one should bear in mind that they might reflect particular structural properties of intact white matter in regions with high variation in directionality, i.e. multiple crossing and “kissing” fibers (Madden et al., 2009). Second, the sample size could be too small to reveal subtle but significant age differences in the white matter volumes. Third, age-related differences in white matter volume may be limited to specific locales, and the analytic methods employed in this study were too coarse to detect such associations. Finally, the cross-sectional design precludes assessment of actual age changes or causality. Therefore, we could not, for instance, evaluate the temporal order of white matter shrinkage, formation of WMH lesions, and microstructural deterioration.

In conclusion, the results of this study suggest that DTI-based indices of white matter integrity are more sensitive for detecting age-related vulnerability and the modifying influence of vascular risk on brain aging than measures of white matter volume and WMH burden. Thus, assessment of regional diffusion properties is a good candidate for an outcome measure in evaluation of interventions aimed at alleviating age-related declines.

Acknowledgments

We thank Kristen Kennedy, Karen Rodrigue, Cheryl Dahle, Andrew Bender, Awanitka Deshmukh, Yiqin Yang, and Peng Yuan, Wayne State University (Detroit, MI), for preparation of the MRI images and Pim Pullens, Maastricht University (Netherlands), for his help in DTI analyses. We also thank Claude Lepage (MNI) for his assistance in the use of the MNI software. The study was supported by a National Institutes of Health grant R37 AG-011230 to NR.

References

