From Mean Field Interaction to Evolutionary Game Dynamics

Hamidou Tembine, Jean-Yves Le Boudec, Rachid ElAzouzi, Eitan Altman
LCA, Ecole Polytechnique Federale de Lausanne
LIA/CERI, University of Avignon
MAESTRO Group, INRIA

POPEYE Meeting, April 2009
Plan

1. Model
2. Mean field limit
 - Convergence in probability
 - Mean field dynamics
 - Connection to evolutionary game dynamics
3. Evolutionary stability
 - Existence of equilibria
4. Population dynamics
 - Particular class of games
 - Unstable equilibria, Survival of dominated strategies
5. Ongoing work
Mean Field Interactions (MFI)

Random selection among finite number players (Fast Simulation)
Mean Field Interactions (MFI)

Random selection among finite number players (Fast Simulation)

- A player is typically a node, mobile terminal; an agent, a firm; an animal or a virus etc. Each player has its own type θ and selects an action $a \in A_\theta$.

Mean Field Interactions (MFI)

Random selection among finite number players (Fast Simulation)

- A player is typically a node, mobile terminal; an agent, a firm; an animal or a virus etc. Each player has its own type θ and selects an action $a \in A_\theta$,

- Meeting: At time t, with some probability, k players are randomly selected from N players for an encounter.
Mean Field Interactions (MFI)

Random selection among finite number players (Fast Simulation)

- A player is typically a node, mobile terminal; an agent, a firm; an animal or a virus etc. Each player has its own type θ and selects an action $a \in A_\theta$.
- Meeting: At time t, with some probability, k players are randomly selected from N players for an encounter.

Evolutionary games with random number of players
Mean Field Interactions (MFI)

Random selection among finite number players (Fast Simulation)

- A player is typically a node, mobile terminal; an agent, a firm; an animal or a virus etc. Each player has its own type θ and selects an action $a \in A_\theta$.
- Meeting: At time t, with some probability, k players are randomly selected from N players for an encounter.

Evolutionary games with random number of players

- Large population. At each time, there are several local interactions among random number of players.
Mean Field Interactions (MFI)

Random selection among finite number players (Fast Simulation)

- A player is typically a node, mobile terminal; an agent, a firm; an animal or a virus etc. Each player has its own type \(\theta \) and selects an action \(a \in A_\theta \).
- Meeting: At time \(t \), with some probability, \(k \) players are randomly selected from \(N \) players for an encounter.

Evolutionary games with random number of players

- Large population. At each time, there are several local interactions among random number of players.
- The population profile evolves according to some evolutionary process, learning process, adaptive process, optimization process etc.
Aims

- Evolution of the population profile of "type-action" $M^N(t)$
- Convergence to mean field when the population size grows
 - Study of the random process $M^N = \frac{1}{N} \sum_j \delta_{S_j^N}$
 - Asymptotics of $M^N_s(t) = \frac{1}{N} \sum_j \delta\{S_j^N(t) = s\}$ when t goes to $+\infty$.
 - Asymptotics of $M^N(t)$ when N goes to $+\infty$.
- ODE of $m(t) := \lim_{N \to \infty} M^N(t)$ (or accumulation point, ω-limits etc)
- From mean field interactions to population dynamics
- Evolutionary stability and equilibria
Mean Field Interactions (description)

Let $S = \{ (\theta, a), a \in A_\theta \}$ be the set of "type-actions". Assume S finite. After an encounter between k players in $\mathcal{B}_N(t)$ (random set), the variation of the population profile $M^N(t) \leftrightarrow M^N(t + \Delta_N)$. The player $j \in \mathcal{B}_N(t)$ receives an instantaneous cost $C^{N,\theta_j}(S^N_j(t), S^N_{\mathcal{B}_N \setminus j}(t))$.

New states

$S^N_j(t + \Delta_N)$ is drawn according to

$L^N_{\theta_j} (\cdot | S^N_j(t), S^N_{\mathcal{B}_N \setminus j}(t), j \in \mathcal{B}_N)$.

Drift

$f^N(m) := \mathbb{E} (M^N(t + \Delta_N) - M^N(t) | M^N(t) = m, \mathcal{B}^N(t + \Delta_N))$
Non-commutative diagram?

\[
\begin{align*}
M^N(t) & \xrightarrow{t \to +\infty} \omega^N \\
N & \xrightarrow{t \to +\infty} +\infty \\
m(t) & \xrightarrow{t \to +\infty} ?
\end{align*}
\]
Let

\[J_{k_1,\ldots,k_\Theta}(m) := \mathbb{P}(\#B_\Theta^N(t + \Delta_N) = k_\theta, \ \theta = 1, \ldots, \Theta \mid M^N(t) = m) \]

Assumption 1:

\[\forall m, \sum_k (k_1 + \ldots + k_\Theta)^2 J_{k_1,\ldots,k_\Theta}(m) < \infty \]

\[C^N \rightarrow C, \ L^N \rightarrow L, \ \Delta_N \rightarrow 0 \]

Result

(i) \(\frac{1}{\Delta_N} f^N \rightarrow f \). (ii) Under assumption 1, the random process \(M^N = \frac{1}{N} \sum_j \delta^N_{S_j} \) converges weakly (in Skorokhod topology) to a deterministic measure.
Sketch of Proof: Convergence of marginal measures

Extend \tilde{M}^N to continuous time

$$\tilde{M}^N(t) = \tilde{M}^N \left(\frac{\lfloor Nt \rfloor}{N} \right).$$

Define the filtration $\mathcal{F}_k = \sigma(S_1^N(t), \ldots, S_N^N(t), t \leq k)$. $\phi = [\phi_1, \ldots, \phi_d]$ a bounded measurable function.

$$w^N(t) = \tilde{M}^N(t)) - \tilde{M}^N(0) - \sum_{k=0}^{Nt-1} f^N(\tilde{M}^N(\frac{k}{N})).$$

Then, w^N is a martingale.
Sketch of Proof: Convergence of marginal measures

\[
\tilde{M}_x^N(t) - \tilde{m}_x(t) = \tilde{M}_x^N(0) - \tilde{m}_x(0) + \sum_{k=0}^{Nt-1} f_x^N(\tilde{M}_x^N\left(\frac{k}{N}\right)) - \int_0^t f_x(\tilde{m}(\tau)) d\tau
\]

By the convergence of Darboux approximation of the Riemann integral term, \(\frac{1}{N} \sum_{k=0}^{Nt-1} f_x(u, \tilde{M}_x^N(\frac{k}{N})) - \int_0^t f_x(\tilde{m}(\tau)) d\tau\) is bounded by \(C' \frac{1}{N}\) for some \(C'\). By, Lipschitz continuity:

\[
\| \tilde{M}_x^N(t) - \tilde{m}(t) \| \leq \| \tilde{M}_x^N(0) - \tilde{m}(0) + w^N(t) \| + K \int_0^t \| \tilde{M}_x^N(\tau) - \tilde{m}(\tau) \|
\]
Sketch of Proof: Convergence of marginal measures

By Gronwall’s inequality,

\[\| \tilde{M}^N(t) - \tilde{m}(t) \| \leq [\| \tilde{M}^N(0) - \tilde{m}(0) + w^N(t) \| + \frac{Kt}{N}] e^{Kt} \]

\[\sup_{0 \leq t \leq T} \| \tilde{M}^N(t) - \tilde{m}(t) \| \leq [\| \tilde{M}^N(0) - \tilde{m}(0) \| + \sup_{0 \leq t \leq T} \| w^N(t) \| + \frac{KT}{N} \]

By Doob’s inequality one has

\[\mathbb{E} \left[\left(\sup_{0 \leq t \leq T} \| w^N(t) \| \right)^2 \right] \leq 4 \mathbb{E}([w^N]_T) \]

\([w^N]_T : \text{total variation of the martingale } w^N \]

\[[w^N]_T = \sum_{t=0}^{Nt-1} \| \tilde{M}^N \left(\frac{k+1}{N} \right) - \tilde{M}^N \left(\frac{k}{N} \right) - f^N(\tilde{M}^N \left(\frac{k}{N} \right)) \| \leq \frac{Ct}{N} . \]
\[
D^{T,N}[m_0] := \sup_{t \in [0,T]} \max_{\theta, a} |\tilde{M}^N_{\theta, a}(t) - \tilde{m}^N[m_0]_{\theta, a}(t)|
\]

the maximal deviation in any population profile, from the flow induced by \(\bar{f}^N(\tilde{m})\) through \(m_0\), during \([0, T]\) where \(\tilde{m}^N[m_0]\) is the solution of the ODE

\[
\begin{cases}
\frac{d}{dt} \tilde{m}^N(t) = f^N(\tilde{m}^N(t)) \\
\tilde{m}^N(0) = m_0
\end{cases}
\]

(existence and uniqueness of \(\tilde{m}^N[m_0]\) follows from Picard-Lindelöf).

\[
\bar{D}^{T,N}[m_0] := \sup_{t \in [0,T]} \max_{\theta, a} |\tilde{M}^N_{\theta, a}(t) - m[m_0]_{\theta, a}(t)|
\]

maximal deviation from the flow induced by \(\bar{f}(m)\) through \(m_0\), during \([0, T]\).
Sketch of Proof: Convergence of marginal measures

\[M^N(t) := \frac{1}{N} \sum_{j=1}^{N} \delta_{S_j^N(t)} \]

Martingale + Legendre’s transformation + Gronwall’s inequality

Convergence to deterministic distribution

For every \(\tau > 0 \) there exists a constant \(C \) such that for every \(\epsilon > 0 \) and \(N \) large enough one has

\[
P \left(\sup_{0 \leq \tau \leq T} \| M^N(\tau) - m(\tau) \| > \epsilon \mid M^N(0) = m_0 \right) \leq 2de^{-\epsilon^2 CN}
\]

for all \(m_0 \in \Delta_d \),
Convergence of random measure in càdlàg function spaces

The random measure $\frac{1}{N} \sum_{j=1}^{N} \delta_{S_j^N}$ with marginal $\frac{1}{N} \sum_{j=1}^{N} \delta_{S_j^N(t)}$ converges (when $N \to \infty$) to a deterministic measure (solution of ODE) under mild assumptions on the expected number of interacting players that changes action at the same time and asymptotic indistinguishability a.

a. This condition is weaker than anonymity.

Sketch of Proof

\[M^N := \frac{1}{N} \sum_{j=1}^{N} \delta_{S_j^N} \]

Continuous, bounded functions \(\phi_l \)

\[\lim_{N \to \infty} E\left(\prod_l \phi_l(S_l^N) \right) = ? \]

Snitzman’s theorem, Pair of type-state

\[\lim_{N \to \infty} E[\phi(S_j^N)\phi(S_i^N)] = \phi(m_{\theta_i})\phi(m_{\theta_j}), \quad \frac{1}{N} \sum_{j=1}^{N} E[\phi(S_j^N)] \to \phi(m). \]

Derivation + Holder’s inequality

\[\lim_{N \to \infty} E \left[\phi(M^N) - \phi(m) \right]^2 = 0. \]
The mean field interaction is asymptotically equivalent to an evolutionary game

When N goes to infinity, the mean field interaction model with random set $B^N(t)$ of players is equivalent to an evolutionary game a in which a local interaction at time t is described by

- each player is facing a population profile $m(t)$,
- the instantaneous expected cost of a player with the type θ and action a is

$$C_\theta^a(m(t)) := \lim_{N \to \infty} C_{a}^{N,\theta} (M^N(t)|S^N_j(t) = (\theta, a), M^N(t) = m(t))$$

a. Notice that players are not necessarily using the same strategies.
A class of evolutionary dynamics (homogenous population)

- revision of strategies: \(L, \)

\[
f(m) = \sum_{k \geq 1} J_k(m) \sum_{a_1',...a_k'} \sum_{a_1,...,a_k} \left(\prod_{l=1}^{k} m_{a_l} \right) \times \]

\[
L_{a;a'}(m, k) \left(\sum_{l=1}^{k} (\vec{e}_{a_l'} - \vec{e}_{a_l}) \right)
\]

- evolution of system’s state, ODE: \(\frac{d}{dt} m(t) = f(m(t)) \).

For \(B^N(t) \leftrightarrow \delta_1 \) we obtain

\[
\frac{d}{dt} m_a(t) = \sum_{a' \in A} L_{a'a}(m(t))x_a(t) - m_a(t) \sum_{a' \in A} L_{aa'}(m(t))
\]
Evolutionary game dynamics (I)

Setting
- **BNN**: Brown and von Neumann (1950), Nash (1951)
- **Replicator**: Taylor & Jonker (1978)
- **Smith dynamics**: Smith (1984)

Differential equation
- \[\dot{m}_a^\theta = g_a^\theta(m) - m_a^\theta \sum_{a' \in A_\theta} g_{a'}^\theta(m) \]
- \[g_a(m) = \max(0, -C_a^\theta(m) + \sum_{a' \in A_\theta} m_{a'}^\theta C_{a'}^\theta(m)) \]
- \[\dot{m}_a^\theta = m_a^\theta \left[-C_a^\theta(m) + \sum_{a' \in A_\theta} m_{a'}^\theta C_{a'}^\theta(m) \right] \]
- \[\dot{m}_a^\theta = \sum_{a' \in A_\theta} m_{a'}^\theta \max(0, -C_a^\theta(m) + C_{a'}^\theta(m)) - m_a^\theta \sum_{a' \in A_\theta} \max(0, C_{a'}^\theta(m) - C_a^\theta(m)) \]
Evolutionary game dynamics (II)

Origin
- Fictitious play: Brown (1951), Gilboa & Matsui (1991),

Dynamics

\[
\dot{m}_\theta(t) \in BR_\theta(m(t)) - m_\theta(t)
\]

\[
\dot{y}(t) \in \frac{1}{t}BR(y(t)) - y(t),
\]

\[
y(t) = \left(\frac{1}{t} \int_0^t m_1(\tau) \, d\tau, \frac{1}{t} \int_0^t m_2(\tau) \, d\tau \right)
\]

\[
m_\alpha^\theta(t) = \frac{e^{-C_\alpha^\theta(m(t))}}{\sum_{a' \in A_\theta} e^{-C_{a'}^\theta(m(t))}} - m_\alpha^\theta(t)
\]
A population profile m is an **equilibrium state** if

$$\langle m - x, C(m) \rangle \leq 0, \forall x$$

This variational inequality is equivalent to:

$$\forall \theta, \forall a \in A_\theta, \left(m_\theta^a > 0 \implies C_\theta^a(m) = \min_{a' \in A_\theta} C_\theta^{a'}(m) \right)$$

Sketch of proof

\iff: (min \leq any). \implies: convex combination.

The last property is sometimes called **Wardrop first principle** of optimality.
Evolutionary stability

Denote $m_\epsilon = \epsilon x + (1 - \epsilon)m$. A population profile m is a **neutrally stable state** if $\forall x \neq m$ there exists $\epsilon_x > 0$ such that

$$\langle m - x, C(m_\epsilon) \rangle \leq 0, \ \forall \epsilon \in (0, \epsilon_x)$$

A population profile m is an **evolutionarily stable state** if $\forall x \neq m$ there exists $\epsilon_x > 0$ such that

$$\langle m - x, C(m_\epsilon) \rangle < 0, \ \forall \epsilon \in (0, \epsilon_x)$$

A population profile m is an **unbeatable state** if $\forall x \neq m$ one has

$$\langle m - x, C(m_\epsilon) \rangle < 0, \ \forall \epsilon \in (0, 1)$$

1. Hamilton 1967, Smith’72,82, Weibull’95, Hofbauer & Sigmund’98, Gintis 2000, Cressman’03, Samuelson’03, Vincent’05, Sandholm’09
Immediate consequences

Relation between the solution concepts

\[ES \iff NSS \iff ESS \iff \text{unbeatable state} \]

Price of Evolutionary Stability

\[\text{PoA}_{ESS} = \frac{\max_{\mathbf{m}^*} ESS\langle \mathbf{m}^*, C(\mathbf{m}^*) \rangle}{SO} \]

\[1 \leq \text{PoS}_{ES} \leq \text{PoS}_{NSS} \leq \text{PoS}_{ESS} \leq \text{PoS}_{unbeat.\, state} \leq \text{PoA}_{unbeat.\, state} \leq \text{PoA}_{ESS} \leq \text{PoA}_{NSS} \leq \text{PoA}_{ES} \leq +\infty \]
Existence of equilibria in evolving games with random number of players

Let $d = \#S$.

Result

For any distribution of $B^N(t)$ and any continuous function r on the non-empty, convex and compact subset $\prod_{\theta} \Delta(A_{\theta})$ of the Euclidean space \mathbb{R}^d, the evolving game has a least one "static" equilibrium state.

Sketch of proof

Connection target projection dynamics and best reply
A sufficient condition (PC)

Result

Suppose that the drift limit \(\tilde{f} \) satisfies
\[
\tilde{f}(m) \neq 0 \implies \langle \tilde{f}(m), C(m) \rangle = \sum_{\theta,a} C_{\theta}^a(m)f_{\theta,a}(m) > 0
\]
where
\[
f_y(m) = \sum_{k \geq 1} J_k(m)f_y^k(m),
\]

\[
f_y^k(m) = \sum_{a_1, \ldots, a_k} \left(\prod_{l=1}^{k} m_{a_l} \right) \left(\sum_{j=1}^{k} \eta_{a,y}^j(m, k) \right)
\]

\[
-m_y \left(\sum_{j=1}^{k} \sum_{a_{-j}} \left(\prod_{l=1}^{k} m_{a_l} \right) \eta_{y,a_{-j}}^t(m, k) \right)
\]

Then any "stationary" equilibrium state is a rest point of ODE.
A sufficiency condition for stationarity (NS)

Result

Suppose that the polymatrix of transition L satisfies

$$L_{\theta,a,a_{-j};\theta,b}(m) > 0 \iff a, b \in A_\theta, \ C^\theta_a(m) > C^\theta_b(m)$$

for each j, a_{-j} and m. Then,

- The mean field dynamics is positively correlated.
- Any rest point of the ODE is a stationary equilibrium state.
Particular class of games

Potential multi-type games

There exists a C^1-function W

$$\frac{\partial}{\partial m^\theta_a} W(m) = C^\theta_a(m)$$

Multi-type games with monotone expected cost

$$\forall x, \langle m - x, C(m) - C(x) \rangle \geq 0$$

Smith-stability : $\forall x \in BR(m) \setminus \{x\}, \langle m - x, C(x) \rangle < 0$ is equivalent to Evolutionary Stability a. Moreover, the set of equilibria is convex set ; ES set $\iff NSS$ set.

a Notice that the cost function is non-linear.
Particular games (cont’d)

Games with cooperative dynamics

\[\frac{\partial}{\partial m_{a'}} f_{\theta,a}(m) \geq 0 \]

Uniqueness of equilibrium state, strict monotonicity

\[\forall m \neq x, \langle m^{\theta} - x^{\theta}, C^{\theta}(m) - C^{\theta}(x) \rangle > 0 \]
Evolving Games with Delayed Expected Cost

Delayed evolutionary game dynamics

\[\frac{d}{dt} m(t) = f \left(m(t), \{ m(t - \tau^\theta_a) \}_{\theta,a} \right) \]

Two important results

- Unbeatable state, EES, SES, ESS, NSS can be **unstable**. Evolutionary stable set can be **unstable set** under time delayed game dynamics.
- Possible **survival** of **dominated** strategies

![Graph showing fraction of transmitters over time for different τ values](image)

- τ = 0.002 ms
- τ = 2 ms, τ = 4 ms
Mean Field Asymptotics of Markov Decision Evolutionary Games
Let $S = \{(\theta, s), s \in S_{\theta}\}$ be the set of "type-state". $A_{\theta,s}$ set of action of type θ in state s. Assume S finite. $u_{\theta}(\cdot|s) \in \Delta(A_{\theta,s})$. After an encounter between k players in $B^{N}(t)$, the variation of the population profile $M^{N}(t) \leftrightarrow M^{N}(t + \Delta_{N})$. The player $j \in B^{N}(t)$ receives an instantaneous cost $\nabla^{N}(X^{N}_{j}(t), X^{N}_{B^{N}\setminus j}(t))$.

New states

$X^{N}_{j}(t + \Delta_{N})$ is drawn according to $L^{N}_{\theta j}(.|X^{N}_{j}(t), X^{N}_{B^{N}\setminus j}(t), j \in B^{N}, \vec{u})$.

Drift

$f^{N}(m) := \mathbb{E} \left(M^{N}(t + \Delta_{N}) - M^{N}(t) \mid M^{N}(t) = m, B^{N}(t + \Delta_{N}), \vec{u} \right)$
Fix a Markov strategy profile u. Let $m[u, m_0](t)$ solution of

$$\dot{m} = f(u, m)$$

Then:

- $M^N[u, m_0](t) \xrightarrow{t \to +\infty} \omega^N[u, m_0]$

- $N \xrightarrow{t \to +\infty} +\infty$

- $m[u, m_0](t) \xrightarrow{t \to +\infty} ??$

- $N \xrightarrow{N \to +\infty} +\infty$

Questions:

- Convergence/nonconvergence of $m[u, m_0](t)$ as t goes to infinity?

- Convergence/nonconvergence of $\omega^N[u, m_0]$ as N goes to ∞?
Fix a policy \(u \). Let \(m[u,m_0](t) \) solution of the ODE \(\dot{m} = f(u,m) \) starting from \(m_0 \).

\[
\begin{align*}
M^N[u,m_0](t) & \xrightarrow{t \to +\infty} \omega^N[u,m_0] \\
N & \xrightarrow{\to +\infty} \\
m[u,m_0](t) & \xrightarrow{t \to +\infty} \text{?}
\end{align*}
\]

- Under which conditions, the two limits coincide (if they exist)?
- If the dynamics do not converge, is there link between the time average of orbits of the ODE \(\dot{m} = f(u,m) \) starting from \(m(0) = m_0 \), and the \(\omega \) limit of \(\omega^N[u,m_0] \)?
Extension

Mean Field Games (continuum of players)

\[dm(t) = f(u, m)dt + \sigma(t)dW_t \]

Mixing atomic and non-atomic players

a single "big player" has a non-negligible influence in all the population.

\[\frac{1}{N} \sum_{j=1}^{N} \gamma_j \delta x_j^N. \]

Mean field limit under more general class of strategies

Mean field dynamics with migration

extend to the case type can change (inner and outer game).

\[\text{evolutionary game dynamics with migration}^a \]

\[\text{a. Tembine H., Altman E., ElAzouzi R., Sandholm W. H.,} \]

Evolutionary game dynamics with migration for hybrid power control in wireless communications, 47th IEEE CDC’2008
Some references